
 Open access  Journal Article  DOI:10.1109/TBME.2017.2742541

Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–
Computer Interfaces — Source link 

Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said ...+1 more authors

Institutions: University of Grenoble, University of Bordeaux

Published on: 01 May 2018 - IEEE Transactions on Biomedical Engineering (IEEE)

Topics: Affine transformation, Probabilistic classification, Covariance function, Covariance matrix and
Transfer of learning

Related papers:

 A Survey on Transfer Learning

 A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces: A 10-year Update

 Riemannian Approaches in Brain-Computer Interfaces: A Review

 Multiclass Brain–Computer Interface Classification by Riemannian Geometry

 
Transfer Learning in Brain-Computer Interfaces Abstract\uFFFDThe performance of brain-computer interfaces
(BCIs) improves with the amount of avail

Share this paper:    

View more about this paper here: https://typeset.io/papers/transfer-learning-a-riemannian-geometry-framework-with-
2nrivr7o0h

https://typeset.io/
https://www.doi.org/10.1109/TBME.2017.2742541
https://typeset.io/papers/transfer-learning-a-riemannian-geometry-framework-with-2nrivr7o0h
https://typeset.io/authors/paolo-zanini-49npu353v6
https://typeset.io/authors/marco-congedo-2nk8rwpn0c
https://typeset.io/authors/christian-jutten-1aw4iq6vc0
https://typeset.io/authors/salem-said-4f05rb5irk
https://typeset.io/institutions/university-of-grenoble-1irzuhle
https://typeset.io/institutions/university-of-bordeaux-3ftv4yiu
https://typeset.io/journals/ieee-transactions-on-biomedical-engineering-2cllarp4
https://typeset.io/topics/affine-transformation-1soc8sl1
https://typeset.io/topics/probabilistic-classification-hnhmqpr9
https://typeset.io/topics/covariance-function-1rfem8d1
https://typeset.io/topics/covariance-matrix-329r7jyx
https://typeset.io/topics/transfer-of-learning-1naldpnt
https://typeset.io/papers/a-survey-on-transfer-learning-1hjmu3otql
https://typeset.io/papers/a-review-of-classification-algorithms-for-eeg-based-brain-20h8a9gh03
https://typeset.io/papers/riemannian-approaches-in-brain-computer-interfaces-a-review-2ehnu2fpt0
https://typeset.io/papers/multiclass-brain-computer-interface-classification-by-16xch4owqs
https://typeset.io/papers/transfer-learning-in-brain-computer-interfaces-abstract-1mt7j8lben
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/transfer-learning-a-riemannian-geometry-framework-with-2nrivr7o0h
https://twitter.com/intent/tweet?text=Transfer%20Learning:%20A%20Riemannian%20Geometry%20Framework%20With%20Applications%20to%20Brain%E2%80%93Computer%20Interfaces&url=https://typeset.io/papers/transfer-learning-a-riemannian-geometry-framework-with-2nrivr7o0h
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/transfer-learning-a-riemannian-geometry-framework-with-2nrivr7o0h
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/transfer-learning-a-riemannian-geometry-framework-with-2nrivr7o0h
https://typeset.io/papers/transfer-learning-a-riemannian-geometry-framework-with-2nrivr7o0h


HAL Id: hal-01923278
https://hal.archives-ouvertes.fr/hal-01923278

Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfer learning: a Riemannian geometry framework
with applications to Brain-Computer Interfaces

Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, Yannick
Berthoumieu

To cite this version:
Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, Yannick Berthoumieu. Transfer learning:
a Riemannian geometry framework with applications to Brain-Computer Interfaces. IEEE Trans-
actions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2018, 65 (5),
pp.1107-1116. ฀10.1109/TBME.2017.2742541฀. ฀hal-01923278฀

https://hal.archives-ouvertes.fr/hal-01923278
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 65(5), 1107-1116 1

Transfer learning: a Riemannian geometry

framework with applications to Brain-Computer

Interfaces
Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, and Yannick Berthoumieu

Abstract—Objective: This paper tackles the problem of trans-
fer learning in the context of EEG-based Brain Computer
Interface (BCI) classification. In particular the problems of cross-
session and cross-subject classification are considered. These
problems concern the ability to use data from previous sessions
or from a database of past users to calibrate and initialize
the classifier, allowing a calibration-less BCI mode of operation.
Methods: Data are represented using spatial covariance matrices
of the EEG signals, exploiting the recent successful techniques
based on the Riemannian geometry of the manifold of Symmetric
Positive Definite (SPD) matrices. Cross-session and cross-subject
classification can be difficult, due to the many changes intervening
between sessions and between subjects, including physiologi-
cal, environmental, as well as instrumental changes. Here we
propose to affine transform the covariance matrices of every
session/subject in order to center them with respect to a reference
covariance matrix, making data from different sessions/subjects
comparable. Then, classification is performed both using a stan-
dard Minimum Distance to Mean (MDM) classifier, and through
a probabilistic classifier recently developed in the literature,
based on a density function (mixture of Riemannian Gaussian
distributions) defined on the SPD manifold. Results: The im-
provements in terms of classification performances achieved by
introducing the affine transformation are documented with the
analysis of two BCI data sets. Conclusion and significance: Hence,
we make, through the affine transformation proposed, data from
different sessions and subject comparable, providing a significant
improvement in the BCI transfer learning problem.

Index Terms—Brain Computer Interface, electroencephalog-
raphy, covariance matrices, Riemannian geometry, mixtures of
Gaussian.

I. INTRODUCTION

A
Brain Computer Interface (BCI) is a system capable of

predicting or classifying cognitive states and intentions

of the user through the analysis of neurophysiological signals

[24], [32]. Historically, BCIs have been developed to allow

severely paralyzed people to communicate or interact with

their environment without relying on the normal muscular

or peripheral nerve outputs [8]. More recently, BCIs have

been proposed also for healthy people, for instance in driving,
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forensics, or gaming applications [11], [20], [29]. Several

neurophysiological signals can be used for a BCI, either

invasive or semi-invasive, like electrodes implanted into the

grey matter or sub-durally. Most BCIs however make use of

non-invasive neuroimaging modalities, such as near-infrared

spectroscopy and, especially, electroencephalography (EEG),

which suit both clinical and healthy populations. In this paper

we focus on EEG-based BCIs.

The standard classification technique consists of two opera-

tional stages [9], [18]. First, EEG signals of a training set are

transformed through frequency and/or spatial filters in order

to extract discriminant features [8], [16]. A very popular filter

in this stage is the Common Spatial Pattern (CSP) [18], [19].

Second, the features enter a machine learning algorithm in

order to compute a decision function for performing classifi-

cation on the test set. This is done by supervised techniques

like, for instance, Linear Discriminant Analysis (LDA) [9].

A different approach was presented in [2], where classi-

fication is performed using the signal covariance matrices

as feature of interest. Covariance matrices do not belong

to an Euclidean space, instead they belong to the smooth

Riemannian manifold of Symmetric Positive Definite (SPD)

matrices [5]. Hence, in [2], the properties of SPD manifold are

used to perform BCI classification directly on the manifold,

as illustrated in subsection II-D. In this paper we consider two

separate improvements with respect to the method described

in [2]. The first improvement relates to the classification

techniques. In [2] the authors used a basic classifier, named

Minimum Distance to Mean (MDM), which takes into account

distances on the manifold between the observations and some

reference points of the classes, known as centers of mass,

means, or barycenters. Here we introduce a probabilistic clas-

sifier, modeling the class probability distributions, exploiting

Riemannian Gaussian and mixture of Gaussian distributions

introduced in [34], and applied to EEG classification in [37].

The second improvement relates to the problem of transfer

learning [30]. In the machine learning field, transfer learning is

defined as the ability to use previous knowledge as features in

a new task/domain related to the previous one. Some examples

of transfer learning applied to BCI problem can be found in

[15], [21], [27] and [36]. In this paper we focus specifically on

the problem of cross-session and cross-subject BCI learning.

A classical BCI requires a calibration stage at each run,

even for a known user. The calibration stage, however short,

is inconvenient both for patients, because it wastes part of

their limited attention, and for the general public, which is
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usually unwilling to undergo repeated calibration sessions.

As proposed in [12] a BCI should be able to calibrate on-

line while it is being used. The problem is then to provide a

workable initialization, that is, one that allows the operation

of the BCI at the very beginning of the session, even if

suboptimal. For a new user, a database of past users can be

considered to initialize the classifier. This form of learning

is referred to as cross-subject learning. From the second

usage on, past data from previous sessions of the user can

be employed. This is referred to as cross-session learning.

Cross-session learning is known to be a difficult task due to

several changes intervening in between the sessions, including

physiological, environmental, as well as instrumental changes

(e.g., electrode positioning and impedance). Even more dif-

ficult is the cross-subject learning, because the spatial and

temporal configuration of brain dipolar sources is subject to

substantial individual variability. In the Riemannian framework

the cross-session and cross-subject changes can be understood

as geometric transformations of the covariance matrices. In

this work we will refer to this geometric transformation as a

“shift”, although we should keep in mind that a transformation

may entail more than a simple displacement on the manifold.

A first attempt to solve the shift problem is described in

[33], however this work does not consider the structure of

the covariance matrix manifold. In [3], instead, the authors

introduce a way to solve the shift problem in a Riemannian

framework, for the cross-session situation, however this ap-

proach depends on the order of the tasks performed during an

experiment and on the (unknown) structure of the classes in

the classification problem. In this paper we develop an idea

similar to the one presented in [33], but in a Riemannian

framework. Our approach does not depend on the (unknown)

label sequence of the observations obtained during the ex-

periment. We assume that different source configurations and

electrode positions induce shifts of covariance matrices with

respect to a reference (resting) state, but that when the brain

is engaged in a specific task, covariance matrices move over

the SPD manifold in the same direction. This assumption

allows a workable model and a simple solution thanks to

the congruence invariance property of SPD matrices (that

we will describe in subsection II-A). We will center the

covariance matrices of every session/subject with respect to

a reference covariance matrix so that what we observe is only

the displacement with respect to the reference state due to

the task. We estimate a reference matrix for every session,

but different between sessions and between subjects. Then,

we perform a congruent transformation of our data using this

reference matrix. In this way observations belonging to the

same session and subject do not change their relative distances

and geometric structure. However, since the reference matrix

varies among sessions and among subjects, these data are

moved in the manifold in different directions and, if the

reference matrix is chosen accurately, data from different

sessions/subjects become comparable. As we will show with

the analysis of two BCI data sets, this procedure provides

an efficient initialization for cross-session and cross-subject

classification problems.

In EEG-based BCI literature, different kinds of tasks can be

used to design a BCI (see [12] for an exhaustive description).

In this work we analyze two different paradigms in order

to widen the scope of our analysis. The first one relates to

a Motor Imagery (MI) paradigm and the second one to an

Event-Related Potential (ERP) paradigm. For the first dataset

we analyze nine subjects, each one performing two sessions,

and we evaluate the accuracy for cross-session and cross-

subject classification. We obtain significant improvements by

using the proposed procedure, especially for the cross-subject

classification, where we can increase the performance by 30%

in some cases. For the second dataset we analyze 17 subjects

and we evaluate the precision for cross-subject classification.

Also in this case we obtain substantial improvements by

introducing our procedure. Furthermore, for both datasets, we

discuss the situations where the introduction of a probabilistic

classifier can result in further improvements.

The paper is organized as it follows. In Section II basic

concepts of Riemannian geometry are introduced. In Section

III the two BCI paradigms are described in details, focusing

in particular on how to build SPD matrices in the two cases to

be used in a Riemannian framework. Then, in Section IV we

describe the proposed Riemannian transfer learning methods.

In Section V we present the results obtained with the two

datasets analyzed. Finally, we conclude our work in Section

VI.

II. ELEMENTS OF RIEMANNIAN GEOMETRY

In this section we present some basic properties of the space

of SPD matrices, introducing a probabilistic distribution on

this space and defining some classification rules to classify

SPD matrices.

A. Manifold of SPD matrices: basic concepts

We start by introducing M(n) and S(n) as the vector space

of n × n square matrices, and the vector space in M(n) of

symmetric n × n square matrices, respectively. Specifically,

M(n) = {M ∈ R
n×n}, while S(n) = {S ∈ M(n), S =

ST }. The set of SPD matrices P (n) = {P ∈ S(n), uTPu >

0 ∀ u ∈ R
n, u 6= 0} is an open subset of S(n), in particular

it is an open convex cone of dimension
n(n+1)

2 . P (n) is the

space of covariance matrices and it is our space of interest. If

endowed with the Fisher-Rao metrics [5], P (n) turns out to be

a smooth Riemannian manifold with non positive curvature.

This means that for every point P ∈ P (n), in the tangent

space TP (that in this case can be identified with S(n)), we

define a scalar product which varies smoothly with P . The

local inner product and, as a consequence, the local norm, are

defined as

〈U, V 〉P = tr(P−1UP−1V ), (1)

‖U‖2P = 〈U,U〉P ,

respectively, where U, V ∈ S(n). Through the natural metrics

(1), a distance between two points P1, P2 ∈ P (n) can be
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defined as the length of the unique shortest curve (called

geodesic) connecting P1 and P2 [5]

δ(P1, P2) = ‖ log(P
−1/2
1 P2P

−1/2
1 )‖F =

(
n∑

i=1

log2 λi

)1/2

,

(2)

with ‖ · ‖F the Frobenius norm, and λ1, ..., λn the eigenvalues

of P
−1/2
1 P2P

−1/2
1 (or P−1

1 P2, with the indices 1 and 2 that

can be permuted since δ(·, ·) is symmetric). The Riemannian

distance δ(·, ·) has two important invariances:

i. δ(P−1
1 , P−1

2 ) = δ(P1, P2);

ii. δ(CTP1C,C
TP2C) = δ(P1, P2) ∀C ∈ GL(n),

with GL(n) = {C ∈ M(n), C invertible} the set of invertible

matrices. Property ii, called congruence invariance, means

that the distance between two SPD matrices is invariant with

respect to a change of reference, i.e., to any linear invertible

transformation in the data (recordings) space. This property

will be particularly important in the following.

B. Center of mass of a set of SPD matrices

The simplest statistical descriptor of a set of objects is the

concept of mean value, which is meant to provide a suitable

representative of the set. The most famous mean is the arith-

metic mean. It has an important variational characterization:

given a set P1, ..., PN of SPD matrices, the arithmetic mean

A(P1, ..., PN ) is the point P which minimizes the sum of

squared Euclidian distances de(·, ·)

A(P1, ..., PN ) = arg min
P∈P (n)

N∑

i=1

d2e(Pi, P ), (3)

Similarly, it has been shown that we can use the Riemannian

distance to define a geometric mean, or center of mass, of a

set of SPD matrices, through a variational approach [6]. The

center of mass G(P1, ..., PN ) is defined as the point of the

manifold satisfying

G(P1, ..., PN ) = arg min
P∈P (n)

N∑

i=1

δ2(Pi, P ). (4)

with δ(·, ·) defined in (2). In the literature, (4) is often called

Cartan/Fréchet/Karcher mean [5], [6], [22]. Since P (n) is

a Riemannian manifold of non-positive curvature, existence

and unicity of the Riemannian mean can be proved [1], [28].

However, an explicit solution exists only for N = 2, where

it coincides with the middle point of the geodesic connecting

the two SPD matrices of the set. For N > 2 a solution can

be found iteratively and several algorithms following different

approaches have been developed in the literature [22]. Some

of them try to find the right value through numerical procedure

like deterministic line search [17], [26], simple or stochastic

gradient descent [10], [31]. Other faster and computational

lighter approaches look for some suitable approximation of

the center of mass, see for instance [6], [13], [14].

An important invariance property for the center of mass is:

G(CTP1C, ..., C
TPNC) = CTG(P1, ..., PN )C ∀C ∈ GL(n),

inherited from the congruance invariance of the Riemannian

distance mentioned above. This result means that the center

of gravity is shifted through the same affine transformation as

the matrices of the set.

C. Mixtures of Gaussian distributions on the manifold of SPD

matrices

Distance and center of mass are geometric concepts con-

cerning the properties of the manifold of SPD matrices, but

they do not concern any probabilistic assumptions on a sample

of SPD matrices. To consider a probabilistic model we intro-

duce a class of probability distributions on the space P (n),
called Riemannian Gaussian distributions and defined in [34].

It will be denoted G(P , σ) and depends on two parameters,

P ∈ P (n) and σ > 0. It is defined by its probability density

function

f(P |P , σ) =
1

ζ(σ)
exp

(
−
δ2(P, P )

σ2

)
(5)

where ζ(σ) is a normalization function. In [34] it has been

shown that, given P1, ..., PN i.i.d. from (5), the Maximum

Likelihood Estimator (MLE) of P coincides with the center of

mass (4). For the MLE of σ, instead, an efficient procedure is

presented in [37]. If we consider only Gaussian distribution,

we are not able to describe a wide range of real problems.

In general in the classical Euclidean framework, in order to

include several distribution shapes, mixtures of Gaussians have

been considered [34]. In the Riemannian framework this is also

possible in a straightforward way. A mixture of Riemannian

Gaussian distributions is a distribution on P (n) whose density

function can be written as

f(P ) =

M∑

m=1

wmf(P |Pm, σm), (6)

with w1, ..., wM non-negative weights summing up to 1.

The parameters of (6) can be found, for instance, through

an Expectation-Maximization (EM) algorithm, as described

in [34]. This class of distributions will be used to build a

probabilistic classifier for data in P (n), as described in the

next subsection.

D. Classification techniques in the manifold of SPD matrices

In [2] the authors proposed a classification procedure based

on Minimum Distance to Mean (MDM) classifier, which is

defined as it follows: given K classes and a training phase

where the centers of mass Ĉ(k) of the classes (k = 1, ...,K)

are estimated, a new observation Ci is assigned to the k̂ class

according to the classification rule

k̂ = arg min
k∈{1,...,K}

{dR(Ci, Ĉ(k))}. (7)

This rule takes into consideration the Riemannian distance

of the new observation to the centers of mass, ignoring

information on the dispersion of the groups, encoded by the

parameter σ in the Riemannian Gaussian distribution (5). The

principle of Bayesian classification can be used exploiting such
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a distribution. In this case, the classification rule based on the

a posteriori distribution reads

k̂ = arg min
k∈{1,...,K}

{
log ζ(σ̂(k)) +

d2R(Ci, Ĉ(k))

2σ̂2(k)

}
, (8)

where σ̂(k) is the MLE estimate of the dispersion parameter

of the k-th class [37]. Of course, if the σ̂(k) coincide for all

classes, (8) reduces to (7). In order not to be limited to a simple

class of distributions, we can consider mixtures of Gaussian

(6), updating Bayesian classification rule accordingly. In this

paper we consider a number of mixture components M

varying from 2 to 4.

III. DATA

We analyze two different EEG-based BCI datasets, related

to MI and ERP frameworks. The way to build SPD matrices is

different between the two cases and it is described in subsec-

tion III-A and III-B, respectively. Then, in subsection III-C, we

will show how cross-session and cross-subject classifications

can be problematic, exploiting a visualization technique for

high-dimensional data named t-Stochastic Neighbor Embed-

ding (t-SNE) [35].

A. Motor Imagery: data construction

The analyzed dataset is the one from BCI competition [25],

already analyzed in [2], [18]. It contains EEG data from nine

subjects performing four kinds of motor imagery (right hand,

left hand, foot, and tongue imagined movements). A total of

576 trials per subject are available, each trial corresponding to

a movement (balanced experiment, i.e., 144 trials per class).

Half of the trials (288) are obtained during the first session,

and the other half during a second session. For each trial l we

register the centered EEG signal Xl ∈ R
n×T , where n is the

number of electrodes and T the number of sample points of

the time window considered to evaluate sample covariance, in

this case from 0.5 to 2.5 seconds after the stimulus. Then we

use for the analysis the empirical covariance matrix defined as

CXl
=

1

T − 1
XlX

T
l .

In this experiment signals are recorded using 22 electrodes

(n = 22), hence covariance matrices here belong to P (22). As

usual with motor imagery data, before computing covariance

matrices, EEG signals are bandpass filtered by a 5-th order

Butterworth filter in the frequency band of 8 – 30 Hz.

B. ERP: data construction

This dataset cames from a Brain Invaders experiment car-

ried out at GIPSA-lab in Grenoble, France [11]. Subjects

watch a screen with 36 aliens flashing alternatively. They are

requested to mentally count the number of specific (known)

target alien flashes. This experiment generates in the EEG

signals an Event-Related Potential (ERP) named P300 when-

ever the target alien flashes [11]. The main goal is to detect

the target trials from the EEG signals. Thus, we have two

classes in this experiment, P300 signals (target class) and

normal signals (non target class). In this framework we cannot

simply consider the covariance matrices CXl
. Indeed, if we

randomly shuffle the time instants for a specific trial, the

estimate of its covariance matrix does not change, and thus the

classification result. Since temporal information are essential

to detect ERP, we augmented the vector by integrating a

component related to the temporal profile of the ERP event

considered, following the procedure described in [4] and [23].

Specifically, we considered the average ERP response

E =
1

|K+|

∑

l∈K+

Xl ∈ R
n×T ,

where K+ is the group of target trials (ERP in this case). Then

we built an augmented trial signal matrix X̃l, defined as

X̃l =

[
E

Xl

]
∈ R

2n×T ,

and then we considered an augmented covariance matrix C̃X̃l

of dimension 2n× 2n:

C̃X̃l

=

[
CE CEXl

CXlE CXl

]
.

Relevant information for distinguishing a target from a non-

target trial is embedded in the block CEXl
(and in its transpose

CXlE). In these blocks, entries will be far from zero only

for target trials, since only the time series of target trials are

correlated to the average ERP E. Thus, on the SPD manifold

augmented covariance matrices for target trials will be far

from the augmented covariance matrices for non-target trials.

Notice that if we randomly shuffle the time instants for a

specific trials, the augmented covariance matrix does change,

which means that we have effectively embedded the temporal

information into these matrices. A training-phase is needed

to build the average ERP response. In this experiment we

consider 17 subjects, with a number of trials different from

one subject to another, ranging from 500 to 750. EEG signals

are recorded at a frequency of 512 Hz using 13 electrodes

(i.e. n = 13), hence covariance matrices here belong to P (26).
Every trial is registered for a period of time of one second after

the stimulus (the flash). Thus, augmented covariance matrices

are estimated using 512 observations.

C. Data visualization using t-SNE

The visualization technique called t-SNE [35], visualizes

high-dimensional data by mapping each point to a location

in a 2- or 3-dimensional space, while optimizing the pairwise

distances in the reduced space with respect to the distances in

the original manifold. In our case we aim to represent each

covariance matrix as a point in a 2 dimensional space in order

to appreciate the effect of cross-session and cross-subject shift.

In Figure 1 and 5 the data from the MI experiment are

shown. In each plot of Figure 1, data for the two sessions

are depicted (circles for session 1 and crosses for session 2),

with colors identifying the classes. In Figure 5 a more detailed

representation of subject 9 is depicted, with plots divided by

class. We can observe that data relative to session 2 are shifted

with respect to session 1, for every subject. This means that, in
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Fig. 1. Motor Imagery dataset: for every subject the original covariance
matrices for session 1 (circles) and 2 (crosses) are depicted. Data from
different sessions are well separated. Data are also colored by classes (right
hand, left hand, foot, and tongue imagined movements). Visualization obtained
through t-SNE method using the Riemannian distance (2).

Fig. 2. Motor Imagery dataset: original covariance matrices of all subjects.
There are two data groups for each subject, related to session 1 and 2.
Visualization obtained through t-SNE method using the Riemannian distance
(2).

Fig. 3. P300 dataset: original covariance matrices of some subjects. Data
are colored by classes (target and non-target). Visualization obtained through
t-SNE method using the Riemannian distance (2).

the original space, the two groups (session 1 and session 2) are

well separated, and that the cross-session classification is not a

trivial problem. In Figure 2, instead, the data of all subjects are

depicted together, showing an even worse separation among

subjects.

Regarding the P300 experiment, we have one session per

subject, thus we focus only on the cross-subject transfer

learning. The augmented covariance matrices for four subjects

are depicted in Figure 3. Even in this case it is clear that

data related to different subjects are far away from each other,

making cross-subject classification in the original data space

hopeless.

IV. METHODS

From the visualization analysis of section III-C, it is clear

that a data transformation is needed in order to make cross-

session and cross-subject classification efficient. If we consider

again Figure 1 (and Figure 5 for more detailed pictures,

separated by class, related to subject 9), apart from the shift,

data coming from different sessions present a similar shape.

We assume that from one session to another, what it is

changing can be captured in a “reference state”, whereas

covariance matrices move in a consistent direction according

to the task performed by the subject. This assumption leads

to the idea introduced in [33], which we here translate in the

Riemannian framework: let R
(1)

and R
(2)

be the centers of

mass (unknown in principle) of the reference state for session

1 and 2, respectively. Let {C
(1)
1 , ..., C

(1)
N1

} and {C
(2)
1 , ..., C

(2)
N2

}
be the covariance matrices observed in session 1 and 2,

respectively. Let us align the two datasets from sessions 1

and 2 by transformation:

C
(j)
i ⇒ (R

(j)
)−1/2C

(j)
i (R

(j)
)−1/2 i = 1, ..., Nj j = 1, 2

(9)

As a consequence, due to the congruence invariance property

of the Riemannian distance, while the distances between points

of the same session remain unchanged, the reference state of
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Fig. 4. Motor Imagery dataset: for every subject the affine-transformed
covariance matrices for session 1 (circles) and 2 (crosses) are depicted. Data
from different sessions in this case are grouped togheter. Data are also colored
by classes (right hand, left hand, foot, and tongue imagined movements).
Visualization obtained through t-SNE method using the Riemannian distance
(2).

both sessions is centered at the identity matrix. Hence, if the

assumption holds, the data points relative to a specific task

move from the identity in the same way along the manifold

for all session. This procedure can be followed also to make

data relative to different subjects comparable, both for the MI

and the P300 analysis. We simply need to define a reference

matrix and a suitable procedure to implement transformation

(9) online.

In the MI dataset, reference EEG signals are directly

available. Indeed, between the different trials, there are time

windows of 1.5 seconds where the subject is not perform-

ing any task. If we call these matrices {R
(1)
1 , ..., R

(1)
N1

} and

{R
(2)
1 , ..., R

(2)
N2

} for the two sessions, we can use these samples

to obtain the estimates of the center of mass of the reference

state R
(1)

and R
(2)

. Then, we can perform the affine trans-

formation described above. We depict in Figure 4 and 5 the

projection in the 2-dimensional space of covariance matrices

after the affine transformation. It is quite apparent that the shift

between two different sessions has been removed. The same

procedure can be applied in the cross-subjects classification.

However we have to take into account that in a real situation

we have to implement this affine transformation online. If we

consider, for instance, the cross-session classification using

session 1 as training set and session 2 as test set, the reference

state matrices of session 2 are not available at the beginning,

but we observe them one at a time. Hence, we propose an

online estimate of R
(2)

(or R
(1)

if we consider session 1 as

test set). Specifically, at observation j, we evaluate a weighted

center of mass modifying (4) such as

R
(2)

j = argmin
R

j∑

t=1

t

j
d2(R

(2)
t , R) (10)

Thus, we can use this online affine transformation strategy to

perform cross-session and cross-subject classification.

For the P300 analysis we need to apply further care. Indeed

a separated resting-state signal is not available during the

experiment, since flashes occur one after the other and the

associated ERP overlap. However, the non-target trials can

be considered as resting state, or reference events. Then,

we build the reference matrix R using the elements C̃X̃l

belonging to the non-target group. We use the true labels,

because this experiment can be done in a supervised setting,

since classification is used in the game to destroy the aliens,

but the true labels can be controlled online. More generally,

random epochs bootstrapped from the incoming flow of EEG

can be used to define the resting state. Then, for the online

affine transformation strategy, we use equation (10).

V. RESULTS

In this section we firstly present, in subsection V-A, the re-

sults obtained for cross-session and cross-subject classification

of MI data. Then, in subsection V-B, we present cross-subject

classification results related to the P300 problem. In both

cases the classification methods considered are the Minimum

Distance to Mean (MDM) and the Bayesian classifiers with

Gaussian distribution (GM) and with mixtures of Gaussian

distributions with M components (GM-M ). The best results

obtained using mixtures of Gaussians is also reported (GM-b).

A. Motor Imagery

The BCI competition dataset for Motor Imagery has already

been analyzed using MDM in [2], and with a first attempt to

introduce Riemannian mixtures of Gaussians in [37]. In [2],

[12], [15] a comparison of Riemannian techniques to other

standard methods, like Common Spatial Pattern (CSP) and

Linear Discriminant Analysis (LDA), is presented. Here the

focus is on the cross-session and cross-subject extensions,

analyzing the strength of our proposal based on an affine trans-

formation of the covariance matrix. This makes our procedure

suitable to deal with Riemannian methods, but not directly

relevant for other standard methods like LDA or CSP. In table

I the accuracies, that is the proportion of correctly classified

observations, for cross-session classification are shown. For

every method and for every subject we report the mean

accuracy using session 1 as training set and session 2 as

test set, and vice versa, and we compare these means before
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Fig. 5. Motor Imagery dataset: comparison class by class for subject 9. For every class original data (on the top) and affine-transformed data (on the bottom)
are shown. Visualization obtained through t-SNE method using the Riemannian distance (2).

Subject MDM GM GM-2 GM-3 GM-4 GM-b

1 79.2 | 79.4 76.6 | 79.2 73.1 | 77.3 71.5 | 79.6 72.6 | 73.6 73.1 | 79.6

3 72.8 | 76.7 72.6 | 76.9 71.6 | 80.1 71.4 | 81.5 73.8 | 78.2 73.8 | 81.5

7 64.4 | 76.1 61.2 | 75.9 69.8 | 75.2 64.6 | 72.6 66.5 | 73.6 69.8 | 75.2

8 73.1 | 79.3 72.6 | 79.2 73.1 | 81.6 72.4 | 81.1 70.0 | 82.1 73.1 | 82.1

9 74.3 | 74.7 74.5 | 75.2 76.4 | 81.8 77.3 | 78.6 77.3 | 78.3 77.3 | 81.8

Mean 72.8 | 77.2 71.5 | 77.3 72.8 | 79.2 71.4 | 78.7 72.0 | 77.2 73.4 | 80.0

2 51.9 | 53.7 51.4 | 52.1 40.1 | 49.7 35.1 | 48.9 36.3 | 50.6 40.1 | 50.6

4 55.8 | 53.8 52.3 | 53.1 46.4 | 51.6 44.6 | 49.7 45.5 | 48.8 46.4 | 51.6

5 42.2 | 46.0 36.3 | 45.2 32.7 | 43.2 31.1 | 42.2 30.1 | 41.0 32.7 | 43.2

6 44.1 | 45.3 44.6 | 45.3 42.4 | 43.4 38.8 | 40.5 42.9 | 44.6 42.9 | 44.6

Mean 48.5 | 49.7 46.2 | 48.9 40.4 | 46.9 37.4 | 45.3 38.7 | 46.3 40.5 | 47.5

TABLE I
MOTOR IMAGERY DATASET: MEAN CLASSIFICATION ACCURACY USING SESSION 1 AS TRAINING SET AND SESSION 2 AS TEST SET, AND VICEVERSA.
SUBJECTS ARE DIVIDED ACCORDING TO THEIR PERFORMANCES IN GOOD SUBJECTS (5 OF THEM, SHOWN IN THE TOP PART OF THE TABLE) AND BAD

SUBJECTS (4 OF THEM, SHOWN IN THE BOTTOM PART OF THE TABLE). THE RESULTS ARE RELATIVE TO ORIGINAL COVARIANCE MATRICES (IN BLACK) |
AFFINE-TRANSFORMED COVARIANCE MATRICES (IN BOLD GREEN).

Test Subj. MDM GM-1 GM-2 GM-3 GM-4

1 46.8 (14.6) | 60.4 (7.9) 48.3 (15.7) | 61.0 (8.5) 46.1 (14.0) | 61.0 (8.4) 41.9 (13.4) | 59.2 (8.7) 40.7 (14.6) | 61.9 (8.0)

3 47.2 (15.6) | 69.4 (3.5) 45.8 (14.6) | 69.0 (2.5) 47.0 (15.5) | 71.5 (3.0) 44.4 (12.4) | 71.7 (2.9) 52.6 (5.1) | 70.2 (6.5)

7 35.2 (7.9) | 57.0 (8.9) 35.2 (9.2) | 56.1 (8.3) 34.9 (9.1) | 55.9 (8.2) 37.6 (12.9) | 55.8 (8.7) 37.6 (13.9) | 56.1 (9.0)

8 35.0 (9.5) | 63.2 (6.7) 34.5 (9.5) | 63.2 (6.9) 36.7 (6.0) | 65.3 (7.9) 33.9 (7.8) | 63.5 (8.5) 40.9 (13.6) | 66.0 (8.4)

9 30.0 (5.8) | 68.8 (6.1) 28.7 (3.1) | 68.9 (5.9) 30.1 (7.8) | 67.8 (7.0) 28.6 (6.9) | 67.9 (6.4) 36.1 (8.3) | 66.7 (8.1)
TABLE II

MOTOR IMAGERY DATASET: CLASSIFICATION ACCURACY FOR THE CROSS-SUBJECT GENERALIZATION. FOR EVERY TEST SUBJECT, THE OTHER GOOD

SUBJECTS ARE USED ONE AT EACH TIME AS TRAINING SUBJECT. IN THE TABLE WE REPORT MEAN, WITH STANDARD DEVIATION IN BRACES. THE

RESULTS ARE RELATIVE TO ORIGINAL COVARIANCE MATRICES (IN BLACK) | AFFINE-TRANSFORMED COVARIANCE MATRICES (IN BOLD GREEN).

and after the online affine transformation described in section

IV. We separate in the table subjects with a higher accuracy

(good subjects), shown in the top of Table I, with subject

with lower accuracy, because the results appear to depend

upon the level of the performances. In Figure 6 (top panel),

a scatter plot for the MDM classifier accuracies is shown.

The affine transformation provides significant improvements

for all subjects: a t-test on the difference between before and

after the affine transformation, considering the values relative

to MDM method, provides a p-value of 0.03, despite the low

power of the test having only 9 observations. The comparison

between the methods confirms what was observed in [37], with

Bayesian classifiers displaying better performances for good

subjects.

We now consider cross-subject classification results. Since

cross-subject generalization is even more tangled than cross-

session, we focus only on the good subjects, in order to

avoid that bad accuracies due to the subjects could affect

the interpretation of the results. In Table II we can compare

accuracies before and after the affine transformation of a cross-

subject classification where each subject is alternatively used

as test set, with the others, one at the time, used as training

set. Mean and standard deviation accuracies are reported in

the Table. Here the benefits due to affine transformation are

even stronger. Specifically, in Table III, we can look in details

at the confusion matrices relative to the third row of Table II,
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k = 1 k = 2 k = 3 k = 4

k̂ = 1 11 0 1 0

k̂ = 2 4 11 8 1

k̂ = 3 26 4 26 0

k̂ = 4 59 85 65 99

Tot. (%) 100 100 100 100

k = 1 k = 2 k = 3 k = 4

k̂ = 1 70 9 18 1

k̂ = 2 0 56 1 0

k̂ = 3 19 4 45 3

k̂ = 4 11 31 36 96

Tot. (%) 100 100 100 100

TABLE III
MOTOR IMAGERY DATASET: CONFUSION MATRIX (WITH PERCENTAGES REPORTED) FOR MDM CLASSIFICATION METHOD WITH ORIGINAL (ON THE

LEFT) AND AFFINE-TRANSFORMED (ON THE RIGHT) COVARIANCE MATRICES. SUBJECTS 3 IS USED AS TRAINING SET, WHILE SUBJECT 8 AS TEST SET.

Subject MDM GM-1 GM-2 GM-3 GM-4 GM-b

1 94.0 94.6 94.9 95.5 96.6 96.6

2 85.7 86.2 87.5 87.1 88.0 88.0

3 84.6 84.0 83.8 85.2 88.1 88.1

5 83.7 83.9 84.6 85.5 86.9 86.9

6 79.1 78.7 84.1 86.5 86.4 86.5

7 79.5 78.8 77.4 80.6 75.6 80.6

10 84.4 84.4 83.8 88.1 90.5 90.5

11 80.7 80.5 80.7 83.0 85.8 85.8

12 93.2 93.0 92.8 95.2 94.7 95.2

13 84.8 84.6 85.2 86.3 84.2 86.3

14 92.1 92.2 93.6 91.3 93.4 93.6

17 77.2 77.5 76.5 79.7 79.5 79.7

Mean 84.9 84.9 85.4 87.0 87.5 88.2

4 72.6 72.7 71.7 68.9 67.9 71.7

8 73.2 73.0 73.2 74.8 72.1 74.8

9 42.8 41.6 36.1 37.3 38.3 38.3

15 66.7 66.2 65.5 61.6 62.9 65.5

16 49.3 49.5 44.5 43.3 45.3 45.3

Mean 60.9 60.6 58.2 57.2 57.3 59.1
TABLE IV

P300 DATASET: MEAN CLASSIFICATION PRECISION FOR THE SUBJECTS USING 30% OF DATA AS TRAINING SET. TRAINING SET IS CHOSEN AT RANDOM,
AND THE PROCEDURE IS REPEATED 25 TIMES. SUBJECTS ARE DIVIDED ACCORDING TO THEIR PERFORMANCES IN GOOD SUBJECTS (12 OF THEM,

SHOWN IN THE TOP PART OF THE TABLE) AND BAD SUBJECTS (5 OF THEM, SHOWN IN THE BOTTOM PART OF THE TABLE).

when subject 3 is used as training set and subject 8 is used

as test set. Table III refers to the MDM algorithm, and on the

left we can observe that, without any transformation, a lot of

trails are assigned to the class number 4, with an accuracy

equal to 36.8%. After the affine transformation, instead, the

classification is significantly better, with an accuracy equal

to 66.5%. In particular, elements of the classes 1 and 4 are

very well predicted, as shown on the right of Table III. In

Figure 6 (bottom panel), a scatter plot for the MDM classifier

accuracies is shown.

B. ERP

In this section we consider the results of the ERP P300

experiment. First of all we point out that since the two classes

are strongly unbalanced (1/6th of target elements), accuracy is

not a suitable index of classification performance (a classifier

which assigns every element to the non-target class will have

an accuracy of 0.83). For this reason we consider the precision

index pr, defined as

pr =
TP

TP + FP
(11)

where TP (True Positive) is the number of elements correctly

classified as target, while FP (False Positive) is the number

of elements wrongly classified as target.

First of all, we analyze each subject separately, in order

to understand how the different classification methods work

in this framework and how performances vary between the

subjects. To do that, for each subject, we evaluate the precision

using the 30% of the data (randomly chosen) as training

set, and the other part as test set. We repeat this procedure

25 times, evaluating the mean value. Results are reported in

Table IV, where once again we separated good subjects (those

with a precision higher than 0.75) from subjects with lower

performances.

Second, to make a comparison between algorithms we can

observe that the introduction of Riemannian mixtures provides

significant improvements in the group of the good subjects,

while this is not true for the subjects with lower performances.

If we consider the 12 good subjects, a paired t-test between

MDM and GM-4 provides a p-value around 10−4.

Next, we analyze the cross-subject classification problem.

Also in this case we focus on the good subjects. In Table V we

compare precisions before and after the affine transformation.

Every good subject is alternatively used as test set, with

the others, one at the time, used as training set. Mean and

standard deviation accuracies are reported in the Table. The

results obtained after the affine transformation are very good,

similar to those obtained for the classical training/test cross-

validation procedure, even if in this case there is not a large

difference in the performance between the different methods.
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Test Subj. MDM GM-1 GM-2 GM-3 GM-4

1 64.4 (16.4) | 91.8 (3.5) 64.4 (21.0) | 92.1 (3.2) 59.1 (19.4) | 88.4 (4.7) 59.9 (23.5) | 88.2 (6.3) 59.1 (24.1) | 90.4 (4.2)

2 39.4 (32.4) | 86.3 (3.8) 41.8 (20.9) | 86.4 (3.9) 46.7 (26.3) | 84.0 (6.0) 29.9 (16.7) | 82.5 (4.6) 39.3 (28.5) | 83.3 (6.9)

3 30.1 (12.4) | 87.6 (6.1) 29.8 (15.4) | 88.1 (5.9) 25.5 (11.1) | 85.7 (7.2) 31.3 (12.8) | 84.7 (6.4) 22.9 (12.6) | 87.5 (4.3)

5 69.1 (31.1) | 80.8 (5.1) 71.1 (24.7) | 81.1 (5.5) 68.5 (28.8) | 79.7 (6.1) 67.5 (31.6) | 78.6 (7.6) 45.2 (39.3) | 79.9 (8.6)

6 49.2 (21.9) | 84.6 (6.2) 45.8 (19.8) | 83.1 (8.0) 50.6 (26.0) | 79.8 (9.5) 39.0 (23.7) | 83.7 (11.8) 41.3 (18.6) | 84.5 (8.4)

7 24.1 (22.7) | 85.8 (5.4) 27.7 (29.4) | 85.5 (6.6) 33.6 (26.6) | 81.9 (8.3) 27.2 (19.9) | 85.5 (6.2) 17.8 (17.7) | 82.6 (7.7)

10 55.1 (24.7) | 84.8 (3.8) 52.7 (15.0) | 84.9 (4.4) 51.0 (21.3) | 84.3 (4.5) 47.7 (12.4) | 80.8 (7.5) 53.4 (20.5) | 84.0 (6.5)

11 63.2 (14.5) | 86.7 (4.3) 61.2 (19.1) | 87.9 (4.0) 54.6 (22.9) | 85.8 (6.4) 59.7 (20.5) | 84.8 (5.9) 60.0 (19.7) | 87.1 (5.8)

12 59.3 (24.6) | 91.1 (3.6) 59.9 (19.5) | 92.2 (3.3) 61.9 (22.9) | 89.8 (4.8) 67.1 (26.8) | 89.8 (4.9) 60.5 (22.2) | 91.0 (3.8)

13 46.2 (22.5) | 91.7 (4.3) 48.2 (25.9) | 93.3 (4.3) 36.7 (32.8) | 90.9 (4.3) 35.4 (28.4) | 89.5 (5.1) 46.1 (32.0) | 90.7 (5.1)

14 77.2 (18.8) | 89.6 (3.7) 76.2 (23.6) | 89.9 (3.9) 62.6 (26.5) | 87.0 (6.1) 71.4 (27.4) | 86.2 (5.2) 69.5 (31.0) | 86.4 (6.1)

17 39.9 (18.3) | 89.0 (2.8) 39.6 (11.3) | 89.1 (2.9) 43.8 (24.0) | 84.9 (8.0) 31.7 (19.1) | 86.2 (4.3) 36.8 (19.2) | 86.8 (3.6)
TABLE V

P300 DATASET: CLASSIFICATION PRECISION FOR THE CROSS-SUBJECT GENERALIZATION. FOR EVERY TEST SUBJECT, THE OTHER SUBJECTS ARE USED

ONE AT EACH TIME AS TRAINING SUBJECT. IN THE TABLE WE REPORT MEAN, WITH STANDARD DEVIATION IN BRACES. THE RESULTS ARE RELATIVE TO

ORIGINAL COVARIANCE MATRICES (IN BLACK) | AFFINE-TRANSFORMED COVARIANCE MATRICES (IN BOLD GREEN).

Before affine transformation After affine transformation Before affine transformation After affine transformation
k = 0 k = 1

k̂ = 0 100 97

k̂ = 1 0 3

Tot. (%) 100 100

k = 0 k = 1

k̂ = 0 97 7

k̂ = 1 3 93

Tot. (%) 100 100

k = 0 k = 1

k̂ = 0 100 100

k̂ = 1 0 0

Tot. (%) 100 100

k = 0 k = 1

k̂ = 0 98 37

k̂ = 1 2 63

Tot. (%) 100 100

TABLE VI
P300 DATASET: CONFUSION MATRICES (WITH PERCENTAGES REPORTED) FOR MDM CLASSIFICATION METHOD. ON THE LEFT, CONFUSION MATRICES

TO COMPARE THE CROSS-SUBJECT CLASSIFICATION WITH SUBJECT 14 USED AS TEST SET AND SUBJECT 3 AS TRAINING SET, BEFORE AND AFTER AFFINE

TRANSFORMATION. ON THE RIGHT CONFUSION MATRICES ARE RELATED TO THE CROSS-SUBJECT CLASSIFICATION WITH SUBJECT 7 USED AS TEST SET

AND SUBJECT 5 AS TRAINING SET.

Fig. 6. MI example: scatter plot to compare classification results for cross-
session (on the top) and cross-subject (on the bottom) for MDM classifier
before (x-axis) and after (y-axis) affine transformation.

Fig. 7. P300 example: scatter plot to compare classification results for
cross-subject for MDM classifier before (x-axis) and after (y-axis) affine
transformation.

The results obtained without transforming data, as expected,

are very poor. In Figure 7, a scatter plot for the MDM classifier

averaged precisions shows the gain achieved by using the

affine transformation. This result is even strenghtened by the

fact that, for the evaluation of the means before the affine

transformation, we did not consider the cases where all the

observations are assigned to the non target class. Indeed

this results in a NaN , since formula (11) corresponds to

a 0
0 if no observations are classified as target. Furthermore,

the high standard deviation is caused by some situations

with a precision of 100%, but that do not represent a good

classification, since they correspond to situation where almost

every observation is classified as non-target, and only few

observations are (correctly) classified as target. This provides
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a 100% precision, but the classification cannot be considered

satisfactory. To clarify these two situations, in Table VI we

compare confusion matrices related to MDM algorithm before

and after the affine transformation. On the left, subject 14 is

used as test set and subject 3 as training set and we can observe

that, before the affine transformation, only 3 observations are

classified as target. These observations are true target objects,

resulting in a 100% precision evaluation, but the classification

obtained after data are affine-transformed is clearly better. On

the right, subject 7 is used as test set and subject 5 as training

set. In this case, before applying the affine transformation, no

observations are assigned to the target class.

VI. CONCLUSION

In this paper we present an approach based on Riemannian

geometry to deal with cross-session and cross-subject classifi-

cation in BCI applications. These problems are part of a wider

issue known as transfer learning, defined as the ability to use

knowledge acquired previously in a new task related to the

first. Here we propose to affine transform the spatial covari-

ance matrices of the EEG signals of every session/subject to

make data comparable. We assumed that, from one session

(subject) to another, covariance matrices related to a specific

task performed by the subject move with a similar relocation

from a reference state, different between sessions or subjects.

Hence, the idea is to center covariance matrices with respect

to a reference matrix. Under our assumption, Riemannian

geometry offers an optimal procedure for tackling the transfer

learning problem due to the affine invariance property of the

Riemannian distance and Riemannian mean. We considered

two kinds of datasets, one related to a MI paradigm, and the

second one to an ERP, P300 specifically, paradigm. We defined

a suitable reference state proposing a way to estimate online

the reference matrix, to make the procedure useful in a real-

time application.

Then we have tested the proposed procedure in a classifi-

cation problem, where data from different sessions (subjects)

are used to estimate the class parameters needed to classify

new observations.

We analyzed the improvements due to the affine transfor-

mation in the cross-session and cross-subject classification,

observing that, while in the original data space often results

are poor, in general the affine transformation allows much

better classification accuracies and precisions. This illustrates

the goodness of the affine transformation through the reference

matrix, which we proposed here, to obtain satisfactory results

in cross-session and cross-subject classification.
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