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Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step
before classi	cation. �e CSP method is a supervised algorithm. �erefore a lot of time-consuming training data is needed to
build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract
discriminative information from other subjects for target classi	cation task. To this end, we propose a transfer kernel CSP (TKCSP)
approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. �e dataset
IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the
classi	cation performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP),
stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. �e results
indicate that the superior mean classi	cation performance of TKCSP can achieve 81.14%, especially in case of source subjects with
fewer number of training samples. Comprehensive experimental evidence on the dataset veri	es the e�ectiveness and e�ciency of
the proposed TKCSP approach over several state-of-the-art methods.

1. Introduction

�e brain-computer interface (BCI) o�ers a new pathway
of communication between an external device and the
brain through transforming metabolic or electrophysiolog-
ical brain activities to control messages for devices and
applications. �e electroencephalogram (EEG) obtains time
series data with multiple variants recorded at several sensors
pressed on the scalp. It thereby presents electrical potentials
under the induction of brain activities. �ese are used by
noninvasive BCI systems to convert the mind or intention of
a subject into a control message for certain device, such as a
computer, a neuroprosthesis, or a wheelchair [1–4].

Currently, classi	cation performance promotion of BCI
systems based on the EEG has signi	cant challenges. For
one, it is necessary for a fresh subject to conduct a lengthy
calibration session for su�cient training sample collection to
establish classi	ers and extractors of subject-speci	c features.
�e test session later employs the classi	ers and extractors

to classify the subjects brain signals. In a recent study on
BCIs, it was shown to be very important to reduce training
sessions on account of the time-consuming, tedious process
of a calibration session. As a result, conducting a performance
promotion using a scarce labeled set is more desirable com-
pared with using a large one. Nevertheless, suitable methods
must be identi	ed to strengthen the performance. �is is
because a short calibration session means the availability
of merely a few training samples for target users, which
may result in over	tting or suboptimal feature classi	ers or
extractors.

To address the above problem, transfer learning is a
promising approach [5, 6]. It applies data represented in
various feature spaces or obtained from various distributions
for compensating the insu�cient labeled data. In the BCI
	eld, transfer learning has attracted considerable attention
because it enables the establishing of subject-independent
spatial classi	ers and/or 	lters, and it lowers calibration
times. Some studies concentrated on feature representation
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Figure 1: An illustration of subject transfer based BCI system.

transfer methods in EEG classi	cation [7–11]. In this situa-
tion, we encode the knowledge that traverses domains into
a fresh feature representation. Accordingly, precise classi	ca-
tion performance is thereby expected in settings with a small
sample.

A proposed schedule for practical applications of BCI
systems based on subject transfer is presented in Figure 1 [12].
�edatasets provided by the source subjects can be stored as a
dataset group. Next, the BCI device can 	rst acquire transfer
data from the source subject groups when it is prepared to
execute classi	cation for the user. In this paper, we thus pro-
pose the transfer kernel common spatial patterns (TKCSP)
method. �e TKCSP computation is formulated by BCI
as an optimization problem with multiple subjects, thereby
incorporating data fromother subjects to establish a common
feature space.

2. Transfer Kernel Common Spatial Patterns

�is section mentioned a new feature extraction method,
TKCSP, which combines two previous approaches, kernel
common spatial patterns (KCSP) [13] and transfer kernel
learning (TKL) [6]. KCSP is an extraction approach formotor
imagery, and TKL is a promising transfer learning method.
In Sections 2.1 and 2.2, we describe the KCSP algorithm and
the TKL algorithm, respectively. In Section 2.3, we would
propose the TKCSP algorithm in combination with the above
two algorithms.

2.1. Kernel Common Spatial Patterns. �e KCSP algorithm
based on CSP is used to 	nd the components with the largest
energy di�erence between the two experimental conditions
[13–15]. Its basic idea is to 	nd the optimal spatial 	lter to
maximize the component energy under two sets of experi-
mental conditions a�er the spatial 	ltering.

�e 	rst step is to calculate the covariance between the
two signals. Consider �� as an�×�matrix representing the

�th trial of EEG signals, wherein � represents the channel
amount and� represents the points of time.�e class-speci	c
spatial covariance matrix can hence be acquired by the steps
below.

�� =
� (����� )

trace (� (����� )) ,
(1)

where � represents the class label, �(����� ) = ⟨(��), (��)⟩
represents the kernel function, and ⟨ ⟩ denotes the inner
product. �us we can replace the computation of the aggre-
gate spatial covariance matrix with �� = �1 + �2.

Additionally, we can factor �� to be �� = �0Λ ���0 ,
where �0 ∈ R

�×� represents a matrix with eigenvectors in a
row, while Λ � represents the diagonal matrix of eigenvalues
classi	ed in declining order.

�e variances can be equalized by using a whitening
transmission � within space that the eigenvectors span in �0
such that � equals

� = �1/2��0 . (2)

�irdly, the whitening matrix � can be used to transform
�1 and �2 into �1 and �2 as

�1 = ��1��,
�2 = ��2��.

(3)

�1 and �2 have the same eigenvectors, that is, if

�1 = ��1��,
�2 = ��2��,

�1 + �2 = �,
(4)

where � represents the identity matrix. At this point, the sum
is always one for these two corresponding eigenvalues.Hence,
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Input: Data �.
Output: Common spatial patterns�−1,

and common spatial 	lters�.
(1) Compute spatial covariance matrix ��, � = 1, 2 by (1)

and the total spatial covariance matrix is �� = �1 + �2.
(2) Eigen decomposition �� = ��Λ ���0 ;

whitening transformation � = �1/2��0 .
(3) Transform covariance matrices �1 = ��1��, �2 = ��2��.

and eigen decomposition �1 = ��1��, �2 = ��2��.
(4) Construct the spatial 	lter� = (���)�.

Algorithm 1: Kernel common spatial pattern algorithms.

the eigenvectors having the smallest eigenvalues for �1 have
the largest eigenvalues for �2 and vice versa. �is property
enables eigenvector � to sort these two classes.

Finally, owing to � = (���)� as the common spatial

	lters, the common spatial patterns are columns of �−1,
which can be regarded as the source distribution vectors for
time-invariant EEG. Algorithm 1 shows the summary of a
complete KCSP procedure.

2.2. Transfer Kernel Learning. TKL can directly match the
source distribution and target distribution to learn a domain-
invariant kernel space, using the knowledge of the source
domain to help complete the learning tasks in the target
domain. �is section begins with de	nitions of terminology
used, and Notations section presents a summary of com-
monly used notations.

De�nition 1. A domain � includes a �-dimensional feature
space F as well as a marginal probability distribution �(�);
that is,D = {F, �(�)}, � ∈ F.

In general, if two domains � and � have di�erent
marginal distributions or feature spaces, they will have
di�erence; that is,F� ̸= F� ∨ �(�) ̸= �(�).
De�nition 2. Given domain D, a classi	er  (�) and a cardi-
nality label setY compose a taskT; that is,T = {Y,  (�)},
in which ! ∈ Y, and the interpretation of  (�) = �(! | �)
can be conditioned probability distribution.

In general, if two tasks T� and T� have di�erent
conditioned distributions or label spaces, they will have a
di�erence; that is,Y� ̸= Y� ∨ �(! | �) ̸= �(! | �).
Problem 3 (transfer kernel learning). Given an unlabeled
target domain � = {�1, . . . , ��} and a labeled source domain
� = {(�1, !1), . . . , (��, !�)} with F� = F�, Y� =
Y�, �(�) ̸= �(�), and �(! | �) ̸= �(! | �), a kernel
"(�, �) = ⟨#(�), #(�)⟩with an invariable domain is learned so
that �(#(�)) ≃ �(#(�)). Suppose �(! | #(�)) ≃ �(! | #(�)),
then a kernel machine targeting � can e�ectively generalize
�.

Firstly, calculate the target kernel function, the source
kernel function, and the cross-kernel function. Assume an

input kernel function " is given to us, for example, Laplacian

kernel "(�, �) = %	|
−�| or Gaussian kernel "(�, �) = %	‖
−�‖2 ,
then the target kernel��, the source kernel��, and the cross-
domain kernel ��� can be computed. A domain-invariant

kernel ��∪� can be learned by utilizing these three kernels.
Under this challenging situation, the su�cient matching of
marginal distributions plays an indispensable role in e�cient
learning of the domain transfer.

To require two datasets (for example, target data � and
source data �) to conform to similar distributions of the
feature space, that is, �(#(�)) ≃ �(#(�)), requiring them
to have similar kernel matrices is su�cient, that is, �� ≃
�� [16]. Nevertheless, kernel matrices depend on data and
the direct evaluation of closeness between varied kernels is
improbable because of the varying dimensions; that is, �� ∈��×�, �� ∈ ��×� [17]. To solve this issue, the Nyström
kernel approximation idea is adopted for the generation of

an extrapolated source kernel �� ∈ ��×� by an eigensystem

of target kernel ��. Next, �� can arise to kernel �� as the
ground truth source and can be comparable to a spectral
kernel design. Figure 2 shows the whole learning procedure.

Secondly, Nyström kernel approximation is adopted to
execute eigensystem extrapolation [16]. To this end, standard
eigendecomposition is adopted on the target kernel ��

��Φ� = Φ�Λ�, (5)

which provides the eigensystem {Λ�, Φ�} of target kernel��.
�irdly, we assess the eigensystemon source data�byuti-

lizing theNyström approximation theorem.�e derivation of

the eigenvectorsΦ� for extrapolated source kernel�� is
Φ� ≃ ���Φ�Λ−1� , (6)

where ��� ∈ R
�×� is the cross-domain kernel matrix

between � and�, assessed by kernel function ".
�e initial Nyströmmethod directly utilizes target eigen-

values Λ� and extrapolated source eigenvectors Φ� to make
approximation for the source kernel ��. In essence, the
distribution di�erence across domains is embodied by the
Nyström approximation error; that is, error is close to 0 if
and only if �(�) ≃ �(�). An invariant kernel extrapolated
to varied domains will be achieved if an extrapolated kernel
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Target domain X

Target kernel KX

Eigendecomposition KX

to form {ΛX, ΦX} by (5)

Extrapolation for ΦZusing
Nystr¨m method by (6)o

Relaxation ΛX as Λ

Source domain Z

Spectral design to

form KZby (7)

Minimizing the approximation
error between KZ and KZ by (8)

Figure 2: Complete procedure of transfer kernel learning.

can be found for realizing a minimized Nyström approxima-
tion error, thereby facilitating a more e�cient cross-domain
generalization.

�e spectral kernel design idea is adopted to establish a
new kernel matrix from extrapolated eigensystem to reduce
the Nyström approximation error [18]. �e key construction
of target kernel �� can thus be preserved by the kernel
matrix generated via extrapolated eigensystem Φ�; however,
the �exibility of the reshaping could be retained to keep the
distribution di�erence minimized.

Fourthly, eigenspectrum Λ� can be relaxed in the pri-
mary Nyström approach to be parameters Λ that can be
learned resulting in a kernel family extrapolated from the
target eigensystem yet assessed on the source data. �e

extrapolated source kernel�� is obtained as follows:

�� = Φ�ΛΦ��. (7)

�e critical structures of the target domain can be

preserved by this kernel family, that is, eigenvectors Φ�.
Moreover, the free eigenspectrum Λ remains undetermined.
Unlike a conventional spectral kernel design that learns the
parameters through Λ trained on the spectral kernel towards
a previous kernel calculated in the same domain, kernel
matching can be performed across domains.

Fi�hly, we strive to minimize the approximation error
between the ground truth source kernel�� and the extrapo-
lated source kernel�� for explicitly minimizing the distribu-
tion di�erence herein by utilizing the squared loss

min
Λ

*****�� − ��
*****
2
F
= *****Φ�ΛΦ�� − ��

*****
2
F

�� ≥ /��+1, � = 1, . . . , 0 − 1
�� ≥ 0, � = 1, . . . , 0,

(8)

where Λ = diag(�1, . . . , ��) belongs to the 0 nonnegative
eigenspectrum parameters, while / ≥ 1 belongs to the
eigenspectrum damping factor [19].

�e marginal distributions of multiple source domains
can be matched with the target domain using the generalized
transfer kernel learning (TKL) approach. �is approach can
be conducted by the source-speci	c eigenspectrum Λ learn-
ing for every source domain separately in the initial place.
Secondly, existing learning algorithms of multiple sources
are used to implement consensus forecasting for the target

domain on the basis of predicting multiple source domains
[20, 21].

Sixthly, the standard quadratic programming possessing
(QP) linear constraints are used herein to show the solution
of the TKL optimization problem (8). Here, 0 eigenspectrum
parameter is denoted as � = (�1, . . . , ��); that is,Λ = diag(�).
Equation (8) is reformulated in the matrix form by linear
algebra

min
�

��4� − 25��
6� ≥ 0
� ≥ 0.

(9)

�e following are the respective de	nitions of QP coe�-
cient matrices 4, 5 and constraint matrix

4 = (Φ��Φ�) ⊙ (Φ��Φ�)
5 = diag (Φ����Φ�)
6 = � − /�,

(10)

where / ≥ 1 represents the eigenspectrum damping factor,
which is also the only tunable parameter within TKL. Addi-

tionally, � ∈ R
�×� denotes the identity matrix, and � ∈ R

�×�

represents the 	rst diagonal matrix with the nonvanishing
elements.

Finally, constructing the domain-invariant kernel �� on
the target and source data 8 = � ∪� is straightforward with
the learned optimal eigenspectrum parameters Λ. According
to spectral kernel design, we can generate �� from the

eigensystem {Λ,Φ�} invariant to domain

�� = [
[
Φ�ΛΦ�� Φ�ΛΦ��
Φ�ΛΦ�� Φ�ΛΦ��

]
]
= Φ�ΛΦ��, (11)

where Φ� ≜ [Φ�; Φ�] belongs to extrapolated eigenvectors

on all data 8. We can directly feed the kernel�� invariant to
the domain to normal kernel machines, for example, KCSP,
for facilitating the cross-domain generalization and predic-
tion. Algorithm 2 shows the summary of a complete proce-
dure.
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Input: Data�; kernel "; eigen-damping factor /.
Output: Domain-invariant kernel��.
(1) Compute the target kernel function��, the source kernel

function ��, and cross-domain kernel function
��� by kernel ".

(2) Eigendecompose the target kernel function �� for the
eigensystem {Λ�, Φ�} by (5).

(3) Extrapolate for source eigenvector Φ� via Nyström
approximation by (6).

(4) Generate the extrapolated source kernel �� by (7)
(5) Minimize the approximation error between the ground

truth source kernel �� and the extrapolated source

kernel �� by (8).
(6) Solve QP problem (9) for eigenspectrum �.
(7) Construct domain-invariant kernel �� by (11).

Algorithm 2: TKL algorithm.

Input: Data ��, ��.
Output: Common Spatial Patterns�−1.
(1) Compute transfer kernel�� by Algorithm 2.

(2) Compute spatial covariance matrix �� = ��/trace(��), � = 1, 2.
And the total spatial covariance matrix is �� = �1 + �2.

(3) Eigen decomposition �� = ��Λ ���0 ;
whitening transformation � = �1/2��0 .

(4) Transform covariance matrices �1 = ��1��, �2 = ��2��
and eigen decomposition �1 = ��1��, �2 = ��2��.

(5) Construct the spatial 	lter� = (���)�.

Algorithm 3: Transfer kernel common spatial pattern algorithm.

2.3. Transfer Kernel CSP. When transfer kernel �� replaces
kernel �(����� ) in (1), we can build the TKCSP. For all
methods based on the kernel, linear kernel is adopted by us;

that is, �(��, ��) = ��� ��. �en �� = ��/trace(��) can be
used to estimate the spatial covariance. Algorithm 3 presents
a summary of a complete TKCSP procedure.

We can compute the 	ltration of a trial�� by� = (���)�
as the projection matrix [14]:

�� = � × ��. (12)

Decomposing the EEG based on (6) can be used to
obtain the features utilized for classi	cation. For every
imagined movement direction, the classi	er construction
employs the variances owned by merely a small amount of
B signals that are the 	ttest for discrimination. �e signals
�� (C = 1 ⋅ ⋅ ⋅ 2B) maximizing the variance di�erence of
motor imagery EEG on the le� versus the right belong to
those associated with the largest eigenvalues �1 and �2.�ese
signals are blank in the last and 	rst rows in � because of the
computation of�

 � =
var (��)

∑2��=1 var (��)
. (13)

Table 1: Data description for dataset IVa in BCI Competition III.

Subject aa al av aw ay

Number of training samples 168 224 84 56 28

Number of test samples 112 56 196 224 252

�e linear classi	er can be calculated by using the feature
vectors  � of right and le� trials. �e log-transformation
contributes to approximating the standard data distribution.

3. Experiments

3.1. Data Preparation. In this study, we employed the IVa
dataset from BCI Competition III [22]. �e dataset includes
EEG data containing a classi	cation task of motor imagery
with two levels: (1) imagery movement of the right hand
(denoted by R) and (2) imagery movement of the right foot
(denoted by F). We employed 118 electrodes to measure
EEG signals in every trial from 	ve di�erent subjects, and
each subject involved the performance of 280 trials. Table 1
presents a summary of the data descriptions, in which the
number of subjects av, aw, ay of training samples is fewer
than those of the test samples.
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Table 2: Classi	cation accuracy of TKCSP on the dataset.

Source
Target

aa (%) al (%) av (%) aw (%) ay (%)

aa - 80.58 50.17 84.33 80.41

al 67.20 - 63.87 90.58 81.98

av 50.00 86.11 - 80.10 55.13

aw 62.23 93.88 54.39 - 50.00

ay 50.00 91.00 65.67 50.00 -

aa + al - - 57.43 87.69 84.65

aa + av - 84.58 - 81.56 74.11

aa + aw - 87.80 51.76 - 51.53

aa + ay - 84.58 - 81.56 74.11

al + av 59.27 - - 88.35 50.00

al + aw 68.10 - 61.96 - 50.00

al + ay 62.92 - 68.47 78.16 -

av + aw 52.44 93.11 - - 50.00

av + ay 45.30 89.38 - 74.98 -

aw + ay 58.60 91.65 61.25 - -

aa + al + av - - - 88.10 73.25

aa + al + aw - - 50.00 - 58.60

aa + al + ay - - 58.47 80.01 -

aa + av + aw - 83.37 - - 50.00

aa + av + ay - 85.68 - 78.10 -

aa + aw + ay - 89.59 50.00 - -

al + av + aw 62.56 - - - 50.00

al + av + ay 52.10 - - 75.48 -

al + aw + ay 63.13 - 52.47 - -

av + aw + ay 55.65 91.67 - - -

al + av + aw + ay 62.07 - - - -

aa + av + aw + ay - 87.68 - - -

aa + al + aw + ay - - 60.63 - -

aa + al + av + ay - - - 81.20 -

aa + al + av + aw - - - - 53.19

Each trial was considered an � × � matrix ��, in
which � represents the electrode amount and the time
point amount sampled. EEG signals measured were band-
pass decomposed (8–30Hz). SVM (Support VectorMachine)
involving linear kernel was utilized as the classi	er. �e
proportion of the number of samples properly classi	ed to the
aggregate number of used samples in this test was employed
to evaluate the classi	cation precision.

Our establishment of a dataset (containing the target
domain and source domain) for cross-domain classi	cation
is described as follows. �e dataset of each subject could
become the target domain (ay, aw, av, al, aa), while the
dataset of other subjects could become the source domains.
�is strategy of dataset construction ensured the relevance
between domains of unlabeled and labeled data, as they were

located in the same top-level categories. Accordingly,614+624+634 + 644 = 15 datasets of the source domains were generated
for each target domain. It was possible to generate 	ve dataset
groups, including 5 × 15 = 75 datasets.

3.2. Experimental Results. In this section, TKCSP and six
competitive methods are evaluated based on classi	cation
accuracy [8, 11, 23]. We established 	ve dataset groups from
the dataset described above. Each dataset group includes four
source subjects in source domains and one target subject as
target domain. If one subject is the target domain, it will
no longer appear in the source domains, so that each target
domain corresponds to 15 di�erent source domains. �e
	rst column of Table 2 shows the di�erent source domains,
and the second column to the sixth column of Table 2
show the classi	cation accuracy of each target domain in
its source domains, respectively. Among them, the highest
classi	cation accuracy of target domain aa was 68.10% and
the corresponding source domain was al + aw; the high-
est classi	cation accuracy of target domain al was 93.88%
and the corresponding source domain was aw; the highest
classi	cation accuracy of target domain av was 68.47% and
the corresponding source domain was al + ay; the highest
classi	cation accuracy of target domain aw is 68.10% and the
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(a) �e target subject is aa; the source subjects are al, av, aw, ay, al + av,
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aw + ay, al + av + aw + ay
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(b) �e target subject is al; the source subjects are aa, av, aw, ay, aa +
av, aa + aw, aa + ay, av + aw, av + ay, aw + ay, aa + av + aw, aa + av +
ay, av + aw + ay, aa + av + aw + ay
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(c) �e target subject is av; the source subjects are aa, al, aw, ay, aa +
al, aa + aw, aa + ay, al + aw, al + ay, aw + ay, aa + al + aw, aa + al + ay,
al + aw + ay, al + av + aw + ay
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(d) �e target subject is aw; the source subjects are aa, al, av, ay, aa +
al, aa + av, aa + ay, al + av, al + ay av + ay, aa + al + av, aa + al + ay, al
+ av + ay, aa + al + av + ay
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(e) �e target subject is ay; the source subjects are aa, al, av, aw, aa +
al, aa + av, aa + aw, al + av, al + aw, av + aw, aa + al + av, aa + al + aw,
al + av + aw, aa + al + av + aw

Figure 3: Classi	cation accuracy of TKCSP and CSP on the dataset.

corresponding source domain is al; the highest classi	cation
accuracy of target domain ay is 68.10% and the corresponding
source domain is aa + al.

To be complete, we detail the results of TKCSP method
and CSP approach on all of 5 dataset groups in Figures
3(a), 3(b), 3(c), 3(d), and 3(e), where each 	gure presents
the results of each group. In Figure 3, the blue dashed
line indicates the classi	cation accuracy of CSP algorithm,
the red solid line indicates the classi	cation accuracy of
TKCSP algorithm in di�erent source domains, and the
green square indicates the best classi	cation accuracy of
TKCSP. �e horizontal axis of green square is corresponding
to the optimal source domain. �e results show that the

classi	cation accuracy of TKCSP method is better than that
of CSP algorithm.

Table 3 lists the classi	cation (recognition) precisions
of 	ve comparison approaches and TKCSP on dataset IVa.
Figure 4 visually depicts the results for improved accessibility.
�e performance achieved by TKCSP is signi	cantly better
than those achieved by the 	ve comparison approaches.
Several observations can be made from these results.

Firstly, TKCSP achieves classi	cation precision on the aw
and aa datasets as 90.58% and 68.47%, respectively.�ese are
higher than those of the 	ve comparison approaches. More-
over, TKCSP achieves an average classi	cation precision on
these datasets as 81.14%, providing a signi	cant performance



8 Computational and Mathematical Methods in Medicine

Table 3: Comparison of classi	cation accuracy for TKCSP and 6
competitive methods.

Subject
aa al av aw ay Mean

(%) (%) (%) (%) (%) (%)

CSP 66.07 96.43 63.30 71.88 54.40 70.42

RCSP 71.43 96.43 63.30 71.88 86.90 77.98

CSP SJ-to-SJ 67.76 98.41 60.20 78.72 74.78 75.97

ssCSP 67.00 94.62 58.26 89.35 85.71 78.99

mtCSP 72.33 94.62 68.39 65.57 83.14 76.81

ss + mtCSP 71.43 94.63 66.32 88.40 74.93 79.17

TKCSP 68.10 93.88 68.47 90.58 84.65 81.14
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Figure 4: Comparison of classi	cation accuracies for TKCSP and 6
competitive methods.

improvement of 1.97% over ss + mtCSP, the best competitive
approach. It is strongly veri	ed by the consistent performance
improvements on these datasets that TKCSP can successfully
establish powerful domain kernels for classi	cation of cross-
domain motor imagery.

�en, a composite covariance matrix as a weighted total
of covariance matrices, including subjects resulting in a
composite CSP, is determined by CSP for subject-to-subject
transfer (CSP SJ-to-SJ). �is approach thus achieves an
average classi	cation precision of 75.97%.

�irdly, regularizingCSP (RCSP) is intended to regularize
the covariance matrix to the mean covariance matrix of other
subjects for improving its estimation performance. Such
regularization is particularly promising in settings with small
samples. Furthermore, this approach achieves an average
classi	cation precision of 77.98%.

Finally, the stationary subspace CSP (ssCSP) focuses
on the nonstationarity issue while multitask CSP (mtCSP)
focuses on the estimation issue. �e combined mtCSP and

ssCSP (ss + mtCSP) method employs both approaches. �at
is, the nonstationary subspace acquired by ssCSP is 	rstly
projected, and then the spatial 	lters are computed with
mtCSP by regularization parameters acquired when it is
applied to the initial data.�e three above approaches achieve
an average classi	cation precision of 78.99%, 76.81%, and
79.17%, respectively.

In particular, TKCSP can assess the various cluster struc-
tures and naturally matches them betweenmultiple domains.
�is procedure is achieved by TKCSP through the matching
between the source domain kernel and kernel extrapo-
lated from the target domain, while simultaneously increas-
ing (declining) the domain-invariant (domain independent)
eigenspectrum. �e superior performance of TKCSP can be
explained by this advantage.

4. Conclusion

In this paper, we proposed the TKCSP method to lower
the training trial amount and improve the performance via
learning a domain-independent kernel. To this end, direct
matching of distributions between target subjects and source
subjects within the kernel space is conducted. TKCSP and
six competitive approaches were evaluated on EEG datasets
provided by BCI Competition III. �e results showed that
the performance of the best approach, RCSP, was better
than that of CSP by nearly 1.97% in terms of the mean
classi	cation precision. �e results also revealed that RCSP
can perform e�ective subject-to-subject transfer. �erefore,
the behaviors matched with knowledge of neurophysiology
could be classi	ed by the TKCSP approach.

Notations

�,� : Source/target domain
B, 0 : Source/target examples
�, I : Features/classes
5, / : Eigenvectors/damping factor
X: Input data matrix
K: Kernel matrix
Φ: Eigenvector matrix
Λ: Eigenvalue matrix.
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