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Abstract—This paper proposes a method of finding low
order models of a SISO transfer function based on relay
feedback. Parameter identification is posed as a (non-convex)
squared output error minimization problem, numerically solved
utilizing Newton-Raphson iteration with back tracking line
search. Focus lies on computing the cost function gradient
and Hessian with respect to the parameter vector and on
finding a feasible starting point. The method is demonstrated
for FOTD model identification. A modified relay method is used
to ensure good excitation around a predefined phase angle fo the
system. The method requires no a priori system information.
The identification method is evaluated on a batch of common
process industry processes. Finally, conclusions and suggestions
on future work are provided.

I. INTRODUCTION

The use of relay feedback [1] as process identification

method has been around for a long time. Its main application

has been in automatic tuning of PID controllers in process

industry, where it is still broadly used, due to its simplicity

and reliability.

The original method yields the point on the Nyquist curve

corresponding to the phase crossover frequency. The method

has been augmented with various modifications of the relay

non-linearity, [2] being one of the more elegant, resulting in

the possibility to identify a point on the Nyquist curve other

than that corresponding to the phase crossover frequency.

Several alternative data analysis methods have been pro-

posed. Mats Lilja utilized least square regression to identify

low order time delayed transfer function models from fre-

quency domain data (i.e. several points on the Nyquist curve)

[3].

Here an optimization method, yielding a transfer function

description of the process to be identified, is presented. A

discrete time counterpart of the method is outlined in [4].

The method is based on Newton-Raphson iteration over

a cost function of the transfer function parameters. Cost

derivatives (Jacobian and approximation of Hessian) are

obtained through simulation of an augmented system. Due

to non-convexity of the cost function in the transfer function

parameters, a close-to optimal initial parameter guess is

desirable. Such initial guess has here been obtained by

gridding the normalized time delay of the model, evaluating

the cost for each grid point, and choosing the parameters

corresponding to the minimum as starting point for the

optimization.

Input signals generated through a modified relay feedback

are considered, since it allows for signal energy concentration

around a frequency corresponding to a pre-defined phase

lag of the system to be identified, without a priori system

information. For PI(D) tuning applications, a frequency cor-

responding to a point in the third quadrant of the Nyquist

curve is preferable. Since PI provides a phase lag, the

obtained model needs not be accurate for phase lags larger

than 145◦, whereas accuracy up to the phase crossover

frequency can be of interest when considering PID control,

due to the phase lead of the controller [5].

In order to verify generality of the method, it has been

tested on the AMIGO1 batch, consisting of nine classes of

processes, cf. [5]. Per design, the process models of the

batch are representative for process control industry, which

is also the main target application field of the material which

follows.

II. OPTIMIZATION METHOD FOR IDENTIFICATION

Here the proposed identification method is presented. Time

is assumed to be continuous.

A. Objective

Our aim is to identify parameters θ = [b a L]T (a ∈

R
n, b ∈ R

n, L ∈ R+) of the time delayed strictly proper

continuous time transfer function process model

P (s) =
B(s)

A(s)
e−Ls =

∑n
j=1 bjs

n−j

sn +
∑n

i=1 aisn−i
e−Ls. (1)

If the number of zeros is believed to be m < n − 1, we
assign b1 = · · · = bn−m−1 = 0. Given input sequence u(t)
and corresponding output sequence y(t), we formulate the
objective as to minimize the mean squared output error

J(θ̂) =
1

2

∫ tf

t0

(ŷ(t) − y(t))2dt, (2)

where

ŷ(t)
∆
= L

−1(P̂ (s)) · U(s)). (3)

1AMIGO stands for Approximate M-constrained Integral Gain Optimiza-
tion. The AMIGO test batch was originally used to obtain guidelines for a
Ziegler-Nicholes type tuning scheme.



The problem is convex in b̂ and L̂. However, it is non-
convex in â. For example, letting the model be defined

through θ̂ = [â1 â2 â3 0 0 b̂3 L̂]T and freezing all parameters
except â3 according to θ̂ = [1 0 â3 0 0 1 0]T yields

J(θ̂) =
1

2

∫ 1

0

L
−1(P̂ (s)2) =

1

2

∫ 1

0

sin(â3t)
2dt

which is clearly not convex in â3.

B. Newton-Raphson Method

Due to the general non-convexity of (2) there exists

no known method, guaranteeing convergence to the global

minimum. A candidate method, which has proved successful

for the problem instances we have analyzed, has been the

Newton-Raphson approach, involving the computation of

∇J(θ̂) and ∇2J(θ̂) in each iteration.

C. Evaluation of Gradient

The gradient is given by

∇J(θ̂) =

∫ tf

t0

∂

∂θ̂

1

2
(ŷ − y)2dt =

∫ tf

t0

∂ŷ

∂θ̂
dt. (4)

Introducing the canonical controllable state space form of

P̂ (s) yields

∂x̂

∂t
= Âx̂ + B̂u (5)

ŷ = Ĉx̂, (6)

where

∂x̂1

∂t
= −â

T
x̂ + u (7)

∂x̂k

∂t
= x̂k−1, 2 ≤ k ≤ n (8)

ŷ = b̂
T
x̂. (9)

In order to calculate ∇J(θ̂), we need to evaluate

∂ŷ

∂θ̂
= C

∂x̂

∂θ̂
. (10)

From (9) we obtain

∂ŷ

∂b̂k

= x̂k, 1 ≤ k ≤ n. (11)

Finding partial derivatives of ŷ w.r.t. the components of â is

somewhat more involving. From (3) we obtain

Ŷ (s) =
B̂(s)

Â(s)
e−L̂sU(s) ⇒ (12)

⇒
∂Ŷ (s)

∂âk
= −

sn−k

Â(s)
Ŷ (s), 1 ≤ k ≤ n (13)

The dynamics of (13) can be incorporated in the state

space description (5), (6) by augmenting n states ẑ to

the state vector x̂, forming x̂e = [x̂T
ẑ

T ]T . Letting the
augmented states take on the roles

ẑk = −
∂ŷ

∂âk
, 1 ≤ k ≤ n (14)

we utilize (13) to obtain the augmented state dynamics

∂ẑ1

∂t
= ŷ − â

T
ẑ = b̂

T
x̂ − â

T
ẑ (15)

∂ẑk

∂t
= ẑk−1, 2 ≤ k ≤ n. (16)

The augmented system in x̂e provides the desired parameter

derivatives

ŷ = b̂
T
x̂ (17)

∂ŷ

∂b̂
= Inx̂ (18)

∂ŷ

∂â
= −Inẑ. (19)

Finally, from (1), we obtain

∂Ŷ (s)

∂L̂
= −s

B̂(s)

Â(s)
e−L̂sU(s). (20)

Using (7)-(9) the parameter derivative can be written

∂ŷ

∂L̂
= ânb̂1x̂n − b̂1u +

n−1
∑

j=1

(âj b̂1 − b̂j+1)x̂j . (21)

D. Hessian Approximation

The Hessian of (2) is given by

∇2J(θ̂) =

∫ tf

t0

(

∂ŷ

∂θ̂

)2

+ (ŷ − y)
∂2ŷ

∂θ̂
2 dt. (22)

The first term in (22) is quadratic, i.e.≥ 0. Under the realistic
assumption that the output error ŷ−y is uncorrelated with its
derivatives in the components of θ̂, the time average of the

second term is small. Thus it can be neglected, motivating

the Hessian approximation

∇2J(θ̂) ≈

∫ tf

t0

(

∂ŷ

∂θ̂

)2

dt. (23)

III. FOTD MODEL IDENTIFICATION

In this section we utilize the proposed optimization method

to obtain FOTD models, parametrized as

P̂ (s) =
b̂

s + â
e−L̂s, (24)

i.e. corresponding to parameter vector θ̂ = [b̂ â L̂]T . A
motivation for choosing a modified relay feedback as the

source of input signal is followed by the proposal of a method

for finding initial parameters θ̂0 for the optimization. Finally,

attention is given to some practical implementation related

issues.

A. Input Signal

Existing PID tuning methods such as Ziegler-Nichols

[6], λ [7], (A)MIGO [8] as well as a promising MIGO

extension, presented by Garpinger [9] rely on accurate LF

process models. Of particular interest is the phase region

[−π,−π

2 ] rad, determining the sensitivity properties of the
system. Additionally, the λ and MIGO methods utilize a

static gain estimate.



Describing function analysis indicates that negative feed-

back connection of a proper, possibly time delayed, mono-

tone LTI system P and a relay non-linearity results in

limit cycle oscillations. The fundamental harmonic of the

oscillation occurs at the phase crossover frequency of P .
These observations are the basis of the identification method

proposed by Åström and Hägglund in 1984 [1]. Replacing

the relay with the two channel (TC) relay non-linearity

shown in figure 1 allows for an energy concentration at a

frequency corresponding to an arbitrary third quadrant phase

angle of P , as described by Friman and Waller in [2].

out

1

1
s hi

hp

in

1

Fig. 1. Two channel relay.

The describing function of the TC relay is given by

N(a) =
4hp

πa
−

4hi

πa
i. (25)

The corresponding phase angle is thus

ϕTC = arctan

(

hi

hp

)

. (26)

By choosing hp, hi the phase of (25) can be chosen arbitrar-

ily in the range [0, π

2 ] rad, i.e. the fundamental limit cycle
will occur at angular frequency ωϕ corresponding to phase

ϕ = −π + ϕTC ∈ [−π,−π

2 ] rad of P .
The Fourier series expansion of the symmetric T -periodic

square wave u(t) with amplitude Au is given by

u(t) =

∞
∑

k=1

4Au

πk
sin

(

2πkt

T

)

. (27)

Hence, the input signal energy content at the phase crossover

frequency is

∫

T

(

4Au

π
sin

(

2πt
T

))2
dt

∫

T
u2(t)dt

=
8

π2
≈ 0.8, (28)

i.e. 80 %, under relay feedback (disregerading the initial con-
vergence phase). Remaining energy lies at integer multiples

of the phase crossover frequency.

For the two-channel relay, the above analysis will

additionally depend on the LTI system, but the key

observations still hold:

• Most input signal energy is issued at the fundamental

frequency of the limit cycle oscillation.

• Remaining energy is issued at integer multiples of the

fundamental frequency.

If little energy is supplied in the overtones, or if these are

heavily attenuated by P , effectively all identification data
originates from the single frequency ωϕ. Since θ̂ = [b̂ â L̂]T

has three components, this results in an under-determined

problem. Generally, if one requires good model fit for a

range of phase angles, a broader spectrum input is needed.

One way to achieve this, is to alter ϕTC (by means of

hp, hi in (25)) part way through the experiment, and hence

obtain frequency data corresponding to at least two separate

phase angles ϕ1,ϕ2 within the third quadrant. Subsequently,

the cost function terms Jk and its derivatives ∇J, ∇2J
corresponding to ϕk can be weighted together, with weights

wk being functions of corresponding signal energies Eyk
, in

order to distribute model error over ϕ in a desired manner.

It is clear, from the above reasoning, that static gain

information from obtained models is unreliable. If the aim of

identification is to utilize a tuning method explicitly requiring

a static gain estimate, e.g. λ or AMIGO, this can be obtained

by augmenting the experiment with a step response.

B. Initial Parameter Values

Since the cost function (2) is non-convex in θ̂, a starting

point θ̂0 close to the global minimum is essential in order to

avoid convergence of the Newton-Raphson iteration to a local

minimum far from the global one. Assuming that the pro-

cess dynamics to be identified are de facto (approximately)

FOTD, the following paragraphs suggest a methodology for

choosing θ̂0.

The FOTD system (24) can be re-parametrized in nor-

malized time delay τ̂ = L̂
L̂+1/â

, average residence time

T̂ar = 1/â + L̂ and static gain K̂ = b̂/â. Of these
parameters τ is the most difficult to estimate since it requires

a separation between delay and lag, while T̂ar is typically

easy to estimate. The following, heuristic, grid-based method

aims at yielding a feasible starting point θ0 for the Newton-

Raphson iteration, by first estimating τ .

Assume that the input–output data set {u(t), y(t)}, t ∈
[t0, tf ] is the outcome of a TC relay feedback experiment.
Truncating the data set, only to include the last N periods

of converged limit cycle oscillation yields the new data set

{u(t), y(t)}, t ∈ [tN , tf ]. Let Au and Ay be the amplitudes

of the first harmonics in u(t) and y(t), t ∈ [tN , tf ],
respectively. These are readily given by the Fourier transform

as

Au =

∣

∣

∣

∣

2

tf − tN

∫ tf

tN

u(t)e
−i 2πN

tf−tN
t
dt

∣

∣

∣

∣

, (29)

Ay =

∣

∣

∣

∣

2

tf − tN

∫ tf

tN

y(t)e
−i 2πN

tf−tN
t
dt

∣

∣

∣

∣

. (30)

The phase- and magnitude of P̂ (iωϕ), are given by

∠P̂ (iωϕ) = −L̂ωϕ − tan−1(
1

â
ωϕ) = ϕ = −π + ϕTC

(31)

|P̂ (iωϕ)| = Ay
b̂/â

√

1 + ω2
ϕ
(1/â)2

Au, (32)

where ϕTC is the TC relay phase from (26). For a given

normalized time delay τ̂ we can insert L̂ = τ̂

1−τ̂

1
â into (31)



and solve the resulting convex equation in â numerically.

The obtained â can now be inserted into (32), yielding b̂.
By griding τ̂ -space we obtain a family of models P̂τ̂i

(s).
The cost (2) is evaluated for all P̂τ̂i

(s). Subsequently, θ̂0 is

chosen to be the parameters of the model corresponding to

the smallest cost function value.

The outcome of this procedure is illustrated in figure 2

for the FOTD processes θ = [5/4 5/4 1/5]T ⇔ τ = 0.2
(solid), θ = [2 2 1/2]T ⇔ τ = 0.5 (dashed) and θ =
[5 5 4/5]T ⇔ τ = 0.8 (dotted), all with average residence
time Tar = 1.0 and steady state gain K = 1.0. Introducing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

J
τ
(θ

)

Fig. 2. Normalized cost Jτ θ)/ max J(θ) as function of normalized time
delay τ for FOTD processes with τ = 0.2 (solid), τ = 0.5 (dashed) and
τ = 0.8 (dotted).

the grid τi ∈ {0.1i, i = 1..9}, the method yields either the
correct τ or its grid neighbors.

C. Model Order Validation

When identifying processes where the order of P exceeds

that of P̂ , an inherent model reduction takes place. The
cancellation of one or several poles is compensated for by

a change in delay estimate L̂. If the input u has a narrow

spectrum, the obtained model P̂ can still be accurate around

the frequency corresponding to the spectral peak. However,

accuracy local to one point might not be enough for feasible

controller synthesis.

Therefore, a test for checking the validity of a FOTD

model is desirable. An instructive such test is provided in

increasing the model order to SOTD and identifying the

parameters θ0,+ of the new model P̂+. If |L̂ − L̂+| is large
compared to L̂, it is motivated to de facto increase model
order to SOTD.

IV. EXPERIMENTAL PROCEDURE

In this section we outline the experimental procedure. Data

was generated in MATLAB/Simulink using the TC relay

feedback connection shown in Figure 3.

A. Data Generation

Parameters hp, hi in (26) corresponding to ϕTC =
0.4π rad, i.e. ≈ 75◦ were chosen. Other ϕTC ∈ [0, π

2 ] rad

y

2

u

1

step

nonlinearity

(TC relay)

in out

LTI System

???

Fig. 3. Simulink model generating test data for the proposed identification
method. The contents of the non-linearity block are shown in Figure 1. (The
step is used to initialize a limit cycle oscillation.)

would shift the phase dependence on model accuracy. How-

ever, the identification methodology would remain unaltered.

Each data generating simulation lasted 11 zero crossings
of LTI input u(t). Identification data was generated for all
133 batch processes.

B. Identification

In this first paper, we consider the ideal measurement

noise and load disturbance free case. The only modifications

applied to the above presented theory has been those of

discretization (i.e. exchanging integrals for sums, the Fourier

transform for the FFT, etc.).

Fundamental frequency amplitudes of in- and outputs

were found by applying the FFT versions of (29), (30)

on truncated versions of u(t), y(t), corresponding to the
two last oscillation periods. (As a comment it should be

mentioned that the chosen number of relay switches was

found heuristically, so that the last two relay periods could

be considered converged limit cycle.)

Subsequently, an initial parameter vector θ̂0 was deter-

mined by means of (31), (32) and the described τ̂ -grid

method with grid size τ̂i ∈ {0.1i, i = 1..9}.
The Newton-Raphson optimization was applied over 7

iterations, which was found to be adequate, considering cost

convergence for the different batch processes.

Back tracking line search, cf. [10], was added to increase

convergence rate. The method is illustrated below, with δ

being the step length, while α = 0.25,β = 0.5 are user-
defined parameters.

while J(θ̂ + δ∆θ̂) > J(θ̂) + αδ∇J(θ̂)T
∆θ̂, δ := βδ

Finally, bounds on time delay estimate L̂ were introduced,
forcing it to be strictly non-negative and less than a half

period of the fundamental frequency component in u(t).

V. RESULTS

Results from the identification of one particular transfer

function are presented in detail, exploiting key features of

the proposed method. This is followed by a compilation of

the model errors obtained by running the method on a batch

[5].

A. Instance Study

Here, results from identifying P (s) = 1
(s+1)2 e−s are

presented. The choice of process is motivated by the fact

that process order is higher than model order. This has two

fundamental implications:



• There exists no FOTD model with ’good’ fit for all

frequencies. However, the proposed method is expected

to yield one with good fit around the phase ϕ in the

third quadrant.

• The initial guess provided by τ̂ -gridding is sub-optimal,

since the model structure assumption is invalid, demon-

strating the benefit of the Newton-Raphson optimiza-

tion.

Figure 4 shows identification input u(t), generated by the TC
relay feedback, together with corresponding process output

and converging model output.

0 50 100 150 200 250 300 350 400 450

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t [s]

u
,

y
,

y m
k

Fig. 4. TC relay output u(t) (grey), process output y(t) (solid, black) and
converging model outputs ymk

(t), k ∈ {1, . . . , 7} (grey, thin).

Figure 5 shows the Nyquist curve of P together with those

of the obtained FOTD model P̂ and the corresponding initial

model P̂0 provided by the τ -gridding. Not unexpectedly, P̂0

provides a better all-over fit, whereas P̂ shows a better fit

in the third quadrant (which is achieved at expense of a

worse fourth quadrant fit). Both models provide good fits

at the phase angle ϕ = −π + ϕTC , corresponding to the

fundamental harmonic of the process input u(t).
The observations presented above generally hold for the

AMIGO batch.

A complementary representation of performance is given

by the step response. Figure 6 shows the step responses of

P , P̂ and P̂0 in figure 5.

As expected, the final model P̂ has a worse static gain

estimate than the initial model P̂0.

Note the over-estimation of L, shown in the lower plot of
figure 6, being a consequence of lower model than process

order. A second order model (provided a feasible θ+,0 is

given by

P̂+(s) =
0.001s + 1.06

(s + 1.26)(s + 0.84)
e−1.01s. (33)

Figure 7 shows the initial part of the step responses of P , P̂
and P̂+.

The model order test of section III yields

|L̂ − L̂+|

L̂
= 0.26. (34)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Re

Im

Fig. 5. Nyquist curve of P (s) = 1
(s+1)2

e−s (black), P̂0(s) =
0.52

s+0.49
e−1.35s (grey, dashed) and P̂ (s) = 0.57

s+0.51
e−1.37s (grey, solid).
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Fig. 6. Step response of P (s) = 1
(s+1)2

e−s (black), P̂0(s) =
0.52

s+0.49
e−1.35s (grey, dashed) and P̂ (s) = 0.57

s+0.51
e−1.37s (grey, solid).

The lower plot is a magnification of the bottom left part of the upper plot.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t [s]

y

Fig. 7. Step responses of P (s) = 1
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(s+1.26)(s+0.84)

e−1.01s



Another interesting observation is that T̂ar = 3.33 for

the FOTD model and T̂+,ar = 2.98 for the SOTD model,

which are both good estimates, given Tar = 3.0 for the

process. However, assume all input energy was issued at the

frequency ωϕ, i.e. u(t) = sin(ωϕt). Asymptotically the cost
would be minimized (to J = 0) when |P (iωϕ)| = |P̂ (iωϕ)|
and ∠P (iωϕ) = ∠P̂ (iωϕ), where the left hand sides are
constants and the right hand sides are given by (32) and

(31), respectively. This is an under-determined system in θ̂,

with unique solution ∀L̂ ∈ R+, as indicated in section III.

B. Batch Study

Figure 8 shows a compilation of gain errors |P | − |P̂ |
plotted against process phase, for the processes of the test

batch.

−180 0−90−135 45
−0.4

−0.2

0

0.2

Phase [◦]

|P
|−

|P̂
|

Fig. 8. Gain error |P |− |P̂ | as function of process phase for the processes
of the AMIGO test batch.

As expected, the method yields best fit close to the phase

−115◦ corresponding to the first harmonic of the input signal
u(t) (marked by a dashed line in figure 8).
For larger negative phase values within the third quadrant,

the errors are negative for most processes, corresponding to

conservative models, concerning sensitivity.

VI. CONCLUSIONS

A method for computing partial derivatives of the output

error in model transfer function parameters has served as

basis for a gradient search (Newton-Raphson) approach to

system identification. The method is applicable to all proper,

possibly time delayed, transfer functions.

The following, highly interrelated, items need to be de-

cided, prior to applying the method: cost function, model

order (choice and verification), input signal, initial parame-

ters and halting criterion. Particular attention has to be given

to the input signal, ensuring spectral content at frequencies

for which model validity is crucial.

This paper was mainly confined to the case of FOTD

model structure, utilizing a quadratic cost function and TC

relay feedback for input generation.

Initial parameters were obtained by means of a heuristic

gridding strategy and no explicit attention was given to

halting criteria for the optimization.

A method for model order validation was suggested.

The approach proved successful for a large number of

common process types and instances thereof.

VII. FUTURE WORK

There are several directions for potential future work

related to the proposed identification method.

One obvious continuation would be to combine the iden-

tification method with one or several PID-tuning methods

and evaluate the obtained closed loop performance. A related

issue is the investigation of how process- and measurement

noise affect the identification and ultimately the closed loop

performance.

Another interesting direction is that of MIMO control.

Especially TITO systems are common in process industry.

Hence an extension of the method to the identification of

TITO dynamics would be of high interest.

It would also be interesting to evaluate performance of the

method using higher order models, possibly with modifica-

tions regarding cost function and input signal. SOTD models

(with one zero) are of particular interest, covering essentially

all modeling needs for PID design.
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