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Abstract—The work presented in this paper deals with the 
process of transfer function identification by using self-
oscillation method (autotuning identification method). The 
algorithm is given in a general matrix form and some 
modifications are introduced. The modifications of the 
algorithm include augmentation of the initial algorithm for 
Type k systems, systems with delays and discrete-time 
systems. The paper also includes simulation examples which 
describe the introduced modifications. Apart from being 
rather simple, this method is applicable to real systems. Its 
greatest advantage is quick identification of a transfer 
function (depends on the system).   
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I. INTRODUCTION 
Identification of process’ dynamics is usually the first 

step towards designing advanced controllers. A great 
number of methods have been developed for tuning 
controller parameters without knowing the process 
dynamics, [1], [2], etc. These methods are based upon 
numerous experiments conducted on a specific type of 
process, giving recommendations for specific controller 
structure and its parameters. The downside to these 
methods is that they were developed for a small number of 
process types and specific desired closed loop 
performance. Nevertheless, these same methods can be 
used for process’ identification, leaving it up to the control 
engineer to design a controller according to desired 
performance.   

Identification of process parameters in open-loop is 
often tedious and time consuming. If process’ parameters 
change in time (due to time-variant payload, disturbances, 
environment), classical identification methods are simply 
not convenient. It was more then 20 years ago when 
Åström and Hägglund derived a so called ATV 
(autotuning variation) method used for system 
identification, [3], that is simple and appropriate for in situ 
identification. The method used a relay-feedback to bring 
the system to self-oscillations. Then Luyben used this 
method in chemical industry to determine a transfer 
function of extremely nonlinear systems (distillation 
columns), [4]. Since then, relay-feedback systems proved 
to be a great tool for controller tuning in processes and for 
process identification, [5], [6], especially in 
pharmaceutical industry. An application of this type of 
identification to underwater vehicles can be found in [7]. 

Many modifications of the original autotuning method 
have been made in order to apply it to different types of 

processes. The main objection to this method is that only 
one frequency is taken into consideration (the frequency 
of self-oscillations). That is why some authors used an 
additional time delay in series with a relay to insert a 
phase delay which will ‘rotate’ the Nyquist curve and 
therefore obtain different oscillation frequencies, [8], [9]. 
Another approach for determining process’ characteristics 
at different frequencies was to place an integrator in a 
cascade to a relay element, [10]. As this area of research 
expanded, more complex methods have been developed 
using a similar concept. Great improvement was achieved 
in using transient response of the relay feedback system 
response to tune controllers and identify systems, [11], 
[12]. Wang et al. use a switching technique between a 
relay and a relay with an integrator to obtain sufficient 
information about the process, [13]. Another modification 
of a relay experiment is using a biased relay to identify 
system’s parameters, [14], [15]. This method is very 
accurate when used to determine the open loop gain of the 
process. 

All of these methods were used primarily for static 
processes (Type 0). However, a number of processes are 
not open-loop stable, and there are not many references 
regarding this problem. First publications that used this 
method for identification of Type 1 systems included a 
derivator in series with a relay element to compensate for 
the influence of the integrator. This method is more of a 
theoretical value than practical one, due to non-causality 
of an ideal derivator. Another, implementable, approach 
that uses a liner feedback which ensures the static 
behavior of the process was presented by Kwak et al. in 
[16]. We did not manage to find references that address 
the use of this method for Type k processes. 

In this paper, we present a general autotuning 
identification algorithm that is based on inducing self-
oscillations upon the system by introducing a nonlinear 
element in the closed-loop system. Section II describes the 
autotuning concept and gives a general matrix-based 
algorithm for identification. Section III presents the 
algorithm modification for Type k systems and systems 
with delays. Special attention is given to practical 
implementation of the method, which includes algorithm 
modification for discrete-time systems. It also describes 
filtering of self-oscillations in order to obtain more precise 
results. In section IV some simulation examples are 
presented in order to show the usefulness of the proposed 
method and improvements of the identification procedure 
when the modifications are introduced. The paper is 
concluded with Section V.  



II. ALGORITHM FOR AUTOTUNING IDENTIFICATION 

A. The Autotuning Concept 
The autotuning identification is based upon introduction 

of a nonlinear element in the closed-loop, as shown in 
Figure 1.   

Usually, the nonlinear element that is used is a relay 
with hysteresis. This is not the only nonlinear element that 
can induce self-oscillations, but is the simplest to 
implement and therefore most common in practice. The 
algorithm for autotuning identification will be developed 
for a general nonlinear element, whilst the simulation 
examples will be shown with a relay with hysteresis.   

Autotuning identification method boils down to 
determining a set of process’ parameters by using the data 
obtained from the induced self-oscillations. The grapho-
analytical procedure can be described as: find the 
intersection points between frequency characteristic of the 
LTI process and an inverse negative describing function 
of the non-linear element. This grapho-analytical method 
is known as the Goldfarb method, [17], and is given with 
(1) where GN(Xm) is the describing function , Xm is the 
magnitude of oscillations at the input of the nonlinear 
element and GP(jω) is the process frequency 
characteristic. 
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For the case of a relay with hysteresis and under the 

assumption that the self-oscillations are symmetric (for 
more details see [17] and [18]) the describing function is 
shown with (2) where xa is half the width of the hysteresis, 
and C is the relay output.  
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Once the self-oscillations are established in a closed 

loop system, we can use the magnitude and frequency of 
the obtained self-oscillations at the input of the nonlinear 
element and determine one point in the Nyquist plane 
which is also one point on the Nyquist curve of the 
process, [17]. If the process consists of maximum two 
unknown parameters and its transfer function is known, a 
Nyquist curve of the process can be uniquely interpolated 
through that specific point. If the process is more 
complex, e.g. consists of 4 unknown parameters, it takes 
two points in the Nyquist plane and consequently two 
autotuning experiments with different nonlinear element 
parameters are required (see Figure 2.  where PN1’, PN2’ 
are real and QN1’, QN2’are imaginary parts of  (1)). 

 

 
Figure 1.  Closed-loop scheme used for autotuning identification. 

 
Figure 2.   Points of intersection in the Nyquist plane. 

B. General Algorithm Matrix Formulation for Static 
Processes (Type 0 Processes) 

A linear time invariant process can be described by a 
transfer function (3) where n is the degree of the 
denominator (number of non-zero poles), m degree of the 
nominator (number of finite zeros) and n≥m. 
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Let us suppose that the closed loop system is as in 
Figure 1. Using the Goldfarb method (1) we can obtain a 
general equation in the frequency domain that gives 
relation between oscillation parameters (magnitude Xm 
and frequency ωu) and process’ parameters. The process 
transfer function transferred to frequency domain has the 
following form: 
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After combining (1) and (4), and equating imaginary 

and real parts, the following equations are obtained.  
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From this we can conclude that one autotuning 
experiments gives two equations that can be used for 
identification.  

If we run enough autotuning experiments so that all 
unknown parameters can be determined, the latter two 
equations can be expressed in a matrix form. In order to 
obtain a unique solution of the matrix equation, we fix the 
value of one parameter: a0=1. The number of the 
experiments that need to be run in order to identify all the 
parameters of process (3) with a0=1 is 
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Let’s define three vectors of measurements 
[ ]1

T
εω ω=ω ; [ ]1

TP Pε=P  and [ ]1
TQ Qε=Q , 

where elements Pi and Qi are functions of the 
experimentally obtained magnitude of self-oscillations 
and nonlinear elements parameters, and ωi frequency of 
the self-oscillations obtained in the ith experiment.  

The vector of unknown parameters is defined as 
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From the above mentioned we can write the following 
equation: 
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and ε ε ε×=I I , ε ε ε×=0 0 , 10 ε ×= 0 , 1I ε ×= I . The dot 
symbol (.k) denotes the element-wise exponent, % is the 
modulus operation and ¬  is the logical negation symbol. 
The parameter vector θ can be found by using the 
formula 1−=Θ Ω Y  only if there is an even number of 
unknown parameters. If there is an odd number of 
parameters, matrix Ω will have one row more than there 
are parameters. In this case, the last row can simply be 
omitted, or the pseudo-inversion (7) can be used to 
determine the solution. 
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Example: 
The following example will describe the algorithm 
development for the second order process: n=2; m=0. 
According to (5), ε=2. Partial measurement matrices Ωa 
and Ωb are obtained as 
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Full matrices in equation (6) are. 
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From here, equation (7) gives the process’ parameters. 

III. MODIFICATIONS OF THE GENERAL ALGORITHM 
The algorithm described in the previous section was 

generalized for static processes of any order. The 
modifications presented in this section will enable the use 
of the general algorithm for astatic, discrete-time and 
processes with delay without changing its appropriate 
matrix formulation. 

A. On Higher Harmonics and Signal Filtering  
Higher harmonics in real systems are always present. 

The main assumption in the describing function method is 
that the input to the nonlinear element contains only one 
harmonic, i.e. that the process is a good low-pass filter, 
[17]. Type 1 processes are good low-pass filters due to 
high damping of the integrator at high frequencies; 
therefore higher harmonics are well-attenuated. Self-
oscillations of systems with delays often contain higher 
harmonics, i.e. the oscillations are not monoharmonic. 
This implies that better results could be obtained if the 
obtained oscillations are filtered.  

The procedure that should be followed when filtering 
out higher harmonics is well-known in the literature. One 
suggestion is as follows: 

• Obtain the self-oscillations of frequency ωu and 
magnitude Xm; 

• Filter the acquired oscillations by using a filter of 

the form 
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arbitrary order of the filter. Note that the higher 
the order of the filter, the longer the set of self-
oscillations will be needed to get to the filtered 
steady oscillations of magnitude Xm

* ; 
• use the general algorithm with ωu  and Xm

* 
parameters. 

B. Modification for Type k systems 
The algorithm described in the previous section can 

easily be augmented for Type k systems (systems with k 
integrators). Let’s suppose that the process (3) has k 

integrators, 1( ) ( )P P kG s G s
s
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The new describing function parameters can now be 
written in a matrix form as 
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This approach is practical, because the original autotuning 
algorithm developed for Type 0 systems can easily be 
modified for Type k systems. The only parameters that 
have to be changed are Pi and Qi, i.e. the describing 
function vector. This modification can be observed from 



another point of view: we in fact joined the astatic part of 
the process to the nonlinear part; therefore converting the 
original nonlinear element into an inertial nonlinear 
element that depends upon the frequency of oscillations. If 
we look at it this way, then we can conclude that in fact 
the original describing function vector is rotated by 90˚ 
and multiplied by ω-1 for each integrator.  

C. Algorithm Modification for Discrete-Time Systems 
What type of modification is needed when dealing with 

discrete-time systems will be shown in the following 
example. When the autotuning identification is used in 
practice, the process is usually computer-controlled. 
Therefore a slight modification of the procedure has to be 
done. Let’s say that the relay should switch when the input 
is 3 (i.e. xa=3). It could happen that at some time step k the 
input is 2.15 and at k+1 it is 6.57, see Figure 3.  Since at 
the moment k the input to the relay has not yet reached the 
switching value, it will switch at the moment k+1. In other 
words, this is equivalent to hysteresis parameter xa having 
the value 6.57, which is more than double the value we 
supposed, therefore false results can be expected. It can 
also happen that the switching occurs exactly at the 
desired moment, resulting in accurate identification. Since 
it cannot be known a priori weather the chosen hysteresis 
parameters will give satisfactory results, the only way is to 
perform the correction of the hysteresis width, after the 
experiment has been performed. 

To conclude we suggest the following procedure when 
dealing with discrete-time systems:  

• perform the autotuning test with the relay width 
xa; 

• after acquiring the self-oscillations, determine the 
exact points in which the switching occurred (i.e. 
determine the new xa

*); 
• use the general algorithm with the corrected xa

* 
parameter. 

The simulation examples in the following section will 
confirm the improvement of the identification when this 
procedure is used. 

D. Algorithm Modification for Systems with Delays 
Delays in systems have great influence on quality of 

control. They are often present and seldom negligible. 
Some research has been done on autotuning of systems 
with time delays, but they were mostly based on inserting 
an additional time delay in order to shift the system in 
phase and therefore obtain different frequency points for 
identification. In this work, time delay is treated as a 
known part of the system, and its influence has to be 
compensated for.  

 
Figure 3.  Illustration of the relay switching error in discrete-time 

systems. 

The influence of time delays is rather obvious in 
systems forced into self-oscillations. Systems with delays 
have greater magnitude and smaller frequency of 
oscillations. If the system with a delay is to be identified, 
the delay should be taken into account.  

Let’s suppose that the process (3) has a time delay, 
( ) ( ) dsT

P PG s G s e−∗ = . Using the Goldfarb method (1) for 
closed-loop systems with nonlinear elements, we write the 
following equation.  
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The approach of combining the known time delay with 
the nonlinear element is elegant and does not require great 
intervention with the general algorithm. The case when 
time delay exists within the system is similar to the case 
with k integrators - it can be viewed as rotation of the 
nonlinear describing function vector, as shown in Figure 
4.  . 

The new nonlinear element that should be used in the 
general algorithm, can be written in a matrix form as  
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Unlike the case with integrators, this transformation 
does not change the magnitude of describing function, but 
only its angle. In this case, the describing function can 
achieve all possible angles, based on the time delay. The 
following section will demonstrate the necessity of this 
modification on simulation examples. 

IV. SIMULATION RESULTS 
As it is shown, the general matrix representation of the 

algorithm is suitable for any order of a system. To 
demonstrate this, we use a transfer function of the 
following form: 
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1 0

2
2 1

( )
1

b s b
G s

a s a s s
+
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where a1=4, a2=3, b0=2 and b1=1. Since the transfer 
function has 4 unknown parameters, two different 
experiments have to be performed. The identification 
results are shown in Table I.  

 
Figure 4.  Influence of the time delay – rotation of the describing 

function vector. 



TABLE I.  IDENTIFIED PARAMETERS USING THE ALGORITHM WITH 
AND WITHOUT FILTERING 

FILTERING NO YES 
xa 1 1 1 1 
C 1 2 1 2 
ωm 0.4889 0.5881 0.4889 0.5881 
Xm 2.6904 3.7788 2.7181 3.8414 

a1 (error [%]) 
a2 (error [%]) 
b0 (error [%]) 
b1 (error [%]) 

4.1201 (3) 
3.8314 (27.7) 
1.9641 (-1.8) 
1.4167 (41.7) 

4.0210 (0.53) 
2.9628 (-1.24) 

2.0198 (1) 
0.9646 (-3.54) 

 
As the function order gets bigger, greater precision in 

obtained self-oscillations parameters is needed. Therefore, 
signal filtering as described in section III-A is advised. 
Table I also gives results when the self-oscillations are 
filtered. The improvement is obvious. 

A. Modification for Discrete-Time Systems 

The example used here is 
( )

50( )
0.3 1

G s
s s

=
+

 with 

sample time 0.1s.  
When the hysteresis width xa is chosen to be 16, the 

same oscillations are obtained as in the case when the 
width is e.g. 20 (see Table II.). In the first case the 
identification is far from exact values, while in the second 
case it is much better. 

If algorithm modification proposed in section III-C is 
applied, we see that the relay switching occurs at the 
moments when hysteresis input is 20.28. When this 
hysteresis parameter is used in the identification 
algorithm, the identified parameters are the closest to real 
values. 

Figure 5. shows results of simulations for hysteresis 
widths xa from 5 to 20 with sample time 0.1. Void circles 
present percent parameter errors for the cases when 
hysteresis width was not modified. Full circles are 
positioned at the modified hysteresis widths and show 
percent parameter errors. It is self-evident that the results 
are much better when relay hysteresis is modified. For the 
hysteresis widths positioned between full circles, the 
magnitude and frequency of self-oscillations remain 
constant. It is obvious that with greater sampling time, one 
has more chance of choosing such hysteresis width so that 
real switching moment does not coincide with the 
assumed one. 

TABLE II.  COMPARISON OF RESULTS WITH AND WITHOUT THE 
PROPOSED MODIFICATION FOR DISCRETE-TIME SYSTEMS 

Xm = 24.47;     Tu = 2.8 

MODIFICATION NO YES 

xa 16 20 20.28 
K  

(ERROR IN %) 
67.43 

(34.86) 
53.94 
(7.88) 

53.2 
(6.4) 

T 
(ERROR IN %) 

0.526 
(75.33) 

0.325 
(8.33) 

0.311 
(3.67) 

 
Figure 5.  Comparison of identified parameter errors with and without 

algorithm modification for discrete-time systems  (sampling time is 
0.1s). 

 
Figure 6.  Comparison of identified parameter errors with and without 

algorithm modification (sampling time is 0.01s). 

In the case when sampling time is much smaller, i.e. 
0.01s (Figure 6. ), we see that the cases where hysteresis 
width was modified also give better results. However, the 
results without modification give satisfactory errors 
(below 10%). This is expected, because as sampling time 
gets smaller, the chances of relay to switch at a 
significantly different input value are much smaller, hence 
the error is smaller. 

B. Modification for Systems with Delays 

Take a system given with 
( )

0.150( )
0.3 1

sG s e
s s

−=
+

 as an 

example, and force it to self-oscillations. As it is seen 
from Table III, the errors that occurred when time delay 
was ignored are enormous. Once the algorithm was 
modified using the method described in section III-D, the 
results were much more accurate. Even though the 
improvement is obvious, the following part will show how 
filtering of these oscillations can improve the 
identification even more. 
Now that the modification has been introduced, the same 
process can be even better identified if the oscillations are 
filtered. Figure 7. shows the percent error of two identified 

parameters for the system 
( )

50
( )

0.3 1
dT sG s e

s s
−=

+
, with 

time delays varying from 0.01 to 2.  



TABLE III.  COMPARISON OF RESULTS WITH AND WITHOUT THE 
PROPOSED MODIFICATION FOR SYSTEMS WITH DELAYS 

xa = 10;     C = 1;      Xm = 24.47;     Tu = 2.8; 

MODIFICATION NO YES 

rotation matrix 
1 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
0.964 0.266
-0.266 0.964
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

K  
(ERROR IN %) 

76.98 
(156.6) 

55.14 
(10.28) 

T 
(ERROR IN %) 

0.6037 
(101.23) 

0.346 
(15.33) 

 

  
Figure 7.  Comparison of identified parameter errors with and without 

filtering of the induced oscillations. 

Full circles present the values obtained with filtering, 
while void circles give results without filtering. 
Obviously, filtering gives better identification results, 
especially in the case of the process gain.  

V. CONCLUSION 
The paper gave insight to a general, matrix-formed, 

algorithm for the autotuning identification method. The 
method is based on finding enough frequency points on 
the Nyquist curve so that the supposed process transfer 
function parameters could be identified. Usually the 
downside to autotuning method is that only one point at 
the frequency curve is used to determine the process 
dynamics. With the proposed matrix method we can 
conduct many tests at different frequencies (by changing 
the relay parameters), and determine a more precise 
transfer function.  

In addition to that, the algorithm is augmented in a 
simple manner for Type k systems, systems with delays 
and discrete-time systems. It is shown that more precise 
identification is achieved when modifications for discrete 
systems and systems with delays is introduced. In addition 
to that, filtering of self-oscillations is addressed, and 
improvements are shown on a simple example.  
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