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Tranifer Function Matrix Identificationfiom 
Input-Output Frequency Response Data 

by ZHIQIANG GAO, BRUCE TABACHNIK andRAZVAN V. SAVESCU 

Department of Electrical Engineering, Cleveland State University, Cleveland, 
OH 44115, U.S.A. 

ABSTRACT: A new formulation of transfer function matrix identification infrequency domain 
is introduced. It reduces the problem to a simple linear least square problem. It is shown that 
such a system identification problem is a special case of a matrix interpolation problem and 
much insight can be obtained by examining its algebraic characteristics. A new approach is 
proposed to determine the transfer function matrix of a multi-input and multi-output system 
from the input-output data. It eliminates the common assumption in the literature that the 
frequency response of the system is given. Its efficiency and practicality is superior to the 
existing methods, where the solution is obtained by solving a nonlinear least square problem 
using mathematical programming techniques. The simplicity of the new procedure makes it a 
viable candidate for real time implementation where systems can be identified on-line. Un-
modeled dynamics can also be better characterized. 

I. Introduction 

One of the classical problems in system identification is to determine transfer 

functions from the frequency response of linear time-invariant systems (Fig. 1). 

Typically, the data acquisition mechanism takes a time record of input and output 

data and transforms it to frequency domain, yUw;) and uUw;), where i = 1,2, .... 

For single-input and single-output (SISO) systems, the frequency response is 

obtained as the ratio of yUw;) and uUw;), i.e. GUw;) = yUw;)/uUw;) i = 1,2, .... 

Then, the system identification problem becomes that of finding a transfer function, 

G(s), whose frequency response approximates GUw;) i = 1, 2, ... , with minimal 

error. This is also known as the curve fitting problem where the measurements are 

fitted by a transfer function, G(s), parameterized as the ratio of the denominator 

and numerator polynomials. The coefficients of the two polynomials are determined 

to minimize the cost function 

u(jwi ) ____...... System to be 
Identified 

FIG. 1. System identification in frequency domain. 



(1) 

where Wi represents the weights at different frequencies. Note that this is a nonlinear 

least square problem since the relation between the error, G(jw) - G(jw) , and the 

denominator coefficients of G(s) is nonlinear. 

Several curve fitting algorithms have been proposed in the literature for SISO 

identification (1-7). Various gradient decent optimization techniques were used to 

solve the nonlinear least square problem. The problem was first investigated as a 

least square problem in (1). A relatively simple and effective algorithm, known as 

the SK algorithm or SK iteration, was proposed in (2). Orthogonal polynomial 

basis was introduced to improve the numerical robustness (4, 8). Attempts were 

also made to extend the results for SISO systems to multi-input and multi-output 

(MIMO) systems (8-10). The curve fitting problem for MIMO systems was for­

mulated; given the frequency response of the system, G(jw i) i = 1, 2, ... , find the 

transfer function matrix G(s) such that the cost function 

J = L: Wi II G(jwJ - G(jwJ II} (2) 

is minimized (9). Here 11'llf represents the Frobenious norm, that is IIXII} = 
Tr{X* X} where "*,, denotes complex conjugate transpose. An algorithm based 

on the SK iteration and Gauss and Newton algorithm (11) was proposed in (9) 

in which the problem was treated as a general optimization problem of the 

form 

min Ilf(8) II i (3)e 

where f(8) is a nonlinear function of the parameter vector 8. Another proposed 

approach (10) for MIMO system identification is to reduce it to a sequence of 

SISO system identifications. Each transfer function in the transfer function matrix 

is identified individually using the SISO system approach. The MIMO system is 

identified by minimal realization of the identified transfer functions. 

The recent results on matrix interpolation (12) provide an effective mathematical 

tool to study the system identification problem. The rational matrix interpolation 

problem is defined to represent a (p x m) rational matrix H(s) by interpolation 

triplets or points (Sh ah b) i = 1, 1which satisfy 

H(sJa i = b i i = i, ... ,I (4) 

where Si are complex scalars and ai i= 0, b i complex (m xl), (p x 1) vectors respec­

tively. The system identification problem studied here can be seen as a particular 

type of interpolation problem where the interpolation triplets, (Sh ai' b) i = 1, I, 
are replaced by the measurements triplets, (jWh u(jw), y(jw)) i = 1, I. The matrix 

interpolation theory provides a mathematical framework in which the algebraic 

aspects of the identification problem can be examined. 

In this paper, a novel methodology is proposed for system identification in 

frequency domain. A new formulation of this classical system identification prob­



lem is introduced, which allows various aspects of the problem to be examined by 

using matrix interpolation theory (12). More insight to the problem is shown. A 

new computer algorithm is developed to determine transfer function matrix for 

both SISO and MIMO systems. Two major benefits of the investigation are the 

vastly improved efficiency and the practicality of the new algorithm. In the new 

problem formulation, the coefficients of the transfer function matrix are linearly 

related to the error and they can be obtained by solving a linear least square 

problem. The new algorithm is more practical and therefore easier to implement, 

especially for MIMO systems. Instead of requiring the frequency response of the 

system to be identified, G(jwi) i = 1, 2, ... , it will only need the input and output 

data in frequency domain, that is y(jwJ and u(jwJ, where i = I, 2, .... This is 

significant, especially for MIMO systems, since, unlike G(jwi), y(jwi) and u(jwJ 
are directly available from the measurements. Better characterization ofunmodeled 

dynamics can also be obtained. 

The main results are discussed in Section II, the implementation of the new 

approach and illustrative examples are given in Section Ill, and some concluding 

remarks are given in Section IV. 

II. Main Results 

The current results in literature on system identification from frequency response 

all require that the frequency response of the system to be identified, G(jwJ, 
where i = I, 2, ... , is given. In practice, however, only the input and output are 

measurable. For SISO systems, this does not pose much difficulty as one can 

always take the ratio of y(jwJ and u(jwJ to obtain the frequency response G(jw} 
Unfortunately, it is not so trivial for MIMO systems considering all possible 

couplings between various inputs and outputs. Therefore, the assumption that 

G(jwJ is given seems very restrictive and impractical, particularly for MIMO 

systems. 

The nature of the system identification problem dictates that one must work 

with the measurements y(jwJ and u(jwJ, instead of G(jw} Ideally, the transfer 

function matrix G(s) should be determined such that it fits the measurements as 

follows 

G(jwi)u(jwJ = y(jw;), where i = 1,2, .... (5) 

Note that (5) applies to both SISO and MIMO systems. For SISO systems G(jw), 
u(jw) and y(jw) are scalars; while for MIMO systems G(jw) is a matrix; u(jw) 
and y(jw) are vectors. The problem of interest is to determine G(s) such that the 

error, y(jwi) - G(jwi)u(jwJ, is minimized in some sense. Note that the error defined 

here is more practical than the one used in (I) and (2) because it does not require 

the knowledge of the actual frequency response matrix, G(jw). 
It is usually more convenient to deal with a polynomial matrix than a rational 

matrix. Assuming G(s) is a p x m rational matrix, let G(s) = D- 1(s)N(s) be a left 

coprime fraction representation (13), where D(s) and N(s) are (p x p) and (p x m) 
polynomial matrices, respectively. Clearly, equation (4) is equivalent to 



N(jwJu(jwJ = D(jwi)y(jwi), where i = 1,2, ... (6) 

and the error can be defined as 

Ei = N(jwi)u(jwJ - D(jwi)y(jwJ, where i = 1,2, .... (7) 

Now the problem can be formulated as follows. 

2.1. Problem formulation 
Given column degrees of N(s) and D(s), and the input and output measurements, 

u(jw) and y(jw) , where i = 1, 2, ... , find a proper transfer function matrix, 

G(s) = D- 1(s)N(s) , such that the cost function 

J = IIEWII/ (8) 
is minimized. Here, the matrix W = diag {WI> W2' ... }, is a diagonal weighting 

matrix where Wi reflects the weight at frequency Wi; E is the error matrix defined 

as 

(9) 

Note that the column degrees of N(s) must not be greater than those of D(s) for a 

proper solution transfer function matrix to exist. 

The new formulation is fundamentally different from the existing ones described 

in equations (1) and (2). A critical characteristic of (8) is that the relationship 

between the coefficients in N(s) and D(s) and the cost function is linear. This is 

shown in the following. 

First, let equation (6) be rewritten as 

[N(jWJ,-D(jWJ{~g::n=Q, wherei=1,2,.... (10) 

Given the column degrees of [N(s), -D(s)], di i = 1, p+m, the polynomial matrix 

[N(S) - D(S)] can be represented as 

[N(s), -D(s)] = [N, -D]S(s) (11) 
where S(s) represents the matrix polynomial basis in a block diagonal form and 

[N, - D] contains all the corresponding coefficients 

I 
s 

s 

S(s) = (12) 

s 

Assuming there are I measurements {jwi, u(jw), y(jwi)} , let S, be 



[ 
. [U(jWl)] (. )[U(jW,)]]S,:= S(jWl) y(jwd ,00.,S }W, y(jw,) (13) 

all individual equations in (10) can be put in a single matrix equation as 

[N, - D]S, = Q. (14) 

The error associated with each frequency Wi' defined as Ei in Eq. (7), can now be 

written as 

It is obvious that 

E = [N, - D]S,. (15) 

Thus, it is shown that the coefficients of the rational matrix to be identified are 

linearly related to the error matrix E. 
From Eq. (15), the problem simply reduces to a linear least square problem: 

find [N, -D] such that J = IIEWllris minimized. This applies to both SISO and 

MIMO systems. Furthermore, only the input and output data, u(jw;) and y(jw;), 
where i = 1, 2, ... , are needed to determine the transfer function matrix. 

To better understand the problem and to develop a new algorithm, a number of 

issues must be addressed. For example, under what conditions does the system 

identification problem described in (5) and (6) have exact solutions? Is the problem 

in the new formulation numerically ill-conditioned? Is there a way to improve the 

numerical robustness? How many measurements should be taken to identify a 

transfer function matrix of certain order? For MIMO systems, can one take more 

than one measurement at the same frequency with different combination of inputs 

and outputs? etc. These issues have not been studied in depth mainly because of 

the lack of an appropriate mathematical framework. The recent development in 

matrix interpolation theory provides such a framework. 

2.2. Additional constraints 
For MIMO systems, the appropriate solutions must satisfy the conditions that 

D(s) is nonsingular and G(s) = D- 1 (s)N(s) is proper. This can be achieved by 

imposing additional linear constraints in the form of 

[N, -D]P = Q (16) 

where P and Q are constant matrices with appropriate dimensions. For example, 

since D(s) is a p x p matrix, p additional constraints can be used to make the leading 

coefficient matrix of D(s) a nonsingular matrix, say, a p x p identity matrix, IF' In 

this case the equation to be solved becomes 

[N, - DHS" P] = [O'/p]' (17) 

Furthermore, this will also guarantee the properness of the transfer function matrix 



since the column degrees of D(s) in the solution can now be selected to be greater 

than or equal to those of N(s). 

2.3. Existence ofexact solutions and minimum number ofmeasurements required 
It is shown above that the system identification problem can be formulated as a 

polynomial matrix interpolation problem. That is, given the measurements data 

{Wh u(jw), y(jw), i = I, 2, ...}, find the polynomial matrix [N(s), - D(s)] which 

satisfies Eq. (10) with D(s) nonsingular. The coefficients of [N(s), -D(s)] can be 

determined numerically from (17). The solution of (17) is unique if [51, P] has full 

rank. Therefore, we have the following theorem. 

Theorem 1 
Given {w;, u(jw;) , y(jw) , i = I, I} and nonnegative integers d; = degc;[N(s), 

-D(s)] with 1= ("Ld;)+m, and the P matrix where [N, -D]P = Ip , such that the 

("Ld;+m+p) x (l+p) matrix [51, P] has full rank, there exists a unique (p x (m+p)) 
polynomial matrix [N(s), -D(s)] with ith column degree equal to d;, where i = 1, 

m and leading coefficients of D(s) an identity matrix, for which Eq. (10) is satisfied . • 
Note that the unique solution [N(s) , - D(s)] leads to a unique p x m transfer 

function matrix, G(s) = D-' (s)N(s) , with Ip as the leading coefficients matrix of 

D(s). For such a rational matrix to be uniquely identified, 1= "Ld,+m number of 

measurements are required. It is of interest to examine what happens when I is 

different from the required number. That is what happens when I i= "Ld;+m: 
The equation of interest is [N, - D][SI, P] = [0, Ip] in (17). A solution [N, - D] 
(p x ("Ld;+ m+p» of this equation exists if and only if 

rank [~: ~J = rank [SI'P]. 

This implies that there exists a unique solution [N, -D] if and only if rank 

[Sh P] = l+p, that is if and only if [51, P], a ("Ld;+m+p) x (l+p) matrix, has 

full column rank. 

(i) When I > "Ld; +m, the system of equations in (17) is over specified; there are 

more equations than unknowns. If the additional (1- ("Ld;+m)) equations are 

linearly dependent upon the previous ("Ld;+m) ones, then a [N(s) , -D(s)] with 

column degrees d;, where i = I, m +p is uniquely determined provided that 

("Ld; +m) measurements {Wh u(jw;), y(jw) satisfy the conditions of the Theorem. 

Otherwise an exact solution does not exist. 

(ii) When I < "Ld;+m, [N(s), -D(s)] with column degrees d;, where i = I, m+p 
is not uniquely specified, since there are more unknowns than Eqs in (17). That is, 

in this case there are many matrices [N(s) , -D(s)] with the same column degrees 

d; which satisfy the I interpolation constraints. 

2.4. Choice ofmeasurements 
For SISO systems, it is known that the measurements {jw;, u(jw) , y(jwJ} should 

be taken at distinct frequencies to avoid redundancy. This is not necessarily true 



for MIMO systems. Consider the Sf matrix in (13), a measurement is redundant if 

the corresponding column in Sf is linearly dependent on the previous columns. It 
is shown (12) that in generaljw i , where i = 1, I do not have to be distinct; repeated 

values for jWh coupled with different u(jw) will still produce full rank in Sf in many 

instances. It was also shown that Sf has full rank for almost any U(jWi) when jWi 
are distinct. 

This is significant in system identification because it provides an alternative to 

frequency weighting. In the classical approaches, the frequencies of importance 

were given larger weight so that the errors at these frequencies will be smaller. This 

is shown in Eqs (1) and (2). In the new approach, besides frequency weighting, 

one can also use more than one measurement at a particular frequency. Therefore, 

the transfer function matrix can be made more accurate for a set of input patterns 

at the frequency of interests. 

2.5. Numerical issues 
It is well known that the standard polynomial basis {I, S, S2, ...} sometimes lead 

to poor numerical conditions in system identification especially when the frequency 

range of the data is rather wide and the order of the plant is relatively high. This 

problem can be dealt with by using various orthogonal polynomials, such as 

Chebychev polynomials, as basis. The change of basis can be carried out with ease 

in the framework of (11)-(14). Let [N(s), -D(s)] be expressed as 

[N(s), -D(s)] = [N, -DJTT(s) (18) 

where [N, - DJT is the representation of [N(s), - D(s)] with respect to orthogonal 

polynomials {(o(s), (1 (s), (2(S), ... } and 

toes) 
tl (s) 

T(s) = (19) 

Let Tf be defined similarly as Sf 

(20) 

then, [N, -D] can be found by solving 



(21) 

Once [N, - DJr is found, [N(s), - D(s)] can be determined from (18). 

2.6. Measurement noise 
In practice, whenever a measurement is taken, the presence of noises is inevitable. 

The noises may be white noise or colored noise depending on the plant and the 

way measurements are taken. For a system of low pass nature, the response to 

high frequency input is more susceptible to noises than to the low frequency input. 

As a result, the data in low frequency range is more reliable than that in high 

frequency range. Frequency weighting can be used here to reflect the confidence in 

each measurement. It could also be used to reflect the importance of the accuracy 

of the model at each frequency. Various othogonal polynomial basis that lead to 

better numerical properties will also help to reduce the sensitivity to the presence 

of noise. 

2.7. Unknown system order 
In system identification, the order of the model may not be readily available. In 

fact order estimation is a problem of its own. This is especially challenging in 

MIMO system identification. In the framework proposed above, an intuitive 

approach can be used to deal with this difficulty. First, from the frequency response 

data, the lower bound of the system order can be estimated. This bound can be 

used as a starting point in the search for the transfer function matrix of the lowest 

degree that yields reasonably small error. The system identification algorithm can 

be executed repeatedly with the increasing column degrees of [N(s) , -D(s)]. It 
should only stop when it reaches a point where the error is smaller than a pre­

determined value, or, the increase in the column degrees does not bring significant 

decrease in the error. 

2.8. Discrete-time system identification infrequency domain 
Discrete-time systems have transfer functions as rational functions of Z-trans­

form variable z. The frequency response of discrete-time systems is obtained by 
JuJTsubstituting z as z = e , where T is the sampling period. The problem of system 

identification in frequency domain for discrete-time systems is similarly defined: 

given the measurement triplets {jWj, u(eJW,T), y(eJW,T)}, find a transfer function 

matrix G(z) which satisfies 

G(eJw,T)u(eJw,T) = y(e}w,T), where i = 1,2, .... (22) 

Based on the approach described above for the continuous-time systems, a new 

algorithm for discrete-time system identification will be developed. Note that unlike 

the polynomial basis for continuous-time system, {1,jw, UW)2, ... }, the basis for 

discrete-time system is {1, eJwT, (eJwT )2, ...}, where all elements in the basis have the 

magnitude of one. Consequently, it seems that the discrete-time formulation has 

better numerical properties. This is especially true for systems with large bandwidth. 



2.9. Real-time implementation 
Many applications, such as self-tuning and fault-tolerant control systems, require 

that the mathematical model of the plant be identified in real-time. The proposed 

approach will lead to a numerically efficient computer algorithm which is quite 

suitable for such purposes. In the problem formulation introduced above, the 

system identification problem is reduced to solving a set of linear equations in least 

square sense. Therefore, the solution can be obtained by solving these linear 

equations simultaneously. The existing results can not fully meet the requirements 

due to their overwhelming computational complexity. 

2.10. Characterization of uncertainty 
Recent work in systems and control theory has bred methodologies which 

result in controllers with guaranteed robustness and performance for a given 

mathematical model of a physical system. For these guarantees to hold on the 

actual system, the mathematical model must describe the behavior of the actual 

physical systems to be controlled including variations, perturbations, and external 

noises. A model that meets such criteria is referred to as a robust model (14). The 

difference between the actual system, G(s), and the model obtained from system 

identification, G(s), is known as the uncertainty, or unmodeled dynamics, denoted 

as ll(s) = G(s) - G(s). It is important that the uncertainty be characterized so that 

the information can be taken into account in the design process. In general, the 

control system can be made more robust if we know more details about the 

unmodeled dynamics. Due to limitations in the existing approach, the uncertainty 

can only be represented by upper and lower bound on Illl(jw) II, where 11'11 represents 

matrix norms. With the new framework for system identification introduced above, 

a novel approach to fully characterize the uncertainty will be developed. 

Since G(s) = G(s) + ll(s) is the actual transfer function matrix of the system to 

be identified, it satisfies the measurements exactly 

(G(jw;) + ll{jw;)u(jw;) = y(jw;), where i = 1, I. (23) 

With G(s) obtained, it is desirable to characterized ll(s). Equation (23) can be 

rewritten as 

ll(jw;)u(jw;) = y(jw;), where i = 1,1 (24) 

where y(jw;) = y(jw;) - G(jw;)u(jw;). One way to characterize the uncertainty is 

to find ll{s) such that it satisfies (24). Note that, according to the matrix interp­

olation theory (12), one can almost always choose the order of ll(s) high enough 

so that it solves all Eqs in (24) exactly. 

One may wonder if ll(s) can be determined exactly, why should it not be included 

in as part of the model, G(s). The answer is two fold. First, since the behavior of a 

system may vary from one experiment to another, different ll(s) may be obtained 

from different experiments. Thus, a set of ll(s) can be used to represent the 

variations in the system. Secondly, the complexity of the model is another impor­

tant feature to be considered. An identified model should be relatively simple 

and should minimally cover the experimental data set. The ll(s) that satisfies all 



equations in (24) is likely to have a much higher order than that of the model. 

Therefore, including L1(s) in the model will make it unnecessarily complex. 

Once L1(s), or a set of L1(s), is obtained, the bound on the uncertainty can be 

determined by taking and plotting the matrix norm. Obviously L1(s) contains much 

more information than its norm and the availability of such information will 

undoubtedly lead to the development of less conservative methodology in robust 

control design. 

Ill. Implementation and Examples 

Matlab programs have been developed based on the new approach discussed 

above. Some implementation issues are discussed below. Numerical examples are 

also given. 

3.1. An alternative basis 
Although the formulation introduced above allows one to specify the column 

degrees of each column in [N(s) - D(s)], it is usually not necessary for system 

identification purposes. To simplify the procedure in the implementation, an alter­

native basis is used and is discussed below. 

Assume that the highest degrees of any term in N(s) and D(s) are dn and dd, 
respectively. Then, N(s) and D(s) can be written in a matrix polynomial form: 

(25) 

and 

(26) 

where N = [NJ N2 ... NdJ, D = [D JDz ... DdJ Thus, the polynomial matrix 

N(s) , - D(s)] can be represented as 

[N(s), -D(s)] = [N -D]S(s) (27) 

where 

(28)S(s) = 

S, is similarly obtained as 

(29) 

The solution can be found by solving 



40 

TABLE I 
Measurement data/or Example 1 

w (Hz) 3 7 10 15 20 25 30 35 

IG(jw) I 1 0.95 0.77 0.70 0.67 0.63 0.60 0.53 0.48 0.44 

arg(G(jw)) -2 -13 -24 -35 -44 -57 -62 -71 -75 -87 

w (Hz) 50 60 70 80 90 100 110 120 130 140 

IG(jw) I 0.35 0.31 0.33 0.35 0.32 0.32 0.30 0.29 0.27 0.26 

arg(G(jw)) -87 -110 92 -105 -119 -128 -145 -156 -166 -172 

[N,-D]S, = Q. (30) 

In addition, to guarantee that D(s) is nonsingular, the leading coefficient matrix of 

D(s), Ddd , is forced to be an p x p identity matrix, Ip. Equation (30) is now equivalent 

to 

(31 ) 

where Dl can be found as D J = [Dl D2 ... Ddd_J and Sn and B, are derived from 

the partition of S" S, = [~; J 
To obtain the coefficient matrix [N, - Dd from (31), a least square solution is 

sought. Note that since Sj is a complex matrix, the solution may also be a complex 

matrix. A real solution can be determined from 

(32) 

Based on the above discussion, Matlab programs have been developed to carry 

out the system identification, and full details can be found in (15, 16). 

Example I. Experimental frequency response data in Table I was used to test 

the Matlab program for SISO system identification. The data was collected from 

experiments on a supersonic jet engine (7). The transfer function obtained by the 

our Matlab algorithm is 

-16.34s2 + 1374.88s+ 193461.16 
Gs=~~~~~~~~~~~~~- ( ) 

S3 + 122.89s2 + 15424.5Is+211949.42 

The frequency response generated from this transfer function compared to the 

measurement data can be seen in Fig. 2. A very close fit is clearly shown. Note that 

this third order transfer function is significantly simpler than the best result 

obtained in (7), which shows a similar frequency response but has an order of 5. 

3.2. Evaluation of the MIMO system identification algorithm 
Due to the lack of experimental data in the literature, the computer program is 

tested on the input-output data generated from a given transfer function matrix, 
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FIG.  2.  Frequency response  from  the data and  the  transfer function model in Example  1 : 

­ frequency response of the identified transfer function;  •  measurement data. 

G(s). u(jw;) is  generated randomly with uniform distribution. y(jw) is calculated 

as  y(jw) = G(jw)u(jw} The new  approach proposed here  for  a  MIMO system 

identification  is  rather  unique  in  that  it  does  not  require  the  knowledge  of the 

actual  frequency  response  of the  system,  i.e.  G(jw) i =  1,  2, ... Therefore,  the 

frequency  response  generated  from  the  transfer  function  matrix,  G(jw) i =  1, 

2, ... ,  obtained  by  the  algorithm  can  not  be  directly  compared  to  G(jwJ. To 

evaluate  the  accuracy of the  new  algorithm,  the  output response generated  from 

the  transfer  matrix  identified,  y(jw) = G(jw;)u(jwJ, is  compared  to  the  actual 

data, y(jw} 

Example 2.  A 2 x 2 transfer function matrix is given as 

s 

s+l
o J­ 1 

iJ =s+2 [  ~ 
r(s+ 1~(:+2) 

From matrix interpolation theory, 1= "Ldi+m+p =  7 measurements can be used 

to  uniquely determine  this  transfer function  matrix.  Seven  frequencies  Wi i = 1,7 

are arbitrarily chosen within the range ofzero to one radian/second. Seven arbitrary 

inputs, U(jWi) i =  1,7, are arbitrarily generated and the output response is calculated 

frequency  (rad/sec) 

o 
o 

101 102 

frequency  (rad/sec) 



TABLE II 
Measurement data for Example 2 

w (rad)  0.1000  0.1429  0.1857  0.2286 

u, (jw) 13.3881-16.4769j -15.9598+4.9172j ­7.5992 ­ 1.4061j ­4.3337 ­ 2.6746j 
u2 (jw) 12.2230-20.1499j -10.6773-15.5498j 4.2099 + 2.44941' 7.0625 ­ 5.7025j 
y,(jw) 21.9778-41.1587j -26.2890-29.6239j 9.0176+ 1.8129j 11.3121-14.9811j 
Y2(jW) ­4.3413+ 1O.7215j 8.2663 + 6.446j -2.3540+.5369j -1.5740+4.8192j 

w (rad) 

u,(jw) 
u2 (jw) 
y,(jw) 
Yz(jw) 

0.2714  0.3143 

2.2786-1.8727j 1.3986-6.3885j 
-10.1699+ 12.0856j -7.4809+6.0554j 
-12.2038+28.1021j ­8.1996+ 15.1274j 
-0.0686-7.9989j -0.3449-4.4818j 
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(b) Y2(jWi) and n(jw;) 

-: frequency response of the identified transfer function 
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FIG. 3. Output frequency response Y(jw.) and y(jw;) : - frequency response of the identified 

transfer function; • measurement data. 

using Eq. (5). The data is listed in Table II. From this set of data, the computer 

program determined G(s) with the error between the coefficients of G(s) and G(s) 
in the range of 10-'5. The closeness of yUw;) and yUw;) can be seen in Fig. 3. 



IV. Conclusion 

A  new mathematical framework  is  introduced for MIMO system identification 

in frequency domain. The new approach is  vastly improved on the efficiency  and 

practicality and suitable for on­line implementation. The algorithm determines the 

transfer  function  matrix  from  the  input­output  data  instead  of  the  frequency 

response data of the system;  thus it eliminates  the conventional assumption that 

the  frequency  response  of the  system is  given.  A computer program is  developed 

to determine the transfer function matrix of multi­input and multi­output systems 

by solving a  linear least square problem. 
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