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SUMMARY 
A method is described for finding the magnetotelluric transfer function that has the 
least amount of curvature consistent with most of the data and with a 1-D 
conductivity interpretation over the widest possible frequency range. This could be 
called an ‘Occam’ transfer function. It is represented by the transfer function for the 
best fitting 1-D conductivity model times a distortion function. The latter permits 
smooth departures of the transfer function from the 1-D case if the data are 
inconsistent with a 1-D interpretation. The transfer function, for single-station or 
remote reference magnetotelluric data, is found by a method of successive 
interations that is found to converge within six to eight iterations. The estimate of 
the transfer functions is made robust by using frequency and time weights that 
remove the effects of outliers in the time and frequency domain. If the weighted 
residuals for remote reference data satisfy certain necessary conditions for uncorre- 
lated noise then the contribution to the noise by the electric and magnetic data can 
be estimated and used to evaluate the least-squares and remote reference estimates. 

Examples illustrate the application of this method to artificial and real data. The 
latter consist of hourly cable voltage data from the Florida Straits, 1/256-s remote 
reference magnetotelluric survey data from the Phillippines and daily magnetic data 
from Tucson and Honolulu. 

Key words: magnetotelluric transfer function 

1 INTRODUCTION 

Voltage measurements across the Florida Straits show fluid 
induced variations caused by changes in the Florida Current 
and geomagnetic induced variations caused by ionospheric 
sources. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA technique is described whereby magnetic 
variations from a shore site can be used to separate the two 
types of variations using transfer functions. The usual least- 
squares method for estimating transfer functions was found 
to be unreliable due to the large fluid induced variations at 
the tidal and lowest frequencies. A simple analytic 
representation of the transfer function was therefore 
developed that could be robustly estimated using frequency 
and time weights. An example of the voltage variations 
across the Florida Straits (Fig. 1) shows that removing the 
geomagnetic and tidal variations and a few outliers (1.9 per 
cent of the values) eliminates most of the high frequency 
variations. This makes it possible to accurately observe the 
daily changes in the Florida Current. These non-tidal fluid 
induced variations are strongly correlated with velocity 
estimates of transport (Larsen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sanford 1985) and are used 

to monitor the transport variations. The method of 
obtaining transfer functions was applied to other electro- 
magnetic data in order to explore the general validity of the 
method and to determine the essential steps needed to 
obtain robust estimates. 

Two basic methods have been used for estimating transfer 
functions. The standard method (Sirns, Bostick & Smith 
1971; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVozoff 1972) finds least-squares frequency band 
estimates using electric and magnetic data from a single site. 
These estimates minimize the variance of the residuals 
where the residuals are given by the observed electric data 
minus the values predicted from the magnetic data. These 
estimates are biased, however, by noise in the magnetic 
data, and the remote reference method using simultaneous 
local and remote magnetic data was developed in order to 
construct unbiased estimates (Gamble, Goubau & Clarke 
1979; Clarke el al. 1983). These estimates minimize the 
modulus of the covariance between the locally and remotely 
derived residuals where the local residuals are given by the 
observed electric data minus the values predicted from the 
local magnetic data and the remote residuals are given by 
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Figure 1. Voltages across the Florida Straits at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27”N (top curve), 
geomagnetic induced variations (second curve from top), tidal and 
solar variations (third curve from top), and non-tidal fluid induced 
variations (bottom curve) based on the voltages minus the 
geomagnetic and tidal variations and outliers. 

the observed electric data minus the values projected from 
the remote magnetic data. These estimates are not biased if 
the noise is uncorrelated and are expected to be an 
improvement over the least-squares estimates. They can, 
however, be unreliable and give inferior results compared to 
the least squares estimates if the noise is correlated or the 
remote magnetic data are uncorrelated with the local 
magnetic data. Necessary conditions for the noise to be 
uncorrelated are derived using the locally and remotely 
derived residuals. These conditions, if satisfied, permit 
estimates of the noise contributed by the electric, local 
magnetic and remote magnetic data. A comparison of the 
noise can then be used to evaluate the quality of the 
least-squares and remote reference estimates. 

Outliers are a common occurrence caused by instrumental 
and recording problems, and by source problems such as 
power generators, oceanic motional induced signals, treated 
here as noise, and geomagnetic events having high 
wavenumbers. Their presence can cause catastrophically 
poor estimates of the transfer function and its variance if 
standard least-squares or remote reference methods are 
used. A number of robust techniques have been developed 
(Egbert & Booker 1986; Chave, Thompson & Ander 1987; 
Chave & Thompson, 1989) for reducing the effects of 
outliers by using weighted section averaging. Weighted 
section averaging suffers, however, from the limitations that 
a section is downweighted even though there may only be a 
few very large outliers and that all sections may be 
contaminated by outliers. It has been found, for some data 
sets, that there are no clean sections of any useful duration. 
In the present method every datum in the frequency and 

time domain are examined and dealt with by frequency and 
time weights. The main goal is to find a set of weights that 
increase the coherence between the electric and magnetic 
data while, hopefully, downweighting only a small 
percentage (<20 per cent) of the data. The present method 
is basically the application of robust techniques to the 
iterative method used for determining smooth transfer 
estimates described in Larsen (1975, 1980). 

The use of a smooth transfer function was inspired by the 
smooth admittance functions used in tidal analysis (Munk & 
Cartwright 1966) and is justified because the magnetotelluric 
(MT) transfer function is expected to be smooth and 
continuous for most geologic sites that are not close to 
surface discontinuities. The smooth continuous repre- 
sentation is found to be essential for estimating the 
geomagnetic variations at all frequencies, including fre- 
quencies where the fluid induced variations, such as the 
tides, overwhelm the geomagnetic variations. 

The time domain electric and magnetic data are 
designated -by, respectively e ( t )  and b( t )  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = j6 ,  
j =  1,. . . , 2JI values with 6 time increment and the 
frequency domain data are designated by E ( w )  and B ( w )  

for radian frequency w, = jn /Jg,  j = 1, . . . , J values 
where the mininum frequency is w1 = n / J 6  and the 
maximum is w, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/6. In general, the magnetic data must 
be complete but data gaps can be tolerated in the electric 
data provided these are replaced, in the iterative process, by 
the predicted values. 

The data are preprocessed by removing the following: the 
mean and linear trend; the variations in the trend using a 
least squares cubic spline; the annual, tidal and solar diurnal 
variations and its harmonics, if they have a large presence in 
the residuals, using the known annual, tidal and solar 
diurnal frequencies, and the least-squares estimates of their 
amplitude and phase. 

1.1 MT Relationship 

The frequency domain electric data E, local magnetic data B 
and remote magnetic data B, are related through the MT 
relationships by 

E = B - Z + R  ( 1 4  

E =  B Z + R, (1b) 

and 

where Z is the local MT transfer function tensor, Z is the 
remote MT transfer function tensor, R are the locally 
derived residuals and R are the remotely derived residuals. 
The E’s and R’s are J-vectors for J frequencies, the B’s are 
J x K matrices for K magnetic components (usually K = 2) 
and the Z s  are K x J matrices. Variables referring to the 
remote data are designated by underbars. 

This paper starts with frequency band estimates, then 
describes the method used to obtain robust estimates, then 
describes the method for constructing smooth estimates, 
then derives the conditions for estimating the noise 
contributed by the electric and magnetic data, and finally 
describes the application of the method to various types of 
data. 
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Smooth robust transfer functions 647 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 BAND AVERAGED ESTIMATES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Least-squares band averaged estimates of the local and 
remote transfer functions, minimize, respectively, IRH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. RI 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR" * R1, the variance of the residuals, where H is the 
Hermite transpose. The local and remote estimates are 
given, respectively, by 

and 

Z =  (B" * B)-' * (BH E) 

for N bands having j frequencies per band. Then E is a 
j-vector, the B's are j x  K matrices for K magnetic 
components and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz's are K X N matrices. Note that the 
diagonal terms of (BH - B) and (B" - B) are biased by noise 
in the magnetic components. 

Remote reference band estimates of the local and remote 
transfer functions minimize IR" . RI: the modulus of the 
covariance between the locally and remotely derived 
residuals. This interpretation allows one to compute the 
transfer function without the replacement method of 
Gamble et al. (1979) and shows that the remote reference 
method demands local and remote transfer functions. 
Estimates are given, respectively, by 

for N bands having j frequencies per band. 
Note that the biasing of the remote reference estimate 

only vanishes if the noise is uncorrelated. This estimate 
cannot, therefore, be assumed to be superior to the least 
squares estimates unless the noise is known to be 
uncorrelated. For example, if B is noise free but B consists 
only of noise that is uncorrelated with B then terms such as 
(BH-B)  and (BH.B) are small and the remote reference 
estimate becomes unstable and clearly inferior to the 
least-squares estimate. Thus remote estimates may at times 
be much worse than the least-squares estimates. 

Band averaged estimates depend on the assumption that 
the transfer function is constant over the band of 
frequencies from which it is estimated. The transfer function 
as a function of frequency can then be expressed in terms of 
the Heaviside function H as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

Z ( 0 )  = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzn[A(w - o&-i+l) - A ( w  - W d ) ] ,  (4) 
n = l  

where the band estimates are zn for n = 1, . . . , N bands 
having j frequencies per band and H(o) = 0 for o < 0 and 
H(o) = 1 for o 20.  Hence, the transfer function Z ( w )  
estimated by (4) are not continuous but rather resemble a 
stair-case type function that is flat within the frequency bands 
but has offsets between bands. Therefore, a band average 
estimate may be incorrect if there is an appreciable variation 
of the transfer function within the frequency band. 

3 ROBUST ESTIMATES 

The robustification of the least-squares or remote reference 
estimates of the transfer function and its variance is 
accomplished by frequency and time weights. The frequency 
weights consists of three parts: the prewhitening continuum 
weights W ( o ) ,  the line frequency weights F(o) and the 
post whitening weights V(o). The latter are sometimes 
found to be unnecessary. The time weights are g(t).  The 
weights are applied to the observed data in the following 
order: W ( w ) ,  F(w) ,  g( t )  and V ( w ) .  The weights W ( o )  
prewhiten the continuum part of the residuals making them 
nearly independent. The frequency weights F( o) eliminate 
any spectral peaks in the residuals, the time weights g( t )  
eliminate the outliers in the time domain and the weights 
V (  o) postwhiten the weighted residuals. The frequency 
weights F(w)  are applied before the time weights g ( t )  
because time outliers are usually found to have less effect on 
F ( w )  because the frequency domain noise in the 
prewhitened residuals is usually narrow-band and the time 
domain noise is broad-band. 

Experiments with various real time series show that this 
sequence of weights usually reduces the residuals to one for 
which the values are nearly independent and identically 
distributed. This is desirable because the least squares 
estimates will then have minimum variance. Furthermore, 
the distribution of the weighted residuals are most 
commonly found to be approximately normal, which means 
that the statistical significance of the estimates can be readily 
made. Experience shows that the weights F ( w ) = O  and 
g( t )  = O  play the most important role, followed by the 
continuum weight W ( w ) ,  then the weights 0 < F(o) < 1 and 
O < g ( t )  < 1 and then V ( w ) .  

The weights are applied to the electric and magnetic data 
by the same steps. For example, the Fourier transform of 
the electric data are first frequency weighted yielding 

E w F ( W )  = F(w)W(w)E(w) .  (5 )  

Hence frequency weighting is a simple multiplication in the 
frequency domain and a convolution integral in the time 
domain. Note that E w F ( o )  = EF,,,(o). The frequency 
weighted electric data are then time weighted yielding 

ewF,(t)  = g ( t ) e w F ( t )  (6) 

Hence time weighting is a simple multiplication in the time 
domain and a convolution integral in the frequency domain. 
Finally, the electric data are frequency weighted yielding 

EwFgu(U) = V(w)EwF,(o)  (7) 

3.1 Continuum weights 

The coefficients w,, m = 1, .  . . , M of the continuum 
weights W ( w )  are derived from the auto-regressive 
relationship 

where 6 is the time increment. The residuals rp(t) are 
based on the Fourier inverse of Rfi (w)  = $ ( w ) R ( w )  with 
the frequency rejection weights fi = 0 for large residual lines 
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648 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  C. Larsen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 otherwise (see next section). The use of rejection 
frequency weights allows one to use a low order (M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10) 
representation of the continuum weights. The autoregressive 
relationship was found to be very effective and convenient 
for whitening the continuum part of the residuals. The 
continuum weights in the frequency domain are given by 

(9) 

The coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,,, are found by solving the Yule-Walker 
equations in terms of the auto-correlation functions p, of 
the residuals 

for n = 1, . . . , M, where p, = C, rp(t)rp(t - nb), using the 
fast and accurate Levinson algorithm (see Thomson 1977 for 
details). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2. Rejection weights 

The main purposes of the frequency rejection weights P ( w )  
and time rejection weights g ( t )  are to help determine the 
continuum weight W ( o )  and to identify the large outliers. 

The set of frequency and time rejection weights used to 
remove the residual lines and outliers are defined in general 
by 

1 f o r x c f ,  
0 for x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>f, 

where y  ̂ are, respectively, the rejection frequency weights 6 
or the rejection time weights g, and x are the scaled 
frequency residuals ~R, , ,+ (w)~ /E  or time residuals lrp,,,(t)l/E. 
The threshold level is given by 

(Fisher 1929) at the lOO(1- p )  per cent level for J normally 
distributed terms. 

In order to detect the spectral lines in the residuals one 
needs to first whiten the continuum using preliminary 
continuum weights W ( w ) .  These are derived from the 
residuals rk(t )  using the rejection weights from the previous 
iteration. It was found that W ( w )  can be contaminated by 
undetected lines for the first few iterations and a 
modification @(w) = ~ / E ( w )  to the continuum weight was 
therefore necessary. The ~ ( w )  is a linear interpolation to the 
robust estimates of the scale E, for n = 1, . . . , N frequency 
bands where E, is equal to 1.483 times the median of 
IRpw(w)l for the nth frequency band. See Hogg (1979) and 
Chave et al. (1987) for a discussion about robust estimates of 
scale. It is assumed here that the mean is zero. The new 
frequency rejection weights E ( w )  are then derived from the 
scaled frequency residuals IR ,+(o)~ /E where E is the robust 
scale of IRWc(w)l. 

In order to detect large outliers in the residuals one 
examines the scaled time residuals Iri,(t)l/E using the 
rejection weights k, continuum weights W and a robust 

estimate of the scale E equal to 1.483 times the median of 
lrgw(t)l. The rejected or missing values are then replaced by 
the predicted values (Appendix C) in order to lessen, for the 
next iteration, the rejection of good values adjacent to the 
outliers or missing values. 

3.3 Frequency and time weights 

These weights are used to reduce the effects of individual 
outliers in the time and frequency domain. In general, the 
weighted scaled frequency or time residuals are given by 
x ’  = y ( x ) x  where the y are, respectively, the frequency 
weights F ( w )  or time weights g ( t ) .  The x are the scaled 
frequency residuals JR,( w ) / / E  using continuum weights 
W ( w )  based on r,e(r) and a robust E equal to 1.483 times the 
median of 1 %  {R,(o)}l and 1.9~ { R , ( w ) } (  or the scaled 
time residuals: r F w ( f ) / &  using frequency weights F(w) ,  
continuum weights W ( w )  based on rF(t) ,  and a robust E 

equal to 1.483 times the median of lrF,,,(t)l. 

In general the weights satisfied 0 5 y 5 1 and are assumed 
to decrease for increasing 1x1, i.e. d y / d x  5 0 for x > 0 and 
d y / d x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 for x < 0. In addition the binwidths dx for the 
unweighted residuals should map into positive binwidths dx’  
for the weighted residuals, i.e. dx‘ldx >O.  In the following 
discussion let x be positive for simplicity’s sake as the case 
for negative x is similar in development. 

A common procedure is to assume an analytical form for 
y ( x )  (see Holland & Welsch 1977; Hogg 1979 for a list of 
commonly used weights). A simple example is the rejection 
weights y ( x )  = 1 for O s x  % A  and y ( x )  = O  for A < x  for a 
given A. Then dx‘/ak = 1 for 0 s x  5 A  and dx‘/dx = 0 for 
A < x .  These weights do not satisfy the condition of positive 
bin widths for A < x .  They also have two additional 
problems. They do not change the distribution for x < A  and 
they truncate the tails of the distribution for A < x which can 
play havoc with the estimates if there is a high density at 
x = A  (Huber 1964). 

Another class of weights have therefore been used for 
changing the tails of the distribution so that it is more 
normally distributed. An example is the Huber weights 
(Huber 1964) where y ( x ) =  1 for O s x S A  and y ( x ) =  
(A /x ) ” ’  for A < x  for a given A .  Then d x ‘ l d x  = 1 for 
0 s x  5 A and dx’/dx = 1/2 for A < x .  These weights satisfy 
the basic condition of positive bin widths for the weighted 
residuals and are applicable for a distribution that is normal 
in the center and Laplacian in the tails. Huber weights, 
however, are not very effective in dealing with large outliers 
because they decrease rather slowly with increasing x .  

Another class of weights, called redescending weights, are 
therefore used such as the Tukey biweight y ( x )  = 1 - ( x / A ) ~  
for O s x < A  and y ( x ) = O  for x ? A .  Then d x ’ / d x =  
1 - 3 ( ~ / A ) ~  for O S x < A  and d x ’ / d x = O  for A s x  for a 
given A .  These weights do not satisfy the condition of 
positive binwidths for A / f i  % x  and will contaminate the 
distribution if there is a high density at x = A / f i .  This class 
of weights was found, for some of the examples, to yield 
distributions that had small secondary peaks at the location 
where dx’ = 0. 

Data adaptive weights are therefore used here. These are 
defined by y ( x )  = 1 for O S X  < x I ,  O S y ( x )  5 1 for 
xI s x  % x M  and y ( x )  = 0 for x M  < x .  This representation 
assumes there is a region, 0 5 x < xI  where the distribution is 
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Smooth robust transfer functions 649 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and time domain, excluding frequency values for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F = O  and time values for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg =0, are examined by 
computing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2  misfit between the observed values N, and 
expected values Nl! and comparing it to the 95 per cent 
confidence level and by plotting the distributions of Ni and 
N ] .  These plots are used to visually examine the normalcy 
of the weighted residuals. The iterative steps by which the 
weights are generated are outlined in Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. 

normal, a region x I  s x  S X ,  where the weighted distribu- 
tion can be made normal and a region, x,  < x ,  where the 
residuals are rejected. This is a reasonable assumption and 
is found to be valid for all the examples because most of the 
whitened residuals are found to be normally distributed. 
The frequency and time weights are therefore only 
necessary for modifying the tails of the distribution so that 
the tails are consistent with the normal distribution. It is 
therefore assumed that at least 50 per cent of the residuals 
are normally distributed and that only 1 per cent of the 
residuals should be rejected if the distribution is normal. 
The threshold levels are then ( x I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.7 and Ix,M/ 2 2.6 for 
the time weights. The frequency weights are assumed to be 
real and the same for the real and imaginary parts of the 
frequency residuals. This avoids introducing any spurious 
phase shifts, but means examining the modulus of residuals. 
This has a Rayleigh distribution if the real and imaginary 
parts are normally distributed. The threshold levels are then 
xI  = 1.1 and x,  2 3.0 for the frequency weights. 

The weights y ( x )  for x > x I  are estimated from the tails of 
the distribution. Let N, be the observed number of values of 
x in the ith bin and Ni = CS, be the expected number of 
values in the ith bin for the weighted residuals x ’  where the 
ith bin is s x  s x i ,  x ,  = id and A is the binwidth. The 
xi =y,x ,  and y, = y ( x i )  are, respectively, the values of the 
weighted residuals and weights at the boundaries of the 
bins. The C is a scaling factor based on the normal part of 
the distribution and is given, for the minimum x2 misfit, by 

C = [ , = - I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi (N?/SJ/ * = - I  i S,]”’ 

where the x 2  misfit (Press et al. 1986) is 

x:= ( N ,  - N:)’/N1’ 

The 

I 

r = - I  

is the contribution to  the cumulative distribution from the 
ith bin using the distribution function f ( x )  that is Rayleigh, 
f ( x )  = x exp ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x2/2) for the frequency residuals and is 
normal, f ( x )  = exp ( - x 2 / 2 )  for the time residuals. 

For the possibly non-normal region i > I ,  the weights are 
y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1 and the conditions d y l d x  5 0 and d x ’ / d x  > 0 require 
~ ~ - ~ [ l  - A / x , ] < y , S y , - , .  The value of y, for the bin, 
i = I  + 1, is found by varying y, by small increments within 
these limits and choosing the y, that yields the smallest x2 
misfit between the observed N, and the expected number 
Nl! = CS, by computing S, (11) and using the estimated 
scaling factor C (10). The value of y, for the next bin, 
i = I + 2, is then found and the process repeated up to i = M 
that is at least greater than the 1 per cent threshold level and 
stopped when the x’ misfit between N, and N,! exceeds the 
95 per cent confidence level for I +  M - 1 degrees of 
freedom. Continuous values of y ( x )  are then generated by a 
linear interpolation to the estimated values yi for 
i = I ,  . . . , M with y, = 1 and y, = 0. Finally the rejection 
weights are included by setting g( t )=O for g ( t )  = O  and 
~ ( w )  = o for P ( w )  = 0. 

The normalcy of the weighted residuals in the frequency 

3.4 Weighted MT relationship 

The application of the weighting to the M T  relationship for 
a single magnetic component yields 

EwFg7,(U) = V ( w ) { G ( w  - G) * [BWF(&)Z(6)1} + R w F g v ( W )  

(12) 

where G ( w )  is the Fourier transform of g(f) and * 
represents a convolution integral over the available 
frequencies. 

In order to solve this equation by the method of 
successive iterations let the next estimate of the transfer 
function Z, be equal to a perturbation function U, times the 
previously estimated Z,-I, i.e. Zi = UiZi . . , ,  and solve (12) 
in terms of U,. Equation (12), ignoring the subscript i, then 
becomes 

EwFgv(W)  = V ( w ) { G ( w  - * [ B Z w F ( ~ ) U ( 6 ) l )  + RWFK7!(W)7 

(13) 

where EwFgv(w) and B,,,(w) = F(w)W(w)Z(w)B(w)  are 
derived from the previous i - 1 estimates of the weights and 
transfer function. If Z,-! is a reasonably good approxima- 
tion of the transfer function, i.e. Z,(w) = Zi- l (w),  then the 
perturbation function approximates a constant that can be 
brought outside the convolution integral. The approxima- 
tion G*(BZwFU)=B, , ,U will then be valid and (13) 
becomes 

E’(w)  = P ’ ( w ) U ( w )  + R ’ ( w ) ,  (14) 

E ‘ ( w )  = EwFgu(w) (15) 

P’(w)  = BzwFgv(w) (16) 

where the weighted electric data are designated by 

and the weighted predicted data are designated by 

The approximate weighted M T  relationship in matrix form 
for the local and remote weighted data can then be written, 
respectively, as 

and 

E = P  . u + R”, 

where ’ and ” indicates that the weights for the local and 
remote magnetic data are, in general, different. The E’s and 
R’s are J-vectors for J frequencies, the P’s are J x K 
matrices for K magnetic components and the U’s are K x J 
matrices. In applying these weights to the electric data the 
missing and large outliers were replaced by the predicted 
values (Appendix C). This was found to be necessary in 
order to prevent leakage from the gaps to the adjacent 
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values. The magnetic data is assumed to be free of outliers 
and missing values. 

Note that data windows are equivalent to time weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g(r). Using the windowed series zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, and B, and the MT 
relationship E, = B, - Z + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, implicitly implies the ap- 
proximation G * (BZ) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,Z. This may not be valid unless 
the window zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( t )  is so smoothly varying that its Fourier 
transform, G(w) ,  consists of a narrow peak around w = 0. 

The application of the continuum weights on the electric 
and magnetic data can be carried out in the time domain 
using (8) or in the frequency domain using (9). The latter is 
subject to round off errors and the time domain process is 
therefore used for the examples. In applying the weights, 
the order of weighing W and F can be reversed. Then the 
weights W, g and V are applied sequentially in the time 
domain. The weighted electric and predicted data are then 
designated, respectively, by E’(  w )  = EFwgu( w )  and Pi( w )  = 

B,,w,,(w). 

4 SMOOTH ESTIMATES 

Smooth transfer functions are represented by 

Z ( w )  = D ( w ) Z ( w ) ,  (18) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ ( w )  is a 1-D model transfer function described in 
the next section and D ( w )  is a smooth distortion function 
represented by 

that allows smooth departure of the transfer estimates from 
Z(w).  The coefficients d, are, in general, complex and the 
S,( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo) are various frequency dependent functions described 
later. In general, Z ( w )  is needed for the convergence of 
the transfer estimate to a 1-D model transfer function if the 
weighted data are found to be consistent with a 1-D 
interpretation because D ( w )  by itself will usually be a crude 
approximation to a 1-D model transfer function. 

4.1 1-D model transfer function 

Necessary and sufficient conditions for the existence of a 
1-D model transfer function are given by Weidelt (1986) and 
the conditions for single and adjacent pairs of transfer 
estimates have been modified here (Appendix A) to allow 
for noise in the estimates. These modified 1-D Weidelt 
conditions are used to establish the widest 1-D frequency 
range. The 1-D model transfer function for this 1-D 
frequency range has the analytic representation (Weidelt 
1972; Parker 1980) 

N-I 

Z ( w )  = C j,(l + ia, /w)p’ - iw~ ,  (20) 
n = l  

for real and positive coefficients ZH and a,. The low 
frequencies limit is Z ( w )  = - iw(c r I :  f / a ,  + ZN) and the 
high frequency limit is Z ( w )  = -iw2,. These are transfer 
functions for an insulating layer above a perfect conductor 
at, respectively, depths c;:,’ ,?,,/a,, + 5, and ZN. 

The conductivity model represented by (20) is called a D+ 
model (Parker 1980) and consists of the stack of horizontally 
conducting thin layers separated by insulators. The a’s, 2’s 

and the optimum number of layers N are found by a least- 
squares procedure using the D+ inversion algorithms 
described in Parker & Whaler (1981) and applied here to 30 
or fewer estimates of Z and its variance distributed over the 
1-D frequency range. The 1-D model transfer functions are 
then generated by (20) for the full frequency range using the 
estimated a’s and 2’s. 

4.2 Distortion function 

The distortion function should have a representation that 
makes it possible for the transfer estimates to converge to a 
1-D model transfer function if the weighted data are found 
to be consistent with a 1-D interpretation. The form of the 
frequency dependent function, Sn(w), is therefore derived 
from the ratio of transfer functions for different types of 
1-D models. 

For example, the ratio of the transfer functions, 2’ and 
Z“, for two D+ models can be expressed in terms of partial 
fractions & 

Z‘/Z’’ = 

because (20) is itself a ratio of two polynomials. Thus Zf/Z” 
is also a ratio of two polynomials and the frequency 
dependent function for the distortion (19) can be given by 

N - l  

‘d,,(l+ ibJo)-’  - iwd, 
n=l 

S,(w) = (1 + ib,,/w)-’ (21a) 

for n = 1,. . . , N - 1, and SN(w) = -iw. I have not been 
successful in applying (21a) because the representation is 
found to be sensitive to the number and values of the b’s. 
The dependency of the partial fractions on frequency 
suggests, however, that (2la) can be approximated by a 
power series in frequency. The frequency dependent term 
can then be written as 

(21b) S,(w) = (2w/w, - 1)-1 

and is found to give good results. 
Layered models of thickness h, and conductivity a, where 

a,hE is the same constant for each layer are called H+ 
models (Parker 1980). If the conductivities are close to a 
uniformly conducting half space, then the transfer function 
for N layers can be approximated (Larsen 1981) by 

Z(o) = (-io/pou,,)”2 exp 2 r,S,,(w), 

where (-iw/poao)1’2 is the transfer function for a half space 
of conductivity a,, po is the magnetic permeability of free 
space and r,, = 0.5 In (O”-~/U,)  is the logarithm of the 
conductivity ratio between layers. The frequency dependent 
function is 

s,(w) = exp [-(n - I ) ( - i~ ) ”~ j3 ] ,  

where j3 = (4p0a,)”*h, is the same constant for each layer. 
The approximation improves in accuracy as r, or the 
frequency approaches zero. The low frequency limit is 
Z(w) = (-iw/p,~,)”~ and the high frequency limit is 
Z ( w )  = (-iw/poal)l’z. These are transfer function for half 
spaces of, respectively U, and a1 conductivities. 

The ratio of the transfer functions 2’ and Z for two 

N 

n = l  

(21c) 
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nearly equal H I  models can then be approximated by 

N - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z' /Z"=  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ c (rL - r t ) S n ( o ) .  

n = l  

Hence (21c) can be used as the frequency dependent 
function for the distortion function. I have found good 
results using (21c). Its dependency on the square root of 
frequency suggests an approximation by a power series in 
square root of frequency. The frequency dependent term 
can then be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S, (W)  = [2(0/0,)"* - 11n-1. (21d) 

This representation gives good results and avoids the 
problem of specifying B. 

The use of (21b) implies that the conductivity models are 
terminated at depth by a perfect conductor and the use of 
(21c) and (21d) implies that the conductivity models merge, 
at low frequencies, to a uniformly conducting half space. 
There is therefore a fundamental difference between the 
representations (21b) and (21d) and these representations 
may lead to different low frequency estimates of the transfer 
function. In general the better approximation to the low 
frequency part of the transfer function is probably given by 
a perfect conductor at depth because the conductivity 
generally increases with depth. The series expansion in 
frequency (21b) is therefore used for the examples although 
(21d) is found to give comparable results. 

4.3 Smooth MT relationship 

Smooth continuous transfer functions are found by 
representing the perturbation function in (17a,b) by a series 
expansion 

using one of the frequency dependent functions (21b-d). 
The MT relationship (13) can then be written, without any 
approximation, as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N .. 
E ' ( o )  = 2 U , S L ( W )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR' (o) ,  

n = l  

where E'(w)  = E,,(o) and SA(o) = V ( o ) { G ( o  - Ui )  * 
[Bzf,,,(Q)S,,(Q)]} can be computed directly from the time 
series using the previously estimated weights and transfer 
function Z.  The preferred solution of the MT relationships 
would be to solve (23) for the u's by generating S; (w)  but 
this requires KNJ storage that can easily exceed the capacity 
of a normal computer for long time series. Another 
approach is to generate the cross spectral terms 
C,Sh(w)SL(o)*  as they are needed, but this requires a 
vast increase in computing time because they are convolved 
with G. 

The approximate weighted MT relationships (17a,b) are 
therefore used and solved by successive iterations. It was 
found that the solutions sometimes converged to oscillating 
values if one assumed that the next estimate was given by 
2, = UiZi-l .  - This problem was avoided by assuming 
Zi = UiZi-,Di-,.  Thus the next estimate of the transfer 
function is always restarted from the previous best fitting 
1-D transfer function Z and distortion function D smoothed 

to eliminate any oscillations. These are then used to 
compute the predicted data P(o) = Z ( w ) D ( w ) B ( w ) .  The 
solutions for the coefficients u, of the perturbation U are 
then found from the weighted electric and predicted data 
using the h4T relationships. These are given, in matrix form, 
by 

E' = p' - u + R' 

E = - p" * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg + R ,  

(24a) 

(24b) 

and 

where the E's and R's are J-vectors having, respectively, 
elements e, and 5 for j = 1, . . . , J frequencies; the u's 
are M-vectors of dimension M = KN having elements urn 
with m = n +  N(k- l), for n =1,. . . , N terms and 
k =  1 , .  . . , K magnetic components; and the r's are 
J x M matrices having elements p,trn = P;(w,)Sn(oj)  or 
pyrn = P~(w,)S , (w, )  for the kth magnetic component of, 
respectively, the weighted locally or remotely predicted 
data where P'( o) = P,,,,( o) and p"(o) = PgWp (a) for 
P ( w )  = Z(w)D(w)B(w)  and p ( w )  = Z ( w ) D ( w ) B ( o ) .  

4.4 Noise variance estimates 

The examples studied show that the distribution of the 
weighted residuals are consistent with the assumption that 
the weighted residuals are identically distributed. Further- 
more their white spectrum shows they are indepenent. In 
order to obtain a tractable solution, the assumption is 
therefore made here that the noise resides mainly in the 
weighted electric field. This is consistent with the 
oceanographic observation that the fluid induced variations 
in the Florida Straits, here the noise, resides in the electric 
data. The covariance of the noise is then given by 

Cov (E' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE'H) = Var IR'1 I 

and 

Cov (E' * E H )  = Var I&"I I (25b) 

where I is the identity matrix. The variances of the residuals 
are 

Var IR'I = JR'" - R'I/v' 

Var JR"I = J R "  . Rl/v", 

(26a) 

W b )  

and 

and v' and v" are the effective degrees of freedom for, 
respectively, the local and remote weighted data. 

The effective degrees of freedom are based on the 
following considerations. The maximum possible degrees of 
freedom for unweighted residuals that are assumed 
uncorrelated is vmax =2l -2KN for J frequencies, K 
magnetic components and N estimated complex terms. The 
weights will reduce any correlation that may exist between 
the residuals but the degrees of freedom will also be reduced 
because the residual spectrum is changed by the continuum 
weights and values are eliminated, i.e. one degree of 
freedom is lost for each g ( t )  = 0 and two degrees are lost for 
each F(o) = 0. The degrees of freedom will also be reduced 
by the time and frequency weights that are less than unity 
but greater than zero. The effective degrees of freedom are 
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therefore approximated here by 

v=J- '  Cg(t)'C F(w)2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI.fi(o)P(w)12, (27) 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

where the continuum weights have been rescaled to be less 
than unity, IW(w)P(w) ls  1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.5 Transfer estimates 

The least-squares solution minimizes IR'H - R'I and 
IFH - RI: the variance of the weighted residuals over the 
entire frequency range j = 1, . . . , J .  The solutions of (24a,b) 
are 

u = A - (p'" * E') 

and 

- u = A * (p"" - - E ) ,  (28b) 

where the A's are the matrix inverses given by 

A = (p'" - p' + AI)-' 

and 

A = ( p " " * p " + ~ I ) - '  - -  

that are Hermitian and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and & are damping factors. 
These are the least squares solutions using the normal 

equations. They usually give inferior solutions due to 
roundoff errors when compared to other more accurate 
methods. Here, however, smooth solutions rather than the 
most accurate solutions are sought in order to prevent any 
possible oscillations. This is accomplished by a damping 
factor A equal to lop4 times the leading term of p'" - p' or 
p"" * p" where the smallest q from q = 2, . . . , 6, is chosen 
so that the coherence between the weighted electric and 
predicted data is slightly less than 1 per cent of the 
coherence for the undamped solution. The motivation for 
using least squares with constraints is discussed by Twomey 
(1977, chapter 6). 

The covariance of the solutions using (25a,b) yields, 
respectively, 

- 

Cov (u - u") = Var IR'I A - (p'" * p') - A (29a) 

and 

Cov (u * I") = Var 1R"I A * (prH - -  - p") - A (29b) 

Since the damping factor is small the approximations 
A .(PI" a p ' )  . A = A  and A *(p"" -p") - A - A  can be 
used. 

These least-squares estimates are biased by the noise in p' 
and p". If remote reference data exist, this noise can be 
partially reduced by constructing averages between the local 
magnetic data and the projected magnetic data from the 
remote magnetic data (Appendix B). This average magnetic 
data is then used instead of the local magnetic data. 

The remote reference solution minimizes l R H  R'I, the 
modulus of the covariance between the weighted residuals, 
over the entire frequency range, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1, . . . , J .  The solutions 
of (24a,b) are 

- -  

(30a) u = C (p"" . E') - 

and 

- = C" . (p'" . E"), 

c = (p"" - * p' + H - 1  

where C is the matrix inverse given by 

that is not Hermitian. The A is a damping factor equal to 
times the leading term Jp"" - p'l where q is found in 

the same way as for the least squares estimates. It is 
assumed here that this sort of damping can be applied even 
though the remote reference method is not least squares. 

The covariance of the solutions using (25a,b) yields, 
respectively, 

cov (u - u") = Var IR'I  c (p"" - -  - p") CH (31a) 

cov (u - u") = Var IB"I C" * (p'" * p') . C. 

and 

(31b) 

The m,ethod of successive iterations used to obtain the 
transfer fhctions is outlined in Appendix E using frequency 
weights, time weights, 1-D transfer functions and smooth 
distortion fbnctions. The ith estimate of the transfer 
function is then given by 

2, ( w )  = 2, - 1 ( W I D ,  - 1 ( w )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI!/ ( w  1 (32) 

where the U,(w) is generated by (22) using the least-squares 
solutions (28a,b) or the remote reference solutions (30a,b). 
The new 1-D model transfer function Z , ( w )  is generated by 
the DC inversion routine and the new distortion D,(w)  is 
generated (Appendix D) from Z , ( w ) ,  Z, (w)  and its 
variance. The final transfer estimates are found when the 
difference between the perturbation function and unity is 
less than the confidence interval, the improvement in the 
coherence is less than a few per cent, and the weighted 
residuals in the frequency and time domain have an 
approximately normal distribution. 

4.6 Confidence intervals 

The perturbation function U ( w )  represented by (22) is 
basically a regression curve and the estimates using (22) will 
not be indepenent. Various representations of the 
confidence interval for U(wj ) ,  j = 1, . . . , J estimates can be 
used that depend on the number of terms N, the number of 
estimates J ,  the degrees of freedom v (27) and the 
lOO(1 - p )  percentage level. In general, one uses a 
representation that gives the smallest intervals (Seber 1977). 
For the examples J = 30 and N = 10 and the appropriate 
representation suggested by Seber (1977) is the Bonferroni 
t-interval aB(J, v, p) that is based on the student t 
distribution. Some values for v>> 1 and p = 0.05 are: 
aB = 1.96 for J = 1; aB =2.81 for J = 10; aB =3.02 for 
J = 2 0 ;  and aB = 3.15 for J = 30. Thus the frequency 
resolution cannot be increased by merely generating more 
values of I!/ because increasing J merely causes the 
confidence intervals to increase. 

The confidence interval for the modulus of the 
perturbation function is then given by 

6U(w)  = a,(J, v, p)(Var ( U ( W ) ~ ) * ' ~  (33) 

for the j = 1, . . . , J estimates where the variance of the 
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Smooth robust transfer functions 653 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
predicted data. Note that the noise in the predicted data can 
be small because the magnetic noise is small or because the 
noise is suppressed by a small transfer function. 

modulus of the perturbation function is given by 

var  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ~ ( W ) I  = C C cov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( u n U m ) s n ( W P m ( W ) *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = l  

using estimates of Cov (u,u,) for the least-squares 
solutions (29a,b) or the remote reference solutions (31a,b). 
Since the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaB is independent of frequency any 
rescaling of the confidence interval for changes in J or p can 
easily be carried out at a later stage. 

The electric data is expected to be noisier than the 
magnetic data. The assumption was made, therefore, in 
deriving the variance of the solutions, that the weighted 
electric field is noisy and the weighted predicted field is 
noise free. This makes the estimates of the variance 
tractable and implies that Zz-l,  D,-l and the magnetic field 
are noise free. The effects of all the noise is therefore 
contained in Var lU,l. The variance of the modulus of the ith 
transfer estimate (32) is then given by 

Var IZ,(W)i = I Z , - I ~ ~ > ~ , - l C ~ > l ’  Var lU,(W)l (354 

W ( W )  = l % , ( W ) R l ( W ) l  6cl,(w). (35b) 

The confidence interval is then 

The validity of the assumption of a noise free magnetic 
field was examined using artificial data where a section of 
noise (8 per cent of the data) was added to the magnetic 
field. It was found for this example that the weighted 
predicted field was essentially free of this noise. 

5 EVALUATION OF TRANSFER 
ESTIMATES 

Let the noise contributed by the weighted electric data be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4, the noise contributed by the weighted locally predicted 
data be 4, and the noise contributed by the weighted 
remotely predicted data be AR. The locally and remotely 
derived weighted residuals are derived from (17a,b) and are 
related to the noise by, respectively, R ’ = d , + 4  and 
R = d , + & ,  where it is assumed that the estimated 
transfer functions are relatively independent of the noise 
and that the solutions have converged: U = 1 and U = 1. 

The weighted residuals can be summarized by two 
parameters: one is the complex coherency between the 
locally and remotely derived weighted residuals 

= (R’H * R”)/(IRfH * R’J J R H  * RJ)” ’  (36a) 

and the other is the ratio of the residual variance of the 
weighted residuals 

If the noise in the weighted residual is due mainly to the 
electric data, then R’ = R -  4 and one has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr= 1, 
9% r = 0 and A = 1. If the noise is due mainly to the locally 
predicted data, then R‘==d,  and R = O  and one has 
9% r == 0, ~ W Z  r = 0 and A = 0. If the noise is due mainly to 
the remotely predicted data, then R‘ i= 0 and R = AR and 
one has 9% r = 0, .%m r = 0 and A >> 1. Thus the residual 
coherency approaches unity for mainly noisy electric data 
and zero for mainly noisy predicted data and the residual 
variance ratio A approaches a large value for mainly noisy 
remotely predicted data and zero for mainly noisy locally 

5.1 Necessary conditions on residuals for uncorrelated 
noise 

The remote reference method is justified on the assumption 
that the noise between the data are uncorrelated. When 
this assumption is valid the weighted residuals in terms 
of the noise reduce to IR’H - R‘I = [A: - 41 + JAP 41, 
IRH - R 1 =  Id: - 41 + /A;. &I and (R’H + R )  = 
IA: * AJ. Then the residual coherency becomes 

9% r= (1 + AL)-”’(l + AR)-l’‘ (374 

9 m r = O  (37b) 

A = (1 + AR)/( 1 + 4), (37c) 

AL = I @  4l/l& * &I (384 

and the variance ratio becomes 

where 

are the variance ratios of the noise contributed by, 
respectively, the locally and remotely predicted data relative 
to the noise contributed by the electric data. 

Since the noise coherency and variance ratios are 
estimates, there will be an allowable range of estimates for 
which the assumption of uncorrelated noise will be valid. 
The allowable range for the complex residual coherency are 
approximated by 

-rN I 9% r (39a) 

-rN I 9rn l-5 r,, (39b) 

where 

rN(,,, p )  = (1 -p2/ (v - -2) ) l /2  

is the lOO(1 - p )  per cent level for the coherency of 
uncorrelated noise for v degrees of freedom (Chave & 
Filloux 1985). The allowable range for the residual variance 
ratio, combining (37a) and (37c), and using the fact that 
A L r O  and AR 20 ,  are 

9% r 5 P2 I 119% r (39c) 

The conditions (39a-c), using band averaged estimates of 
the variance and covariance of the residuals, establish the 
frequency range for which the noise can be treated as 
uncorrelated. When this occurs, the locally and remotely 
predicted variance ratios using equations (37a) and (37c) are 
given, respectively, by 

and 

nR = ( A ~ / ~ / %  r) - 1 (40b) 

These are used to evaluate the least-squares and remote 
reference solutions. For example, the least-squares and 
remote reference methods will yield comparable results if 
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the noise in the predicted data is small, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= AR << 1. If the 
noise in the locally predicted data is large, AL >> AR, and the 
remote reference method will be superior. If the noise in the 
remotely predicted data is large, AL << AR, and the least- 
squares method will be superior. If the conditions for 
uncorrelated noise are not met, the remote reference 
method may yield inferior results. 

5.2 Coherency 

Another method for evaluating the transfer function is to 
compute the coherency between the weighted electric E’ 
and predicted values P’ = p‘ * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. It is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y =  (PfH * E’)/(IP’H * P’I IE’H * E’I)’/* 

The least-squares solution requires that PfH * R’ = 0 where 
E’ = P‘ + R’. The coherency therefore becomes the real 
valued term 

y =  [IP’H * P’l/(E’H * E’I]”’ 

The remote reference solution requires that P‘H . R = 
P H  R’H = 0. The coherency is therefore a complex valued 
term since P’H .R‘ does not, in general, vanish. If, for 
example, E’ = E ,  then the coherency becomes _r = 
(P’” - P)/(IPfH - P’I IE‘” - E’I)”’. Then, since IP‘” - PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

(IPfH - P’I IPH - PI)”’, one has IyI <(IPH - r l / lE‘” - E’I)”’. 
If the remote data is very noisyrthen IR” * R I  >> IR’H * R’I 
and IPffH *PI << IPiH - P’I. Thus IyI can be appreciably 
smaller than y and the remote reference method will then be 
inferior to the least-squares method. 

6 EXAMPLES 

The examples illustrate various situations that can arise. The 
first example uses an artificial electric field data generated 
from known magnetic data and transfer functions with 
normally distributed noise added to the electric and 
magnetic time series. The transfer estimates are then 
compared with the known using the various representations 
(21b-d) for the distortion and perturbation function. The 
second example uses cable voltages across the Florida 
Straits. These voltages, divided by the cable length, are 
compared with the distant continental magnetic stations at 
San Juan, Puerto Rico (1400 km eastwards) and Frederick- 
sburg, Virginia (1000 km northwards). This example shows 
that remote magnetic stations can be used to remove most 
of the hourly geomagnetic induced variations in the cable 
voltages. The third example uses remote reference MT data 
from a site in the Tiwi geothermal field located on the 
east coast of Luzon, The Phillipines, with a remote site 
approximately 3 km distance. The example shows that the 
robust method works for data that has large narrow-band 
frequency noise. The fourth example uses magnetic data 
from distant sites, Tucson and Honolulu (5000 km 
separation) and shows that the remote reference method can 
be used on global scales. 

For convenience, the transfer estimates are plotted as 
logarithms L ( w )  = In [ ( i p , , / w ) ’ / 2 Z ( 0 ) ]  where (-iw/p,,)”’ is 
the transfer function for a 1 S / m  conducting half space. The 
confidence intervals are 6 L ( w )  = S Z ( o ) / l Z ( w > l .  The 
continuum weights W and V use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = 10 for all examples. 

REAL U 

1. 

1. 

0. 

IMAG U 

0.0 

I 

-0.5- 
-7.2 - 5 . 5  - 3 . 8  

LOG f HZ 1 

Figure 2. Perturbation function (dashed curves) for the Florida 
Straits hourly cable data by robust least squares. Pairs of smooth 
solid curves are the 95 per cent confidence intervals about the 
smooth solution for real (top panel) and imaginary (bottom panel) 
parts of the perturbation. Vertical lines are the 95 per cent 
confidence intervals for the robust band estimates. The figures show 
that the solution has converged and that the confidence intervals for 
the band averaged and smooth representation are in reasonably 
good agreement. 

An example of the conversion of the solutions is given 
in Fig. 2 for the Florida Straits cable hourly data. It shows 
that the solution has converged after six iterations because 
the perturbation function U ( w )  - 1 lies well within the 
confidence interval for the band averaged and smooth 
estimates. The remaining examples discussed here give 
equally valid conversions within six to eight iterations. 

6.1 Tiwi data for given transfer functions and noise 

This data (12288 values per series with 1/32s between 
values) was chosen to illustrate the situation when the 
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transfer functions and noise are known. The electric data is 
generated from the observed Tiwi 16 hz magnetic data using 
known 1-D transfer functions. The noise (Fig. 3) is normally 
distributed and added to the electric and magnetic data with 
a shorter section (lo00 values, about 8 per cent of series) 
having variance 10 times larger. The time and frequency 
weights are shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 where the time weights clearly 
show the short noisy sections have been downweighted 
except for the noisy section in the magnetic north 
component. This component has a partial coherence 
squared with the electric data of only 0.21, and therefore 
plays a minor role compared to the dominant east magnetic 
component that has a partial coherence squared of 0.78. 
Thus the weights have the ability to reduce the noise in both 
the electric and magnetic data. This increases the coherence 
from 0.80 to 0.88 for the final iteration. 

The least-squares robust transfer estimates are compared 
with the known in Fig. 5 for the dominant east magnetic 
component using the distortion represented by square root 
frequency (21d) and by exponentials (21c) and in Fig. 5 for 
the north and east magnetic components using the distortion 
represented by frequency (21b). The figures clearly show 
that the distortion represented by (21b) and (21d) give 
equally good fits to the known transfer function. The (east, 
north) transfer estimates in Fig. 6 have biases of 
(-4.9f2.0, -6.0f0.8) per cent due to the noise in the 
magnetic field and phase shifts of (-0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1.2, -0.7 f 0.5) 
degrees relative to the known transfer function. The main 
differences are due to the estimates of the confidence 
intervals for the low frequency portion of the spectra where 
the data are poorly correlated. The factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  =1.5 is 
probably not the optimum value for the exponential 
representation. 

The favorable comparison with the known transfer 
functions shows that the least-squares estimates are only 
slightly biased downwards and that they are therefore good 
estimates of the known transfer functions. The bias is found zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

14, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. . . ,  

-59 

18, 

-144 I 
1 2458 4916 7373 9831 12288 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. Gaussian noise in the electric (bottom panel), north 
magnetic component (middle panel) and east magnetic component 
(top panel) for the artificial example. The series are plotted as 
averages over 12 values. The vertical scale is arbitrary. 

PREP WEIGHTS 

0 l <  1 1 2 3 0  2 4 5 8  3687  4915  6144  

TIME W E J G X T S  

1 

1 2 4 5 8  4 9 1 6  7373  9831  12288  

Figure 4. Frequency weights (top panels) and time weights (bottom 
panel) squared and averaged over 25 values for the artificial 
example. The horizontal axes represents Fourier frequency terms 
(top panel) and time values (bottom panel). 

to be frequency independent which means that the bias 
effect ultimately ends up as a small bias in the static 
distortion effect. The removal of this constant bias shows 
that the shape of the transfer functions for the various 
estimates are in complete agreement with the known 
transfer function. The representation of the distortion in 
terms of a power series in frequency is used for all of the 
remaining examples. 

REAL L 

'1 

- 2  I 

IMAG L 

REAL L 

IMAG L 

- 2 1  - 2 1  
-1.9 -0.3 1.3 -1.9 -0.3 1.3 

LOG l H Z l  LOG I H Z )  

Figure 5. Logarithm of the least-squares transfer estimates for the 
east magnetic component of the artificial data using an expansion in 
square root frequency (left panels) and in exponentials with B = 1.5 
(right panels) where pairs of curves are 95 per cent confidence 
intervals for real (top panels) and imaginary (bottom panels) parts. 
The dashed curves are the known transfer function. 
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R E A L  L R E A L  L F R E Q  W E I G H T S  

'1  '1 

IMAG L IMAG L 

-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
-1.9 -0 .3 1.3 

LOGlHZI  

- 2 1  
-1.9 -0.3 1.3 

L O G  (HZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. Logarithm of the least-squares estimates for the north 
(left panels) and the east (right panels) magnetic components of the 
artificial data using an expansion in frequency where pairs of curves 
are 95 per cent confidence intervals for real (top panels) and 
imaginary (bottom panels) parts. Dashed curves are the known 
transfer function. The figures show that the estimates are in good 
agreement with the known transfer functions. 

6.2 Florida Straits cable data 

This data (17 520 hourly mean values per series) consists of 
voltages recorded across the Florida Straits using an 
abandoned telephone cable and illustrates how measure- 
ments of the motionally induced voltages by the Florida 
Current can be improved by removing the geomagnetic 
induced voltages. These are determined from the estimates 
of the transfer functions and the simultaneous recordings of 
the north magnetic data from the magnetic observatories at 
San Juan, Puerto Rico and Fredericksburg, Virginia. The 
data were preprocessed by removing the trend and its 
variation by a least-squares cubic spline having five 
equally spaced knots and removing the tidal and solar 
diurnal variation and its harmonics by least squares 
estimates of their amplitude and phase. 

The time and frequency weights are shown in Fig. 7. The 
per cent reduction in degrees of freedom for (continuum, 
frequency, time) weights are (39,4.9,9.3). There is an 
additional 3.6 per cent reduction due to missing data. The 
principal reduction in degrees of freedom are therefore 
caused by the continuum weights that flatten the low 
frequency noise in the residual spectrum followed by time 
weights. The weights caused the coherence to increase from 
0.73 to 0.86 for the final iteration. Thus the time and 
frequency weights have substantially increased the coher- 
ence and the reliability of the transfer estimates. 

The distributions of the residuals divided by robust 
estimates of the standard deviation are plotted in Fig. 8 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o c  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  I 
1 1 7 5 3  3505  5256  7008  8760  

T I H E  W E I G H T S  

1 3 5 0 5  7009 1 0 5 1 2  1 4 0 1 6  17520  

Figure 7. Frequency weights (top panel) and time weights (bottom 
panel) squared and averaged over 35 values for the Florida Straits 
hourly cable data. The horizontal axes are Fourier frequency terms 
(top panel) and time values (bottom panel). 

the unwejghted and weighted frequency and time residuals 
where the-distribution of the real and imaginary parts of the 
frequency residuals are combined. The figure shows that the 
weighted residuals have a nearly normal distribution while 
the unweighted residuals, especially the frequency residuals, 
do not. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2  misfit to a normal distribution divided by the 
95 per cent confidence level are (497, 1.0) for the 
(unweighted, weighted) frequency residuals and are 
(l l , l .O) for the time residuals. The weights have therefore 
accomplished the desired effect of making the weighted 
residuals normally distributed. 

UNWT FREQ RESIDUAL UNWT TIM? RESIDUAL 

WT FREQ RESIDUAL WT TIME RESIDUAL 

E 
\ 
m 
P 
D 

d 

-5 0 5 

RES/STD 

- 5  0 5 

RESISTD 

Figure 8. Distribution of residuals for the Florida Straits hourly 
cable data. Horizontal axes are the residuals divided by robust 
estimates of the standard deviation. Dots are the number of values 
per 0.1 binwidths and solid curves are the normal distributions for: 
unweighted frequency distribution (top left panel), unweighted time 
distribution (top right panel ), weighted frequency distribution 
(bottom left panel) and weighted time distribution (bottom right 
panel). The figures show that the weighted residuals are normally 
distributed. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/9
9
/3

/6
4
5
/6

4
1
7
8
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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Spectra of the electric data, the residuals, the weighted 

residuals and the coherence are given in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 where the 
voltages have been converted into electric field data by 
dividing the voltage by the cable length of 99km. The 
residual spectrum is dominated by a large increase in the 
continuum towards the low frequencies. This is caused by 
variations in the transport of the Florida Current so that the 
coherence only exceeds 0.6 for frequencies greater than 
0.4 cpd. The weighted residual spectrum is, however, 
essentially flat with variations lying well within the 95 per 
cent confidence interval. This shows that the weighting has 
made the residuals independent. A comparison between the 
residual and electric spectra in Fig. 9 shows that the removal 
of the geomagnetic induced variations has caused a 
substantial reduction in the variance of the electric data for 
frequencies greater than 0.4 cpd. This means that diurnal 
and semi-diurnai tidal induced signals can be accurately 
determined. 

The least-squares robust estimates of the transfer 
functions for the San Juan and Fredericksburg north 
magnetic components are shown in Fig. 10 and are found to 
approximate a 1-D transfer functions for the low 
frequencies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u 
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
: 5  

Ei 

r 3  

- . 
> 
- 
L1 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cl 

1 

:/- 

E FILLED 

__.-' 

WEIGETED RESIDUALS 

RESIDUALS 

COEERENCE 

1.0. 

0 . 5  

Figure 9. Spectral estimates of the electric data (top left panel), 
residuals (top right panel), weighted residuals (bottom left panel) 
and coherence (bottom right panel) for the Florida Straits hourly 
cable data. The 95 per cent confidence intervals for all spectra are 
plotted (dashed curves) in the lower left panel. The coherence at 
the 95 per cent level for uncorrelated noise is plotted (dashed curve) 
in the lower right panel. 
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Figure 10. Logarithm of transfer estimates for the Florida Straits 
hourly cable voltages divided by cable length using the north 
magnetic components from San Juan (left panels) and Frederick- 
sburg (right panels) where pairs of curves are the 95 per cent 
confidence intervals for the real (top panels) and the imaginary 
(bottom panels) parts. Dashed curves are the estimated 1-D model 
transfer functions. 

6.3 Tiwi MT data 

This data (12288 values per series with 1/256s between 
values) illustrates the situation of remote reference MT data 
where the frequency domain noise exceeds the time domain 
noise. The frequency noise is found to be narrow-band and 
appears to be caused by the 60 Hz power grid and harmonics 
and subharmonics of the approximately 48 Hz power 
generator. The largest peak is centered at 47.9 Hz followed 
by a lesser peak at 60 Hz and smaller peaks at 23.9,95.8 and 
112.1 Hz. The remote reference data shows the same 
dominant peaks with an extra peak at 53.8Hz and no peak 
at 23.9 Hz. 

The time and frequency weights, shown in Fig. 11 for the 
least-squares estimates, clearly show the large amount of 
noise in a few narrow frequency bands. The per cent 
reduction in degrees of freedom for (continuum, frequency, 

F R E Q  W E I G H T S  

0 l 3  1 1230  2 4 5 8  3681 4915 6144  

T I M E  W E I G H T S  

o J  
1 2458 4 9 1 6  1313  9831  12288  

Figure 11. Frequency weights (top panel) and time weights (bottom 
panel) squared and averaged over 25 values for the Tiwi 128Hz 
data using least squares. The horizontal axes are Fourier frequency 
terms (top panel) and time values (bottom panel). The figures show 
that the residuals are dominated by large noise in the frequency 
domain. 
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time) weights are (60,7.5,6.5) for least squares and 
(67,6.1,6.7) for remote reference. The principal reduction 
in degrees of freedom are caused by the continuum weights 
that flatten the low and high frequency noise of the residual 
spectrum and by the frequency weights that eliminate the 
large spectral peaks. The weights for the (least-squares, 
remote reference) estimates increased the coherence from 
the initial values of (0.77,0.55) to the remarkably large 
values of (0.98,0.98) for the final iteration. 

The distributions for the least-squares estimates of the 
residuals divided by robust estimates of the standard 
deviation are plotted in Fig. 12 for the unweighted and 
weighted frequency and time residuals. They show that 
the weighted residuals have a nearly normal distribution 
whereas the unweighted residuals clearly do not. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2  
misfit to a normal distribution divided by the 95 per cent 
confidence level are (2251,l.O) for the (unweighted, 
weighted) least squares frequency residuals, (28,0.9) for the 
least-squares time residuals, (3225, 1.1) for the remote 
reference frequency residuals and (29,0.8) for the remote 
reference time residuals. The small misfits for the weighted 
residuals show that the weighting has accomplished the 
desired effect of making the residuals normally distributed. 

Spectra of the electric data, the residuals, the weighted 
residuals and the coherence are given in Fig. 13. The 
residual spectrum is dominated by large spectral peaks but 
the weighted residual spectra show that these have been 
removed and that the variations lie mostly within the 95 per 
cent confidence interval. The coherence is close to unity 
over most of the frequencies and this shows that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 12. Distribution of residuals for the Tiwi 128Hz data. 
Horizontal axes are the residuals divided by robust estimates of the 
standard deviation. Dots are the number of values per 0.1 binwidths 
and solid curves are the normal distributions for: unweighted 
frequency residuals (top left panel), unweighted time residuals (top 
right panel), weighted frequency residuals (bottom left panel) and 
weighted time residuals (bottom right panel). The figures show that 
the weighted residuals are normally distributed. 

RESIDUALS 

0 . 5  

J ..:....... ~ _ _ _ _ _ _ _  , 
2.2 

0 . 0  
0.6 -1.0 
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Figure 13. Spectral estimates of the electric data (top left panel), 
residuals (top right panel), weighted residuals (bottom left panel) 
and coherence (bottom right panel) for the Tiwi 128Hz data. The 
95 per cent confidence intervals for all spectra are plotted (dashed 
curves) in the lower left panel. The coherence at the 95 per cent 
level for uncorrelated noise is plotted (dashed curve) in the lower 
right panel. The residual spectrum shows the large spectral lines due 
to the power generator and power grid. 
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Figure 14. Logarithm of transfer estimates for the Tiwi 128 Hz data 
using least squares (solid curves) and remote reference (dashed 
curves) for the local (left panels) and remote (right panels) east 
magnetic components where pairs of curves are the 95 per cent 
confidence intervals about for the real (top panels) and the 
imaginary (bottom panels) parts. 
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remote site at the Honolulu magnetic observatory, Hawaii. 
The data (4018 values per series consisting of 2-day mean 
values) was chosen to show that remote reference methods 
can be used for globally separated sites and to examine the 
situation when the data are dominated by time domain 
noise. The transfer function for the vertical magnetic data 
are displayed as a MT transfer function by assuming the 
source field has a P," zonal description (Schultz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Larsen 
1987). The data were preprocessed by removing the trend 
and its variation by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 least-squares cubic spline having eight 
equally spaced knots and the annual and semi-annual 
variation by least-squares estimates of their amplitude and 
phase. 

The time and frequency weights, shown in Fig. 16 for 
the least-squares estimates, clearly show the large amount 
of noise in the time domain. The low values of the 
frequency weights at the lowest frequencies are due to the 
rejection of the annual and semi-annual variation. The per 
cent reduction in degrees of freedom for (continuum, 
frequency, time) weights are: (37,3.0,7.2) for least squares; 
(35,2.1,6.1) for least-squares average magnetic data; 
(3.6,3.5,8.3) for remote reference. There is an additional 
2.3 per cent reduction due to missing values. The principal 
reduction in degrees of freedom is caused by the continuum 
weights that flatten the low frequency noise in the residual 
spectrum followed by the time weights. The average 
magnetic data is the average of the Tucson north magnetic 
data and the Honolulu north magnetic data projected to 
Tucson. The weights cause the (least squares, least squares 
average magnetic, remote reference) estimates of the 
coherence to increase from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0.64,0.65,0.64) to 
(0.78,0.79,0.79) for the final iteration. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2  misfit to a 
normal distribution divided by the 95 per cent confidence 
level are (221,0.8) for the (unweighted, weighted) 
least-squares frequency residuals; (2.1,0.7) for the least- 
squares time residuals, (357,0.7) for the least-squares 
frequency residuals using the average magnetic data; 
(2.1,0.7) for the least-squares time residuals using the 
average magnetic data; (290,0.6) for the remote reference 
frequency residuals, and (2.2,0.6) for the remote reference 
time residuals. These misfits show that weighting has 

RESIDVAL COEERENCY (RZALIRESIDVAL COESRENCY (IMAGI 

- 1 . o L  - 1 . 0 1  

RESIDOAL VAR RATIO LOCAL/RLYOTE MAG NOISS RATIO 

LOGIRZI LOG(EZ) 

Figure 15. Uncorrelated noise test for the Tiwi 128Hz data. Top 
left panel: real part of the residual coherency (solid curve) lying 
above dashed curve permits an uncorrelated noise interpretation. 
Upper right panel: imaginary part of residual coherency (solid 
curve) lying between dashed curves permits an uncorrelated noise 
interpretation. Lower left panel: residual variance ratio (solid 
curve) lying between dashed curves permits an uncorrelated noise 
interpretation. Lower right panel: normalized local magnetic noise 
ratio A,/(l i A,) (solid curve) and normalized remote magnetic 
noise ratio A,/(l + A,) (dashed curve). The figures show that the 
noise is essentially uncorrelated for most of the frequencies and is 
dominated by magnetic noise for frequencies greater than 10 Hz. 

elimination of the residual spectral peaks has only reduced 
the coherence for a few narrow bands. 

The least-squares and remote reference robust transfer 
estimates for the north and east magnetic components are 
compared in Fig. 14 where the least-squares transfer 
estimates for the (local, remote) east magnetic components 
have biases of (-1.7f0.4, -1.2f0.5) per cent and phase 
shifts of (0.0f0.2, -0.1 f0.3) relative to the remote 
reference estimates. The biases are found to be frequency 
independent and the least-squares and remote reference 
estimates therefore agree in shape. 

The assumption of uncorrelated noise for the remote 
reference estimates is evaluated in Fig. 15. It shows that the 
conditions for uncorrelated noise is satisfied over most of 
the frequency range. The remotely predicted data therefore 
contributes almost none of the noise for frequencies less 
than 10Hz and the locally and remotely predicted data 
contribute 9 times the variance of the electric data noise for 
frequencies between 10 and 100Hz. This violates the 
assumption that the predicted fields are noise free and 
makes the estimates of the confidence limits questionable. 
The remote reference estimates will be superior to the 
least-squares estimates for the frequencies between 10 and 
100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz. Since the overall coherence squared is nearly unity, 
however, the differences in the least-squares and remote 
reference estimates will only be minor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.4 Tuscon magnetic data 

The vertical and north magnetic data for this example come 
from the Tucson magnetic observatory, Arizona with the 

FREQ WEIGHTS 

0 4  
2009  1206 1607 1 403  804 

TIME W E I G E T S  

1 

I II 
1 804 1608  2411 3215 4018  

Figure 16. Frequency weights (top panel) and time weights (bottom 
panel) squared and averaged over eight values for the Tucson 2-day 
mean magnetic data using least squares. Horizontal axes are Fourier 
frequency terms (top panel) and time values (bottom panel). The 
figures show that the residuals are dominated by large noise in the 
time domain. 
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O:% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

accomplished the desired effect of making the weighted 
residuals normally distributed. 

Spectra of the electric data. the residuals, the weighted 
residuals and the total coherence are given in Fig. 17. The 
residual spectrum is dominated by a large smooth increase 
of the continuum towards the low frequencies so that the 
coherence only exceeds 0.6 for frequencies greater than 
1.6 cpy. The weighted residual spectrum, however, is 
essentially flat with variations well within the 95 per cent 
confidence interval. 

The transfer estimates by least squares using the Tucson 
magnetic component and the average magnetic data are 
compared in Fig. 18 with the remote reference estimates. 
The least squares transfer estimates for (local, average) 
magnetic component have biases of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-4.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1.8, -0.8 f 1.8) 
per cent and phase shifts of (0.1 f 1.0, -0.3 f 1.0) relative 
to the remote reference estimates. The least-squares average 
estimate has no bias showing that averaging the local and 
remotely projected magnetic fields has eliminated the bias. 
The bias for the least-squares local estimate is found to be 
frequency independent. There is, therefore, no difference 
between the shapes of the three estimates of the transfer 
function. 

The assumption of uncorrelated noise using the remote 
reference estimates is evaluated in Fig. 19. It shows that the 
conditions for uncorrelated noise is satisfied for all 
frequencies. The variance ratios show that the least-squares 
and remote reference estimates should give comparable 
results because the noise of the local and remote north 
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Figure 17. Spectral estimates of the vertical magnetic data (top left 
panel), residuals (top right panel), weighted residuals (bottom left 
panel) and coherence (bottom right panel) for Tucson 2-day mean 
magnetic data. The 95 per cent confidence intervals for all spectra 
are plotted (dashed curves) in the lower left panel. The coherence 
at the 95 per cent level for uncorrelated noise is plotted (dashed 
curve) in the lower right panel. 
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Figure 18. Logarithm of local transfer estimates for the Tucson 
2-day mean magnetic data using least squares (solid curves) and 
remote reference (dashed curves) for the north magnetic 
component (left panel) and average north magnetic component 
between Tucson and Honolulu (right panel) where pairs of curves 
are 95 per cent confidence intervals about estimates for real (upper 
panels) and imaginary (lower panels) parts. 
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Figure 19. Uncorrelated noise test for the Tucson 2-day mean data. 
Upper left panel: real part of the residual coherency (solid curve) 
lying above dashed curve permits an uncorrelated noise 
interpretation. Upper right panel: imaginary part of the residual 
coherency (solid curve) lying between dashed curves permits an 
uncorrelated noise interpretation. Lower left panel: residual 
variance ratio (solid curve) lying between dashed curves permits an 
uncorrelated noise interpretation. Lower right panel: normalized 
local magnetic noise ratio AL/(l + A,) (solid curve) and normalized 
remote magnetic noise ratio AR/(l + A,) (dashed curve). The 
figures show that the noise is uncorrelated for all frequencies and 
that the noise is much smaller for the horizontal component than for 
the vertical magnetic component. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/9
9
/3

/6
4
5
/6

4
1
7
8
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Smooth robust transfer functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA661 

horizontal component are about 0.3 times the variance of 
the vertical magnetic noise. The remote reference estimates 
are slightly superior to the least-square estimates because 
the remote magnetic noise is about 20 per cent smaller than 
the local magnetic noise. These noise levels confirm the 
traditional assumption that long period vertical magnetic 
data are noisier than the horizontal magnetic data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 CONCLUSIONS 

The improvements of the present method compared to other 
methods are: (i) Individual outliers in the frequency and 
time domain are removed using frequency and time weights. 
The examples used here show that the number of outliers is 
a small percentage of the total but that there are usually no 
sections of data free from time outliers. (ii) The use of 
frequency and time weights substantially increases the 
coherence for both the least-squares and remote reference 
methods, makes the tails of the distribution for the time and 
frequency residuals consistent with the normal distribution 
found for the bulk of the residuals and makes the residual 
spectrum white. Confidence limits can then be readily 
constructed because the weighted residuals are found to be 
approximately independent and identically and normally 
distributed. (iii) The analytic representation of the transfer 
function and its variance makes it possible to easily generate 
the predicted fields for any length of time series. 

The important difference between the least-squares and 
remote reference methods are: (i) The remote reference 
method requires the existence of both a local and remote 
transfer function whereas the least-squares method only 
requires the existence of a local transfer function. Note that 
a transfer function will not exist, i.e. be a unique function of 
frequency if there is, for example, a large variable 
wavenumber effect. (ii) The remote reference method 
requires uncorrelated noise whereas the least-squares 
method only requires the noise to be small. 

The problem of noise in both the electric and magnetic 
fields was not solved but the artificial example indicates that 
the weighting can reduce the effects of large noise in the 
magnetic field. The structure of the noise can be examined 
by frequency bands by comparing the locally and remotely 
derived residuals. Criterion have therefore been developed 
to test the assumption of uncorrelated noise. If the noise is 
deemed uncorrelated, then estimates of the relative amounts 
of noise contributed by the electric data, local magnetic data 
and remote magnetic data can be obtained and used to 
establish whether the remote reference estimates or the least- 
squares estimates are superior and whether it is justified to 
assume that the magnetic data are noise free. 
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APPENDIX A:  WEIDELT 1 - D  TRANSFER 
CONSTRAINTS WITH NOISE 

Weidelt (1986) derived inequality constraints W ( w )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 on 
the transfer function that are necessary and sufficient 
conditions for the transfer function to represent a 1-D 
conductivity model. If these inequalities are not satisfied 
then the conductivity model must have a 2-D or 3-D 
structure. The 1-D Weidelt constraints are given as 
functions of the induction length c ( w )  that is defined in 
terms of the MT transfer functions by c ( w )  = g ( w )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ih (w)  = i Z ( w ) / w .  Since the c's are estimates, the 1-D 
Weidelt constraints based on these estimates are @(w) .  
These have confidence interval 6@(w)  that can be derived 
from the confidence interval 6 ( w )  for c ( w )  when the noise 
is assumed uncorrelated between estimates and the same for 
the real and imaginary parts of c ( w ) .  Then the Weidelt 
constraints are bounded by @(w) - S W ( w )  5 W ( w )  5 

@ ( 0 ) + 6 W ( w ) .  If @ ( w ) + 6 W ( w ) < O ,  then W(w)<O and 
the Weidelt constraints are not satisfied. The frequencies for 
which @ ( w )  2 - S W ( w )  are therefore used to establish the 
frequencies for which a 1-D interpretation is possible. Let 

h2 = h(w,), 6, = 6(0,), h2 = 6(w,), r = w2/w1 and s = 
r(1- l/r)'. The 1-D Weidelt constraints (1986) for single 
and adjacent pairs with noise are 

c, = c ( w , ) ,  c2 = c(w2),  g1 = g(wl)? g2 = g(w2), hl = h(w,) ,  

g1& h ,  > -6, (A.1) 

g, & h2 > - 6 2  ('4.2) 

('4.3) r2g2 - g ,  > -(a: + r 6,) 

rh, - h ,  > -(S: + r26:)"2 (A.4) 

rsg,g, - IC, - rc2I2 > -a  (A.5) 

sh,h2 - (cl - c212> -b  ( A 4  

for 

u2 = ~ ( I c ,  - rc2I2 - rsg,g2)(6: + r26:) + r2p(g:6: +g:6;) 

and 

4 2 112 

b2=4(lcl - ~ 2 1 ' -  ~ h , h , ) ( S :  + 6:) +p(h:S; + h:6:), 

where p = ( r  - l/r)'. 

APPENDIX B: AVERAGE MAGNETIC 
SERIES 

A least squares method for reducing the bias in the magnetic 
data is to compute the average of the local and remote 
magnetic data where thelocal magnetic component is related 
to the remote magnetic components by 

B = B  * D + R. 
The D is the transfer function that transforms the remote 
data into an approximation of the local magnetic component 
using the power series representation (19) with S,(w) given 

(B.1) 

by (21b) or (21d) for n = 1, . . . , N terms. This equation is 
exactly the same as the MT relationship (24a,b) when 
z ( w )  = 1. The matrix representation for the coefficients d 
can therefore be written as 

B' z b '  - d +  R' (B.2) 

using weighted data. The B'=B,,,,, and R'=R,,,,, are 
J-vectors having, respectively, elements b,! and r,! for 
j = 1, . . . , J frequencies; d is a M-vector of dimension 
M = KN having elements d, with rn = n + N(k - 1) for 
n = 1, . . . , N terms and k = 1,. . . , K magnetic components; 
and b'=bDF,,,, is a J x M matrix having elements 
birn = B;(wj)S,(w,) for the kth component of the weighted 
remote magnetic data using the previously estimated D and 
weights. The weights are generated from the residual R. 
The robust least squares solutions is 

- d = (bfH - b' + dI)-' * (b'H - B') (B.3) 

for damping factor 1. The projected data are then given by 
P = b - a a$ the average magnetic component is 

B = (1/2)(B'+ P) 03.4) 

that replaces the local magnetic data B. Less biased least 
squares transfer estimates are obtained because the 
uncorrelated noise will be reduced in B. 

APPENDIX C: REPLACEMENT OF MISSING 
A N D  DELETED VALUES 

In order to minimize the effects of the missing and rejected 
time values on the frequency weights and on the long period 
variations it was found necessary to replace the missing and 
rejected time values by the predicted values p ( t )  plus the 
periodic part f(t) of the residuals plus a local trend z( t )  used 
to merge the replacement values with the adjacent observed 
values. The predicted values p ( t )  are computed from the 
Fourier inverse of P = B . Z  where Z is generated for the 
full frequency range using the smooth transfer repre- 
sentation. The electric data with replacement vaues are 
given by 

$0) = g( t )e ( t )  + [1 - g(ol[p(t) + + m1, (C.1) 

where g ( t )  = 0 for missing and rejected values and g ( t )  = 1 
otherwise (Appendix D). 

Any periodic variations I ( t )  in the residuals: k ( w )  - 
P(w) ,  are given by the Inverse Fourier transform of 

L(w)  = [l- E ( w ) ] [ B ( o )  - P ( w ) ] ,  (C.2) 

where E ( w ) = O  for large amplitude spectral lines in the 
residuals and P ( w )  = 1 otherwise. The background con- 
tinuum for the filled data, the series minus the predicted and 
periodic parts, is then given by 

P( t )  = $ ( t ) [ e ( t )  - A t )  - Wl + 11 - g(t)lt(t) (C.3) 

where the linear trend t ( t )  is generated, for each gap, by a 
least squares fit to a number of values E ( t )  adjacent to the 
missing values. The electric data with replacement values 
are then given by 

C ( t )  = p ( t )  + l ( t )  + t ( t )  (C.4) 
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and the residuals with replacements are given by 

r ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2( t )  - p ( t )  (C.5) 

The periodic variations are found by successive iterations 
starting with 

Lo(w> = [ I -  fi(w)l[E(w) - P(@)l 

then generating the continuum eo(t) by (C.3) and refining 
the estimates of the periodic variations by 

L i ( W )  = Li - l (w)  + [l- P ( w ) ] e i - l ( w )  

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi > 1. The iterations are stopped when & ( w )  changes by 
only a small per cent. The electric data with replacement 
values are then approximated by 

2( t )  = p ( t )  + l i ( t )  + ti@) (C.6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
APPENDIX D: DISTORTION ESTIMATES 

The coefficients d,, of the distortion (19) using one of the 
forms of S,,(w) (21b-d) are found by least squares using 
j = 30 estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, Z and its variance distributed over the 
entire frequency range. The matrix form of (18) with misfit r 
for values divided by the estimates of the standard deviation 
E (equal to the square root of the variance of 2)  is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = Z * d + t  P . 1 )  

where z and t are j-vectors having, respectively, elements 
zj = Z ( w j ) / ~ ( w j )  and rj, for j = 1, . . . , J frequencies; d is a 
N-vector having elements d,, for n = 1, . . . , N; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ is a 
j x N matrix having elements Zj,, = Z(oj )S, , (wj ) /s(wj ) .  The 
smoothed least-square solution is then 

d =  (2" - Z +  AI)-' * (ZH -2) (D. 2) 

where I is the identity matrix. The damping factor A is equal 
to times the leading term of ZH - Z where the smallest 4 
from 4 = 2, . . . , 6 ,  is chosen so that the xz misfit, equal to 
ItH - r ) ,  is slightly less than the 95 per cent confidence level. 

APPENDIX E: ITERATIVE METHOD 

The iterative steps for obtaining transfer functions, weights 
and smooth representations are summarized in the 
following. 

Transfer function 

The iterative method for obtaining estimates of the transfer 
function consists of the following steps. 

The initial i = 1 iteration has three steps 

E f W o ? E &  Bb?Zi, SZi, 

where the weights are generated by step 2; the weighted 
data Eh and BA are generated by step 3; and the transfer 
function Z, and its confidence interval 62, are generated by 
step 4 using the least squares or remote reference methods. 

For i > 1 the iteration has four steps 

where the residuals are generated from the data by step 1 
using the estimated Zi-' and the magnetic and electric data 
corrected for missing and large outliers; the weights 
generated by step 2; the weighted electric data El-, and the 
weighted predicted data Pi-' are generated by step 3; and 
the solution Ui(w) and confidence interval SUi(w) are 
generated by step 4 using least-squares or remote reference 
estimates of Ui. The transfer function is then Z , ( w )  = 
Zi- l (w)V, (w)  and the confidence interval is 6 Z i ( o )  = 
IZ ,_, (w))  6Ui(w) assuming noise free predicted electric data 
and Z i - ,  = Zi- 'Di- , .  

The revised 1-D model transfer function Zi is then found 
from Zi and its variance for the 1-D frequency range using 
the D+ inversion routine. The revised distortion function 0, 
is then found from Zi, Zi and its variance. 

The process is then repeated for at least six cycles and 
terminated when ( U  - 11 is everywhere less than 6U.  

Weights 

The iterative method for obtaining the weights consists of 
the following steps. 

The initial i = 1 iteration has a single step 

E T  W ,  

where the initial continuum weights W for M =  10 is 
generated using E as a proxy for the residuals. 

R,+? W, W, R,, 2 fi, R , + y  W,  R ,  

For i > 1 the iteration has six steps 

2 F, RwF Pg, RwFg 3 v, 
where preliminary continuum weights W for M = 10 and 
refinement W are generated by steps 1 using the residuals 
R,+ and a previously estimated rejection weights fi; the new 
rejection frequency weights fi are generated by step 2 using 
R,,; the new continuum weights Ware generated by step 3 
using Rk; the frequency weights F are generated by step 4 
using R,; the time weights g are generated by step 5 using 
RwF; and the final continuum weights V are generated by 
step 6 using RwFg. Sttps 1 and 2 are necessary for finding 
the rejection weights F so that W deals with the continuum 
spectrum and F deals with the line spectrum. 
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