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Abstract: The detection of cracks in concrete structures is crucial for the assessment of their structural
integrity and safety. To this end, detection with deep neural convolutional networks has been
extensively researched in recent years. Despite their success, these methods are limited in classifying
concrete as cracked or non-cracked and disregard other characteristics, such as the severity of the
cracks. Furthermore, the classification process can be affected by various sources of interference and
noise in the images. In this paper, an integrated methodology for analysing concrete crack images is
proposed using transfer and unsupervised learning. The method extracts image features using pre-
trained networks and groups them based on similarity using hierarchical clustering. Three pre-trained
networks are used for this purpose, with Inception v3 performing the best. The clustering results
show the ability to divide images into different clusters based on image characteristics. In this way,
various clusters are identified, such as clusters containing images of obstruction, background debris,
edges, surface roughness, as well as cracked and uncracked concrete. In addition, dimensionality
reduction is used to further separate and visualise the data, making it easier to analyse clustering
results and identify misclassified images. This revealed several mislabelled images in the dataset
used in this study. Additionally, a correlation was found between the principal components and
the severity of cracks and surface imperfections. The results of this study demonstrate the potential
of unsupervised learning for analysing concrete crack image data to distinguish between noisy
images and the severity of cracks, which can provide valuable information for building more accurate
predictive models.

Keywords: clustering; crack detection; data mining; image analysis; transfer learning; unsuper-
vised learning

1. Introduction

Image recognition is an important task in the field of computer vision and is extensively
researched. One of the most widely used approaches to image recognition is the use of
Deep Convolutional Neural Networks (CNNs or DCNNs). These models extract features
from an image through a process called convolution, which applies filters to the image
to detect edges, textures, and shapes [1]. These models have been widely adopted in
the field of structural health monitoring, including for the detection of cracks in concrete
structures. Early detection of cracks is essential for assessing the structural integrity and
safety of concrete structures, and regular inspections are necessary to ensure their longevity.
Traditional crack detection methods, such as visual inspections or non-destructive testing,
are time and resource intensive. Therefore, the use of deep learning models for autonomous
crack detection in concrete structures has become widely accepted due to their high accuracy
and efficiency [2].

The use of convolutional neural network-based models for image recognition is driven
by their ability to learn directly from image data. These models can be used for various tasks
such as crack image classification, edge detection, and segmentation [3–5]. One of the main
challenges in using these models is that large datasets are required for training, which in
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turn requires significant computational resources [6]. The construction of these models often
follows the state-of-the-art networks in image recognition, such as AlexNet, VGG, Inception,
and ResNets [7], which are typically trained on a vast dataset of everyday images, such as the
ImageNet dataset [8]. Once trained, they are able to classify images that are specific to the
domain of the training dataset. However, even though these models have been trained for a
specific task, they still contain a wealth of knowledge about feature construction that can be
transferred to other domains. In this process, known as transfer learning, models that have
already been trained are used as a starting point for developing models in other domains. This
can greatly reduce the amount of data and computational resources required to train a model
for a new task, while still achieving high levels of accuracy [9]. The use of transfer learning
has emerged as a recent approach for crack detection in concrete structures [10]. Studies have
proposed various combinations of pre-trained networks with custom classifiers to improve the
performance of the models [11–14]. These proposed methods have shown high accuracy and
strong generalization capabilities, outperforming other models in both accuracy and number
of parameters.

Despite the success of deep neural networks in detecting cracks, these methods still
have some limitations. Often, classification is limited to only two categories: cracked and
non-cracked, ignoring other characteristics such as the severity of the cracks [15]. Additionally,
images of concrete surfaces often contain a considerable amount of noise, including obstructions,
surface roughness, shadows, and blurred images, which can affect the predictions [16]. This
raises the need for an alternative method that can distinguish between given images and order
them based on their characteristics. Such information could be very valuable for extending
existing methods. For example, noisy images could be identified and removed before prediction
models are used, which could improve performance [17]. Furthermore, if the severity of cracks
could be determined, additional labels could be added to the data, providing additional context
to the classifiers and extending their functionality. This could lead to a better assessment of the
integrity of the structure.

For this purpose, the use of unsupervised learning techniques is proposed. Such
methods do not require any labels and analyse images based only on their feature data,
which leads to the separation of images into various groups without predefining them in
advance. They are particularly useful in situations where categories are poorly defined
or do not exist [18]. In such cases, the use of unsupervised learning has been shown to
be effective and can match the performance of conventional models [19]. Its use has been
demonstrated in various fields such as remote sensing [20], signal processing [21], and crack
image segmentation. In crack image segmentation, clustering has been used to distinguish
cracked and uncracked concrete at the pixel level [22]. Moreover, unsupervised techniques
can be used to improve the existing methods by making use of unlabelled images by
extracting knowledge and applying it in the training process [23].

In this study, an integrated methodology for crack image analysis combining transfer
and unsupervised learning is proposed. The presented method extracts features from
images using transfer learning represented as image embeddings. Unsupervised learning
is then applied to analyse these embeddings and identify characteristic clusters of similar
images. For this purpose, we compare three pre-trained networks: VGG-16, VGG-19, and
Inception v3. In addition, dimensionality reduction techniques are employed to further
separate the data and visualise the results, which helps to find misclassified images and
outliers. This presents an alternative approach to crack image analysis. The other works
focus mainly on determining whether an image contains a crack or not, while our approach
aims to find the additional context of the images.

The rest of this paper is organized as follows: In Section 2, we explain the methodolo-
gies and models employed in this study. In Section 3, we present the experimental results.
Finally, in Section 4, we draw the conclusions from our study.
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2. Methodology

The methodology used in this study consists of two parts (Figure 1). The first part
deals with the prediction of images of non-cracked versus cracked concrete using transfer
learning. This technique leverages pre-trained neural networks where the last layers are
removed and replaced with new layers that are specifically tailored to the task at hand.
These new layers are trained on a specific dataset, in this case, images of cracked concrete.
The result of this process is a classifier that can assign images into two classes: cracked or
non-cracked concrete. This is an already established method and therefore will not be the
focus of this study.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 14 
 

2. Methodology 

The methodology used in this study consists of two parts (Figure 1). The first part 

deals with the prediction of images of non-cracked versus cracked concrete using transfer 

learning. This technique leverages pre-trained neural networks where the last layers are 

removed and replaced with new layers that are specifically tailored to the task at hand. 

These new layers are trained on a specific dataset, in this case, images of cracked concrete. 

The result of this process is a classifier that can assign images into two classes: cracked or 

non-cracked concrete. This is an already established method and therefore will not be the 

focus of this study. 

 

Figure 1. Flowchart of the described methodology. 

The second part of the methodology was developed specifically for this study. It 

deals with the data analysis of the given dataset containing images of cracked concrete. It 

involves the use of pre-trained networks to obtain image embeddings. These are vector 

representations of an image that contain only the most relevant information. These em-

beddings are then used to compute distances between data points to represent similarities 

between images. They are used to construct hierarchical clusters that group these similar 

images into individual clusters. Afterwards, the data within the clusters are examined to 

understand the representation of each cluster. By including image labels, the ratio be-

tween two classes of images within clusters can be calculated to automatically determine 

the content of the clusters. Further evaluation involves analysing each cluster individually 

by transforming the data to a lower dimensional representation through dimensionality 

reduction. This allows the visualisation of the data and identification of misclassified im-

ages, providing valuable information to improve the predictive model. 

It should be noted that the second part of the methodology can be used inde-

pendently, as it involves the use of unsupervised learning techniques that work with un-

labelled data. In this case, the labelled data only provides additional context for the user 

and not for the unsupervised models. Therefore, the methodology can be used with either 

unlabelled or labelled datasets. 

2.1. Transfer Learning 

There are two main approaches to transfer learning in image recognition: fine-tuning 

and feature extraction. In fine-tuning, the weights of a pre-trained model are further 

trained on a new dataset of images. This allows the model to adapt to the specific features 

Figure 1. Flowchart of the described methodology.

The second part of the methodology was developed specifically for this study. It
deals with the data analysis of the given dataset containing images of cracked concrete. It
involves the use of pre-trained networks to obtain image embeddings. These are vector
representations of an image that contain only the most relevant information. These em-
beddings are then used to compute distances between data points to represent similarities
between images. They are used to construct hierarchical clusters that group these similar
images into individual clusters. Afterwards, the data within the clusters are examined to
understand the representation of each cluster. By including image labels, the ratio between
two classes of images within clusters can be calculated to automatically determine the
content of the clusters. Further evaluation involves analysing each cluster individually
by transforming the data to a lower dimensional representation through dimensionality
reduction. This allows the visualisation of the data and identification of misclassified
images, providing valuable information to improve the predictive model.

It should be noted that the second part of the methodology can be used independently,
as it involves the use of unsupervised learning techniques that work with unlabelled data.
In this case, the labelled data only provides additional context for the user and not for the
unsupervised models. Therefore, the methodology can be used with either unlabelled or
labelled datasets.

2.1. Transfer Learning

There are two main approaches to transfer learning in image recognition: fine-tuning
and feature extraction. In fine-tuning, the weights of a pre-trained model are further trained
on a new dataset of images. This allows the model to adapt to the specific features of the
new dataset without having to learn from scratch. Feature extraction, on the other hand,
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uses the pre-trained model as a fixed feature extractor by removing a few final layers and
training a new model on the extracted output. This approach is particularly useful for
smaller datasets where there is limited data available for training. In addition, feature
extraction allows for faster training times since the pre-trained model has already learned a
significant amount of information from the original dataset [24,25].

In this study, a feature extraction technique is used to extract image embeddings from a
new dataset. For this purpose, pre-trained models, mainly VGG-16, VGG-19, and Inception
v3, are used and the last layer, which is typically used for classification, is removed. In
this way, the high-dimensional image space is represented in a compact low-dimensional
feature space where the most informative features of the image are captured. The output of
the image embedding is usually a high-dimensional vector containing numerical feature
values that can be used for various tasks [26,27]. Tasks such as image classification, where
the embeddings are used as an input to a classifier that assigns a predefined category to an
image, searching similar images in a dataset, or finding the nearest neighbours of a given
image in the feature space.

2.1.1. VGG-16

VGG-16 is a very deep convolutional neural network architecture trained on the
ImageNet dataset of 1.2 million training images with 1000 different classes, such as animals,
vehicles, and everyday objects [28]. The network architecture consists of 16 weighted
layers composed of 13 convolutional layers and 3 fully connected layers (Figure 2). It is
characterized by the use of small convolutional filters of size 3 × 3 stacked on top of each
other to extract features from the input image. In addition, the network uses a technique
called max pooling, which reduces the spatial dimensions of the feature maps and allows
the network to focus on the most important features [29].
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Figure 2. Modified VGG-16 architecture for image embedding.

For image embedding, a modified network with frozen pre-trained weights is used,
where the last layer dedicated to classification is removed. This results in a network that
takes an input image of size 256 × 256 × 3 and outputs a vector of 4096 numerical values
between 0 and 1.

2.1.2. VGG-19

VGG-19 is an extension of VGG-16 and has a total of 19 weighted layers. This is
accomplished by the inclusion of three additional convolutional layers (Figure 3). Both
VGG-19 and VGG-16 use small convolutional filters of size 3 × 3, max pooling, and are pre-
trained on the ImageNet dataset, but the additional layers in VGG-19 may lead to improved
performance and more complex feature extraction, but also requires more computational
resources [29].
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2.1.3. Inception v3

Inception v3 is a 42-layer convolutional network architecture developed at Google and
trained on ImageNet for image recognition tasks. One of its main features is the Inception
modules (Figure 4), which are blocks of layers that use a combination of filters of different
sizes. This allows the network to learn the features of the input images more efficiently
while addressing the problem of overfitting which is common in very deep networks. It is
based on the previous versions: GoogLeNet (Inception v1) and Inception v2. It has been
shown to perform better at a slightly higher computational cost, despite having a deeper
network [30].

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 14 
 

 

Figure 3. Modified VGG-19 architecture for image embedding. 

2.1.3. Inception v3 

Inception v3 is a 42-layer convolutional network architecture developed at Google 

and trained on ImageNet for image recognition tasks. One of its main features is the In-

ception modules (Figure 4), which are blocks of layers that use a combination of filters of 

different sizes. This allows the network to learn the features of the input images more 

efficiently while addressing the problem of overfitting which is common in very deep 

networks. It is based on the previous versions: GoogLeNet (Inception v1) and Inception 

v2. It has been shown to perform better at a slightly higher computational cost, despite 

having a deeper network [30]. 

 

Figure 4. Modified Inception v3 architecture for image embedding. 

A modified network with the last layer removed is considered, which in turn returns 

a vector of 2048 normalized feature values. 

2.2. Unsupervised Learning 

Unsupervised learning, a subfield of machine learning, is the process of training a 

model on unlabelled data to discover the underlying structure of the data. Unlike super-

vised learning, which uses labels to train the model for prediction, unsupervised learning 

only considers features to explore the data and discover patterns or relationships without 

explicit guidance. Given the scarcity or expense of labelled data, unsupervised learning 

techniques have been widely applied in various fields such as data mining, natural lan-

guage processing, and computer vision. Popular methods include clustering, dimension-

ality reduction, anomaly detection, and generative models that can be applied to various 

data types, including images, text, and time series data [31]. 

2.2.1. Clustering 

To search for similarities in embedded data, hierarchical clustering with Ward link-

age is considered. This technique builds a hierarchy of clusters based on the calculated 

distances between them. Specifically, the Ward linkage method is used, which is an ag-

glomerative hierarchical technique. It starts with single data points and iteratively joins 

them to construct the clusters, in contrast to divisive methods that start with one cluster 

and split it into many. The clusters are combined in a way that results in the minimum 

increase in variance after merging, calculated as the sum of the squared distances between 

the data points and the mean of the merged cluster. This produces clusters that are similar 

in size and shape, which are displayed in a dendrogram (Figure 5), a tree-like representa-

tion, where the user can select clusters based on the distances or the number of clusters 

[32]. 

Figure 4. Modified Inception v3 architecture for image embedding.

A modified network with the last layer removed is considered, which in turn returns
a vector of 2048 normalized feature values.

2.2. Unsupervised Learning

Unsupervised learning, a subfield of machine learning, is the process of training a
model on unlabelled data to discover the underlying structure of the data. Unlike super-
vised learning, which uses labels to train the model for prediction, unsupervised learning
only considers features to explore the data and discover patterns or relationships without
explicit guidance. Given the scarcity or expense of labelled data, unsupervised learn-
ing techniques have been widely applied in various fields such as data mining, natural
language processing, and computer vision. Popular methods include clustering, dimension-
ality reduction, anomaly detection, and generative models that can be applied to various
data types, including images, text, and time series data [31].

2.2.1. Clustering

To search for similarities in embedded data, hierarchical clustering with Ward linkage
is considered. This technique builds a hierarchy of clusters based on the calculated distances
between them. Specifically, the Ward linkage method is used, which is an agglomerative
hierarchical technique. It starts with single data points and iteratively joins them to
construct the clusters, in contrast to divisive methods that start with one cluster and split
it into many. The clusters are combined in a way that results in the minimum increase in
variance after merging, calculated as the sum of the squared distances between the data
points and the mean of the merged cluster. This produces clusters that are similar in size
and shape, which are displayed in a dendrogram (Figure 5), a tree-like representation,
where the user can select clusters based on the distances or the number of clusters [32].
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2.2.2. Dimensionality Reduction

The high-dimensional data may pose some challenges in terms of visualisation or
computational costs. To this end, dimensionality reduction techniques can be used to
address these issues. They aim to reduce the number of features by constructing new,
uncorrelated variables known as principal components or latent variables that represent
the most relevant information in the data [33]. These new variables can be used to represent
the data in a lower dimensional space, making it easier to visualise the data and separate it
further or to find any misclassified instances.

In this context, the application of principal component analysis (PCA) and t-distributed
stochastic neighbour embedding (t-SNE) is applied to cluster-separated data. First, PCA is
used to reduce the high-dimensional feature to a selected number of principal components,
simplifying the data. Next, t-SNE is applied to the transformed data to convert it to a
2-dimensional representation, grouping similar data points together and separating others.

At this point, the image dataset is divided into smaller subsets of clusters and vi-
sualised in a scatter plot, making it easier for manual inspection. This way, one can
examine whether correlations exist between the coordinates and the image properties, such
as whether the number of imperfections in the images or the size of cracks increases or
decreases relative to the coordinates.

3. Experiments and Results

To test the methodology, images of cracked and non-cracked concrete were obtained
from a public dataset. The images were processed through pre-trained networks with the
last layer removed to obtain the image embeddings in the form of a high-dimensional
vector. Based on these embeddings, the distances between data points were calculated and
the Ward linkage method was used to construct the hierarchical clusters.

The experiment focuses only on the first part of the methodology, i.e., image
analysis by unsupervised learning techniques based on the transfer learning data.
Training predictive models and assigning labels to the data are not part of the scope of
this study, therefore the labels contained in the dataset were considered as those already
assigned by the predictive model.
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The experiment was divided into three parts, as follows:

(i) Performance comparison of the pre-trained networks
(ii) Assessment of the clustered data
(iii) Analysis of the data from individual clusters using dimensionality reduction techniques

For our analysis needs, we used Orange [34], an open-source data mining toolbox in
Python. It offers a collection of machine learning and data visualisation tools that allow
users to perform various data analysis tasks. The toolbox supports workflow building by
connecting various widgets for data preparation, data analysis, and visualisation. Specif-
ically, in our analysis of concrete crack image data, the workflow was constructed by
connecting widgets for image embedding, distance calculation, hierarchical clustering, and
t-SNE dimensionality reduction.

Images for the experiment were obtained from the SDNET2018 dataset. SDNET2018 is
a publicly available dataset that contains 56,000 labelled images of cracked and non-cracked
concrete surfaces, including various artefacts such as shadows, imperfections, edges, holes,
surface roughness, and background debris. The dataset provides a diverse selection of
concrete surfaces from three different sources: bridge decks, walls, and pavements. The
resolution of the images was 256 × 256 pixels and had three channels—red, green, and blue
(RGB) [35].

3.1. Comparison of Pre-Trained Networks

In the first part of the experiment, we compared the performance of three pre-trained
networks: VGG-16, VGG-19, and Inception v3. The goal of the comparison was to find out
from which network the extracted features provided the highest separation of data with
clustering. This was measured by how the classes of images were distributed among the
clusters, specifically by the label ratio of the images within each cluster, assuming a cluster
can only belong to one of the two classes.

The comparison was performed separately for each source of concrete images (bridge
decks, pavements, and walls). From each subset, 4000 randomly sampled images were se-
lected containing an equal number of images with and without cracks. This was performed
to avoid bias due to a class imbalance [36]. In addition, two analyses were conducted, one
with the 20 largest clusters (Table 1) and one with clusters below 5% of the total height of
the dendrogram (Table 2). In this way, the separability with a smaller and a higher number
of clusters was measured.

Table 1. Comparison of pre-trained networks in cluster classification with the top 20 clusters.

Dataset Model AUC F1 Accuracy Precision Recall

Deck
VGG-16 0.707 0.650 0.649 0.651 0.650
VGG-19 0.723 0.681 0.671 0.706 0.681

Inception
v3 0.763 0.696 0.678 0.748 0.696

Pavement
VGG-16 0.668 0.625 0.620 0.631 0.625
VGG-19 0.674 0.626 0.625 0.627 0.626

Inception
v3 0.785 0.700 0.700 0.700 0.700

Wall
VGG-16 0.677 0.619 0.618 0.620 0.619
VGG-19 0.731 0.670 0.668 0.674 0.670

Inception
v3 0.707 0.839 0.803 0.849 0.839
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Table 2. Comparison of pre-trained networks in cluster classification with the clusters below 5%
height ratio.

Dataset Model AUC F1 Accuracy Precision Recall

Deck
VGG-16 0.728 0.661 0.654 0.674 0.661
VGG-19 0.775 0.702 0.700 0.707 0.702

Inception
v3 0.820 0.738 0.733 0.757 0.738

Pavement
VGG-16 0.771 0.694 0.693 0.696 0.694
VGG-19 0.780 0.707 0.707 0.707 0.707

Inception
v3 0.881 0.787 0.786 0.789 0.787

Wall
VGG-16 0.728 0.657 0.656 0.658 0.657
VGG-19 0.755 0.678 0.675 0.684 0.678

Inception
v3 0.881 0.863 0.845 0.862 0.863

For a comparison of the pre-trained networks, binary classification metrics were
considered. More specifically, accuracy, precision, recall, and F1-score were used. These
metrics were calculated based on the ratio of True Positives (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN) given by Equations (1)–(4). In addition, the area
under the Receiver Operating Characteristic Curve (AUC) was calculated, which indicates
how well the classifier can distinguish between the two classes.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − score =
2TP

2TP + FP + FN
(4)

Based on the results obtained, it can be concluded that Inception v3 had the highest per-
formance across all categories among the three pre-trained networks considered. Therefore,
Inception v3 was used in the subsequent experiments to obtain image embeddings.

3.2. Assessment of the Clustered Data

In this section, the clustered data is analysed to identify the content of each cluster.
Focusing on the images within the clusters allows for efficient evaluation of the clustering
results, since smaller groups of images, i.e., clusters, are examined rather than the entire
dataset. When labelled data is considered, the ratio of the two classes of images can be
helpful in the evaluation. The results presented here are from the subset of bridge decks
only, which contains 13,620 images, of which 2025 are labelled as cracked and 11,595 are
labelled as non-cracked.

The clustered data can be used to identify clusters that contain either class, as well
as clusters that contain various anomalies present in the dataset. Anomalies such as
obstructions, background debris, surface roughness, and similar artefacts. In most cases,
the clusters have a strong separation of the data based on the given labels. An example
is given in Figure 6, which contains non-cracked images of varying complexity, such as
images with anomalies (Figure 6a), ground images (Figure 6b), or images of uncracked
concrete (Figure 6c). Similarly, images of cracked concrete can also be found, divided into
different clusters depending on their size, i.e., clusters with very wide cracks (Figure 7a) to
clusters with narrow cracks (Figure 7c).
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However, there are also clusters with low separation based on the two classes. This is
the case for images that contain very small and narrow cracks (Figure 8c) or where artefacts
dominate (Figure 8a). In the latter cases, clustering may not be able to distinguish between
the two classes, as such images share a high similarity, regardless of if they contain cracks
or not.
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Nevertheless, analysis of the clustered data provides valuable insight into the char-
acteristics of the datasets and allows for a more in-depth understanding of the results.
Through clustering, additional labels can be added to the images to distinguish various
characteristics, such as what anomalies they contain or the sizes of the cracks. Additionally,
the dataset can be cleaned of obvious non-cracked images before applying predictive mod-
els. This can provide valuable information for building more accurate predictive models
and improving the overall performance of the image classification process.

3.3. Analysis of the Data from Individual Clusters

To further analyse the clustering results, dimensionality reduction techniques were
applied to individual clusters. For this purpose, the high-dimensional vector of embedded
data was transformed to two principal components using PCA. Next, t-SNE was applied
with a perplexity of 100 and without exaggeration to visualise the structure of the data
in a 2-D scatter plot. This can be used to find possible misclassified images or additional
correlations between image features and their position in the plot.

In the scatter plot, any outliers or individual data points among points from the other class
were inspected. Through this process, several possibly mislabelled images were found. As
can be seen in Figure 9, some of these were images that were labelled as non-cracked but had
visible cracks (a), and others that were labelled as cracked but had shadows or other distortions
from small holes (b) or bumps (c) on the surface upon closer inspection. It is important to note
that not all such apparent data points are mislabelled. Some still share a high similarity, cracks
or no cracks, due to other prevailing markers. However, visualising data from smaller subsets
(clusters) makes it easier to examine them and determine their characteristics.
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Figure 9. t-SNE scatter plot visualising image data from a cluster and possibly mislabelled images.

Visualising the images on the scatter plot also allows correlations to be found between
the coordinates and the image characteristics. Considering a larger cluster containing
images of cracked concrete, certain relationships were noted. In particular, it was observed
that the size of the cracks increases with the y-coordinate, while the x-direction indicates
the extent of surface imperfection and roughness, as shown in Figure 10.
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4. Discussion

Overall, the results of clustering show that it is possible to separate images into distinct
clusters. This was achieved based only on their characteristics, without the need for labelled
data. For this purpose, three pre-trained networks were used for feature extraction and
clustering, with Inception v3 achieving the highest performance. The clustering was able to
distinguish cracked and non-cracked concrete images as well as various anomalies present
in the dataset. Anomalies such as obstruction, background debris, edges, and surface
roughness. Additionally, through the use of dimensionality reduction techniques, it was
shown that several potentially mislabelled images were identified in the dataset.

However, clustering did not achieve the same performance as the established neural
network models in classifying the two classes. This is because clustering struggles to
distinguish between the two classes when anomalies dominate the image. In such cases,
the clusters group these images regardless of whether cracks are present or not. This could
be addressed by segmenting the images into smaller regions, which would increase their
dissimilarity and improve the clustering. Nevertheless, the clustering analysis provides
valuable information that can be used to clean the dataset of noisy images and obvious
images without cracks.
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5. Conclusions

In this study, an integrated methodology for crack image analysis based on transfer and
unsupervised learning was proposed. The method extracts image features using pre-trained
networks and groups them based on their similarity through clustering. Furthermore,
dimensionality reduction was used to further separate and visualise the data, facilitating
an analysis of the clustering results and identification of mismatched images.

The results of this study demonstrate the potential of the proposed approach for
analysing concrete crack image data by integrating transfer and unsupervised learning.
Several use cases can be identified from this work:

• Clustering can be used to identify noisy images and clean them from large datasets.
• Clustering can also be used to divide images of cracked concrete into multiple groups

according to their severity.
• Dimensionality reduction can be used to visualise the classification results and identify

misclassified images.
• Dimensionality reduction can be used to extract the most important features from the

clustered images and correlate them with their real-world properties.

In addition, this study provides an alternative method for concrete crack detection that
does not require training or training data. However, there is an opportunity to combine
this approach with supervised techniques to further extend existing methods. Based on the
results of this study, several directions for future research can be recommended:

• By analysing the contents of the clusters, additional labels can be assigned to the data,
which can be used to train and extend existing models.

• Using this approach, misclassified or mislabelled images can be identified. This enables
the detection and correction of errors in the learning process, leading to improved
image classification performance.

• Segmenting images into smaller sections to avoid the prevalence of artefacts can lead
to better performance in detecting cracked and non-cracked concrete.
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