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Abstract Learning in automated negotiation is a difficult

problem because the target function is hidden and the

available experience for learning is rather limited. Transfer

learning is a branch of machine learning research con-

cerned with the reuse of previously acquired knowledge in

new learning tasks, for example, in order to reduce the

amount of learning experience required to attain a certain

level of performance. This paper proposes a novel strategy

based on a variation of TrAdaBoost—a classic instance

transfer technique—that can be used in a multi-issue

negotiation setting. The experimental results show that the

proposed method is effective in a variety of application

domains against the state-of-the-art negotiating agents.

Keywords Automated negotiation � Transfer

learning � Opponent modeling

1 Introduction

In automated negotiation two (or more) agents try to come

to a joint agreement in a consumer-provider or buyer-seller

setup [10]. One of the biggest driving forces behind

research into automated negotiation is the broad spectrum

of potential applications. For example, Ponka et al. [14]

propose the adoption of automated negotiation in electronic

commerce and Lau et al. [11] make use of the framework

to aid in electronic markets. Other application domains of

automated negotiation include supply chain management

[19] and pervasive computing [13].

Automated negotiations come in many forms such as

sequential versus concurrent negotiations (i.e., multiple

negotiations occur one after the other or at the same time),

bilateral versus multilateral negotiations (i.e., an agent

negotiates with a single other or multiple other opponents),

and single issue versus multi-issue negotiations (i.e., a

single or several issues are subject of negotiation among

agents). In the work reported here, the widely used bilateral

multi-issue negotiation setting is considered. In this nego-

tiation setting, two agents negotiate with the goal to agree

on a profitable contract for a product or a service. Such a

contract consists of multiple issues that are of conflictive

importance to the negotiators. We assume (1) that an agent

is limited in that it has no prior knowledge about its

opponents’ utility models and/or strategies and (2) that the

profit an agent gets for reaching an agreement is discounted

over negotiation time (i.e., the longer it takes to reach an

agreement the lower is the profit).

Given the pervasive nature of automated negotiation,

negotiating agents are required to have a high level of self-

determination, whereby they decide on their own what

actions they should perform when and under what condi-

tions so that they end up in satisfactory agreements. This

kind of self-determination, however, is very challenging to

achieve, mainly due to the lack of sufficient knowledge

about the opponents. Modeling the opponent’s behavior is

one of the common approaches to predict the negotiation

outcome. Different algorithms capable of modeling the
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opponent’s behavior in negotiation settings have been

proposed. Chen and Weiss in [4] proposed the negotiation

approach ‘‘OMAC‘‘ that learns the opponent’s strategy to

predict utilities of future counter-offers through discrete

wavelet decomposition and cubic smoothing splines. The

optimal concession is then made accordingly. Hao et al. [8]

introduced a negotiation strategy named ABiNes (while the

implementation is called CHUKAgent) to deal with nego-

tiations in complex environments. To successfully perform

negotiations, ABiNeS adjusts the time to stop exploiting

the negotiating partner and also employs a reinforcement-

learning approach to improve the acceptance probability of

its proposals. In order to leverage the problem of a sub-

stantial amount of time required in learning, Chen et al. [3]

proposed a sparse-Gaussian processes (SPGPs) framework.

SPGPs are a form of nonparametric regression techniques

capable of effectively modeling a latent relation between a

set of dependent and independent data instances. Rather

than using the overall available data, SPGPs make use of

the so-called pseudo-inputs. These are typically smaller in

number than the overall data set and are fitted such that

their locations capture the main trends of variation in the

latent function. Experiments in [3], have shown a reduction

in the computational complexity required to learn an

opponent model in automated negotiation.

Although successful, these methods have paid little

attention to the problem of reusing of availability of data

and knowledge. This problem can also be framed in terms

of complexity as folows: howto reduce the amount of

samples needed to learn a successful behavior? Transfer

learning (TL) is a promising technique to tackle this prob-

lem [1, 12, 18]. The main idea in TL is to reuse knowledge

attained in a previously encountered task to aid learning in a

new task. In TL, there typically exists a source and a target

task. The agent has already acquired a ‘‘good-enough’’

behavior in the source. This knowledge is available to be

used in the target. When attempting to transfer, three main

questions stand-out: what to transfer, when to transfer, and

how to transfer. The first question addresses the type of

knowledge to be transferred (e.g., instances, features, et.

cetera); the second questions concerns the learning phase in

which transfer is to be conducted (e.g., online, offline, et.

cetera); and the third question is concerned with the ‘‘cor-

rect’’ mapping of source knowledge to the target task (e.g.,

weighting instances, mapping features, et. cetera).

This paper describes work that aims at at efficient

opponent modeling in automated negotiation and contrib-

utes to this goal by:

1. Proposing a formalization for transfer in automated

negotiation;

2. Proposing an instance transfer algorithm for automated

negotiation based on TrAdaBoost;

Experiments performed on various state-of-the-art

negotiation tasks show that transfer can indeed aid target

agents in improving their behaviors once encountering new

opponents varying in their preference profiles, bidding

strategies, and/or utility models.

The rest of the paper is organized as follows. Sect. 2

provides the reader with necessary background knowledge

needed to understand the remainder of the paper. Sect. 3

details the proposed algorithm. In Sect. 4 experimental

results are shown and Sect. 5 discusses these results. Finally,

Sect. 6 identifies promising future research directions.

2 Background

In this section background material is provided. Firstly, the

overall automated negotiation setting is explained. Sec-

ondly, the regression framework (i.e., Gaussian Processes)

is presented. TrAdaBoot, being the basis for one of the

proposed transfer methods, is then detailed.

2.1 Negotiation Framework

As stated above, the automated negotiation framework

adopted in this paper is a basic bilateral multi-issue nego-

tiation model as it is widely used in the agents field (e.g.,

[4–6]). The negotiation protocol is based on a variant of the

alternating offers protocol proposed in [15].

Let I = {a, b} be a pair of negotiating agents, where

i (i 2 I ) is used to represent any of the two agents. The goal of

a and b is to establish a contract for a product or service,

where a contract consists of a vector of values, each assigned

to a particular issue such as price, quality or delivery time.

Inherent to the negotiation process is that agents a and

b act in conflictive roles. Formally, let J be the set of issues

under negotiation where j (j 2 f1; :::; ng ) is used to represent

a particular issue. Contracts are tuples O ¼ ðO1; . . .;OnÞ that

assign a value Oj to each issue j. A contract is said to be

established if both agents agree on it. Following Rubin-

stein’s alternating bargaining model [17], each agent makes,

in turn, an offer in form of a contract proposal.

An agent receiving an offer at time t needs to decide

whether (1) to accept or (2) to reject and propose a counter-

offer at time t ? 1. Counter-offers can be made until one

agent’s deadline tmax is reached and it has to withdraw from

the negotiation. Negotiation continues until one of the

negotiating agents accepts or withdraws due to timeout.

Each agent i decides to accept or reject a contract based on

a weight vector wi ¼ ðwi
1; . . .;wi

nÞ (also called importance

vector or preference vector) that represents the relative

importance of each issue j 2 f1; :::; ng: These weights are

usually normalized (i.e.,
Pn

j¼1 ðwi
jÞ = 1 for each agent i).
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The utility of an offer for agent i is obtained by the

utility function, defined as:

UiðOÞ ¼
Xn

j¼1

ðwi
j � Vi

j ðOjÞÞ ð1Þ

where wi
j and O are as defined above and Vi

j is the

evaluation function for i, mapping every possible value of

issue j (i.e., Oj) to a real number.

After receiving an offer from the opponent, Oopp at time

t, an agent decides on acceptance or rejection according to

its interpretation I (t, Oopp) of the current negotiation sit-

uation. For instance, this decision can be made depending

on a certain threshold or can be based on utility differences.

Agents usually have a lowest expectation for the outcome

of a negotiation below which the agent will never accept an

offer; this expectation is called reserved utility ures. If the

agents know each other’s utility functions, they can com-

pute the Pareto-optimal contract [15]. However, in general,

a negotiator will not make this information available to its

opponent.

2.2 Gaussian Processes

Gaussian processes (GPs) are a form of non-parametric

regression techniques. Following the notation of [16],

given a data set D ¼ fxðiÞ; yðiÞgm
i¼1 where x 2 R

d is the

input vector, y 2 R the output vector and m is the number

of available data points when a function is sampled

according to a GP, we write, f ðxÞ�GPðmðxÞ; kðx; x0ÞÞ;
where m(x) is the mean function and kðx; x0Þ the covariance

function, together fully specifying the GP. Learning in a

GP setting involves maximizing the marginal likelihood of

Eq. 2.

log pðyjXÞ ¼ � 1

2
yT Kþ r2

nI
� ��1

y� 1

2
log jKþ r2

nIj

� n

2
log 2p ð2Þ

where y 2 R
m�1 is the vector of all collected outputs,

X 2 R
m�d is the matrix of the data set inputs, and

K 2 R
m�m is the covariance matrix with |.| representing

the determinant. The interested reader should refer to

[16] for a more thorough discussion of the topic. To fit

the hyperparameters that best suit the available data set

we need to maximize the marginal likelihood function of

Eq. 2 with respect to H the vector of all

hyperparameters. Typically, this maximization requires

the computation of the derivatives of Eq. 2 with respect

to H: These derivatives are then used in a gradient-based

algorithm to perform the updates to the hyperparameters

hj.

2.3 Boosting for Transfer Learning

TrAdaBoost [7] is an algorithm used to transfer learning

instances between a source and a target task. The idea is to

use source task samples in the target task to increase the

amount of learning data available. The transferred exam-

ples are weighted so that they get a low weight if they hurt

performance in the target task and a high weight if they

increase performance in the target task. TrAdaBoost was

proposed for classification tasks. In this work as shown in

Sect. 3.3, an adaption of the algorithm to deal with

regression is also presented.

TrAdaBoost is formalized in terms of the following: X s

is the example space in which a new learning task needs to

be solved, i.e. the example space of the target task, XD is

the example space from the source task1 and Y ¼ f0; 1g is

the set of labels2. A concept c is a function mapping from

X ! Y with X ¼ X s [ X d: The test set is denoted by S ¼
fxðiÞt gk

i¼1 2 X s: The training data set T � fX � Yg is

partitioned into two labeled data sets T D and T S: T D

represents the source task data set with T D ¼
fðxðiÞD ; cðx

ðiÞ
D ÞÞg

m
i¼1 where x

ðiÞ
D 2 XD and T S represents the

target task data set where T S ¼ fðxðjÞs ; cðxðjÞs ÞÞgn
j¼1: The

superscripts n and m are the sizes of the two data sets T D

and T S: Therefore, the combined training set T ¼
fðxðlÞ; cðxðlÞÞÞgnþm

l¼1 now consists of:

xð1Þ ¼ x
ðiÞ
d

for l¼1;...;m

x
ðiÞ
s for l¼mþ1;...;mþn

�

ð3Þ

Using these definitions the problem that TrAdaBoost

tries to solve is: given a small number of labeled target task

training data T s and a large number of source task

instances T D and an unlabeled data set S; learn a classifier

ĉ : X ! Y that minimizes the prediction error on the

unlabeled data set S:
The main idea behind TrAdaBoost is to weight source

instances such that these relevant to the target task attain a

high weighting factor, while the ones that hurt the target

attain a lower weight. For a detailed description, the reader

is referred to [7].

3 Transfer in Automated Negotiation

This section describes the proposed transfer techniques.

First, transfer formalization in automated negotiation is

1 Adopting the same notation as in the original TrAdaBoost paper,

the index s stands for ‘‘same distribution instance space’’ and the

index D for ‘‘different distribution instance space’’.
2 Extending TrAdaBoost to multi-class classification problems is

fairly straight forward.
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explained. Second, learning in the source task is detailed.

Finally, the proposed method for instance transfer in

automated negotiation is explained.

3.1 Transfer Formalization in Automated Negotiation

The source and target task knowledge are attained from

different opponents. This means that either the utility

models of the source and the target opponent and/or the

strategies between them are different. We define the

strategies set P ¼ fp1; p2g; with p1 and p2 being the

strategies of each of the source and the target opponent,

respectively. The source task’s opponent strategy p1 is

sampled from � vð1ÞP ð:Þ; while p2 is sampled from � vð2ÞP ð:Þ
with (.) being the suitable domain. We assume the strate-

gies of the two opponents are similar to a certain tolerance

�P: In other words, the distance between the two strategy

probability distributions – vð1ÞP and vð2ÞP is not larger than

�P; given by the following equation:

DP
KLðv

ð1Þ
P jjv

ð2Þ
P Þ ¼

Z1

�1

vð1ÞP ðxÞ ln
vð1ÞP ðxÞ
vð2ÞP ðxÞ

dx� �P ð4Þ

with x being an instance of the valid probability

distribution domain. Further, we define a utility set U ¼
fu1; u2g; where u1 is the utility function of the source

opponent and u2 is the one of the target. The utility

functions of each of the two opponents are also distributed

according to their own probability density functions,

u1�Uð1ÞU ; and u2�Uð2ÞU : Similar to before, we assume,

DUKLðU
ð1Þ
U jjU

ð1Þ
U Þ ¼

R1
�1 U

ð1Þ
U ln

Uð1ÞU
Uð2ÞU

dy� �U ; where �U is an

acceptable utility difference and y represents an instance of

the valid domain.3. According to previous formalization,

for transfer to be successful the difference between the two

utility models of each of the source and the target opponent

should be within a certain range �U : Moreover, we

hypothesize that as the difference of strategy probability

distributions or utility models grows, the transfer learning

performance decreases, and vice versa.

3.2 Learning in the Source Task

The source negotiation task starts by the opponent agent

presenting an offer describing values for the different

negotiation issues. Utility is calculated according to the

proposed opponent’s offer, which is either accepted or

rejected. If the offer is accepted the negotiation session

ends. On the other hand, if the offer is rejected the agent

proposes a counter-offer. Then, the opponent can decide,

according to his own utility function, whether to accept or

reject this counter-offer.

While the opponent’s utility function is unknown, it can

be learned over time. The opponent utility is indirectly

observed from the utilities of the opponent’s counter-

offers: every time the opponent proposes a counter-offer,

the utility of this offer is computed and added to the data

set D1 ¼ ftðiÞ1 ; u
ðiÞ
1 g

t1max

i¼0 ; with t1
(i) representing the source

task time steps running to a maximum of t1_max. The data

set grows dynamically as the negotiation session continues.

Every time a new instance is obtained, the model—in this

case a Gaussian process—is trained anew to discover a new

latent function best describing the new data set4. The new

model is then used to propose a new offer to the opponent.

This is achieved through the prediction probability distri-

bution of the trained Gaussian processes. Formally, the

predicted utility at a new time step tH� is calculated

according to the following:

uH

1 jC1; u1; t
H

1 �N ðuH

1 ; covðuH

1 ÞÞ
with

�uH

1 ¼ K1ðtH1 ;C1Þ K1ðC1;C1Þ þ r2
1I

� ��1
u1

covðuH

1 Þ ¼ K1ðtH1 ; tH1 Þ �K1ðtH1 ;C1Þ K1ðC1;C1Þ þ r2
1I

� ��1

�K1ðC1; t
H

1 Þ
ð5Þ

where uH

1 is the predicted value at tH1 ; C1 is the matrix of

all the history of inputs till tH1 ; u1 presents the vector of

utilities collected so far, K1ðtH1 ;C1Þ is the covariance

matrix formed between the new input and the history of all

inputs, K1ðC1;C1Þ describes the covariance formed

between all the history of inputs, and r1
2I signifies the

noise in each of the problem’s dimensions.

The negotiation session ends when either an agreement

is reached or the available time steps are exhausted.

Finally, the opponent’s utility model described by the

hyperparameters of the Gaussian process is returned for

later use.

3.3 Instance Transfer in Automated Negotiation

Following the former formalization, it is now intuitive to

extend the negotiation framework to a setting that is similar

3 Please note, that the formalization using the KL measure assesses

that the two distributions should be having the same domain. This is

reasonable in our framework as we operate within the same

negotiation domain. If the two distributions are structurally different

both could be approximated using one bigger distribution such as

Gaussian mixture models. 4 In this work we split the negotiation session in intervals of 3 s.
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to that of TrAdaBoost. To define the transfer problem we

need to first define the data sets of both the source and the

target tasks. The different distribution data set is defined as,

T D ¼ ftðiÞ1 ;GP1ðtðiÞ1 Þg
m
i¼1: In the target task, the same dis-

tribution dataset is defined as, T S ¼ ftðjÞ2 ; u
ðjÞ
2 g

n
j¼1 with

n \\\ m. In other words, in the target task a handful of

labels is available. The agent can gather these through the

interaction with the target task opponent.

Having the above data sets, the weights of each of the

samples are fitted according to a modified version of

TrAdaBoost as shown in line 4 of Algorithm 1. This

function is detailed in the pseudo-code of Algorithm 2. The

algorithm follows the same steps as in the normal TrAda-

Boost with the slight modification that it uses the Gaussian

process and the normalization constant Z(k) to compute the

normalized prediction error (line 5). u
ðiÞp
1 in Eq. 7 repre-

sents the source model prediction.

The outputs of this function are the learned model

parameters as well as the two data distributions corre-

sponding to T D and T S: Once the TrAdaBoost algorithm

fits the weights, the agent proposes an offer according to

Eq. 6 in line 5 of Algorithm 1. p1 and p2 in Eq. 6 are the

fitted distributions over the same and different distribution

datasets. Moreover, T S: is the predicted output of the target

task function approximator. In case of a counter-offer, the

utility of this offer is determined and added to T S so to be

used in the next run of TrAdaBoost. After the total time is

exhausted the algorithm returns the target opponent utility

model.

4 Experiments and Results

The performance evaluation was done with general envi-

ronment for negotiation with intelligent multipurpose

usage simulation (GENIUS [9]) which is also used as a

competition platform for the international automated

negotiating agents competition (ANAC). The four domains

used were: (1) barbecue, (2) house keeping, (3) rental

house, and (4) outfit (for the description of each domain,

refer to [2]). Two sets of experiments where conducted. In

the first the source and the target task’s opponents were

similar, while in the second the target opponent differed

significantly from the source one.

4.1 Similar Source and Target Opponents

In the source task the agent faced the second ranked ANAC

2012 agent, the AgentLG. The target opponents had similar

negotiation power. These were the following agents: (1)

CUHKAgent (1st place of the 2012 ANAC), (2) OMAC-

agent (joint 3rd place of the 2012 ANAC), and (3)

TheNegotiator Reloaded (joint 3rd place of the 2012

ANAC). The negotiation intervals were set to 3 s and the

maximum negotiation time was 180 s. After approximating

a model of the source task’s opponent, the agent uses the

proposed transfer algorithm to negotiate against different

target opponents in each of the previous domains. For the

results to be statistically significant, the negotiation session

against each opponent in each domain was repeated 200

times. Figure 1 shows the performance of the transfer

algorithm. The X-axis shows the average final utility in the

four domains with the error bars representing the standard

deviation. It is clear from the results that the transfer agent

(i.e., red curve) outperformed the no transfer case shown in

blue in all four domains. Please note that the no transfer

case here refers to the normal negotiation setting.
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This leads us to the conclusion that the agent using the

proposed transfer algorithm is capable of significantly

outperforming the non transfer negotiating agent in tasks

against similar opponents.

4.2 Dissimilar Opponents

In this set of experiments the source and target opponents

where significantly dissimilar. First, in the source task, the

agent negotiates against the OMACagent. Then, it com-

mences to negotiate in the target task using the transfer

algorithm against: (1) IAMHaggler2011 (3rd place of the

2011 ANAC), (2) BRAMAgent (4th place of the 2011

ANAC), and (3) Agent_K2 (5th place of the 2011 ANAC).

The maximum negotiation steps were set to 100 and split

into 3 s intervals. The negotiation was repeated 200 times

against each of the above agents in the four domains, where

the mean and standard deviation of the final utility were

calculated and used for quality assessment. The results are

shown in Fig. 2. It is interesting to see that once the source

and target tasks became more dissimilar the transfer agent

performed similar to the no transfer case. This confirms our

hypothesis we made in Sect. 3.1. It is also worth noting,

that in the specific domain of Outfit the transfer agent was

able to outperform the no transfer case. We speculate that it

may be caused by a low level of competitiveness5 of this

domain (i.e., the lowest among the evaluation domains),

which is likely to alleviate the problem of increasing dif-

ference of strategy probability distributions or utility

models in these tasks with dissimilar opponents.

This leads us to the conclusion that as the source and the

target task opponents become more dissimilar, the transfer

performance decreases.

5 Discussion

One important point is that the proposed method is function

approximation independent. Since the opponent’s model

might be complex, a nonparametric functional prior (i.e.,

Gaussian processes) that can automatically avoid overfit-

ting has been employed. It is worth noting that, although

GPs are considered to be one of the most powerful function

approximation techniques, they suffer from computational

complexity problems when dealing with large data sets.

The solution for this problem is out of the scope of this

paper and will be dealt with in future work. Moreover, any

other function approximation scheme is equally applicable.

The presented results clearly demonstrate the applica-

bility and efficacy of transfer learning for negotiation tasks.

The proposed transfer technique operates within the same

domain of multi-issue negotiations. Operating in such a

setting allows the agents to avoid much of the computa-

tional complexity encountered otherwise. In other words, if

the transfer had to operate in different negotiation domains

an inter-task mapping that relates the source and target

dimensions would have been required.

Although the proposed method has been shown to

operate well in specific negotiation domains, transfer

learning always carries the possibility of negative transfer.

Negative transfer is a well known and a vital unanswered

question in transfer learning. In most cases, this problem is

ill-defined – it is hard to generally define negative transfer

covering all possible performance measures. In the nego-

tiation task, negative transfer occurs when transferring

Fig. 1 Transfer vs. no transfer results in four test domains when the

source and target tasks are similar

5 Competitiveness refers to the minimum distance of possible

outcomes in a domain to the point where both parties are both fully

satisfied. To put it differently, agents tend to achieve better

performance in a domain with lower competitiveness.

Fig. 2 Transfer vs. no transfer results in four test domains when the

source and target tasks are dissimilar
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from the source to the target task actually hurts the learning

of the target agent using one specific quality measure, such

as the final utility. Answering the question of negative

transfer in negotiation settings is out of the scope of this

paper and is left for future work as it requires a quantifi-

cation of the differences between the source and the

potential target opponents. However, we do present some

ideas that are helpful to avoid this problem. The perfor-

mance in the target task depends on the difference measure

between the source and target task utility and strategy

distributions. In other words, as �P and �U increase, the

performance in the target task will diminish. One idea to

solve this problem is to use a certain performance measure

c—such as the final attained utility—to quantify the rela-

tion between �P; �U and c. More specifically, a set of source

and target negotiation tasks can be generated by varying

the strategy and utility distributions. The proposed transfer

algorithms are then applied and after the negotiation ses-

sion terminated the performance measure c is calculated.

This gives rise to a data set D ¼ fðh�Pi ; �Ui i; ciÞgo
i¼1; where

o is the index of the different tasks that can be used to

determine a data driven negative transfer measure. Spe-

cifically, a regression problem could be formulated in

which a mapping from the distribution difference to the

performance measure is learned. Using this function any

new negotiation task could be assessed according to this

measure to determine whether negative transfer is likely to

occur.

6 Conclusions and Future Work

This paper proposed a robust and efficient approach in

transfer learning in negotiation tasks. The transfer tech-

nique makes use of adaptation of TrAdaBoost—a well

known supervised transfer algorithm—to aid learning

against a new negotiation opponent. Experimental results

show the applicability of the learning scheme. More spe-

cifically, the results show that by using the proposed

strategy the agent can significantly improve its perfor-

mance in various negotiation domains. They further dem-

onstrate that, as the source and target opponents become

increasingly dissimilar, the transfer gain diminishes.

There are a lot of interesting future directions of this

work. For instance, the quantification of negative transfer

and the robustness of the transfer learning approach are

important subjects of further research. Furthermore, the

computational demands of Gaussian processes raises the

question of what other variants of supervised learning are

appropriate.
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