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Abstract—This paper studies fast adaptive beamforming opti-
mization for the signal-to-interference-plus-noise ratio balancing
problem in a multiuser multiple-input single-output downlink
system. Existing deep learning based approaches to predict
beamforming rely on the assumption that the training and testing
channels follow the same distribution which may not hold in
practice. As a result, a trained model may lead to performance
deterioration when the testing network environment changes.
To deal with this task mismatch issue, we propose two offline
adaptive algorithms based on deep transfer learning and meta-
learning, which are able to achieve fast adaptation with the
limited new labelled data when the testing wireless environ-
ment changes. Furthermore, we propose an online algorithm
to enhance the adaptation capability of the offline meta algo-
rithm in realistic non-stationary environments. Simulation results
demonstrate that the proposed adaptive algorithms achieve much
better performance than the direct deep learning algorithm
without adaptation in new environments. The meta-learning
algorithm outperforms the deep transfer learning algorithm and
achieves near optimal performance. In addition, compared to
the offline meta-learning algorithm, the proposed online meta-
learning algorithm shows superior adaption performance in
changing environments.

Index Terms—Deep transfer learning, meta-learning, online
learning, beamforming, MISO, SINR balancing.

I. INTRODUCTION

Multi-antenna techniques have been widely used to improve

the spectral efficiency of modern wireless communications

systems due to their ability to exploit spatial characteristics of

the propagation channel [1], [2]. Beamforming is recognized

as one of the most promising multi-antenna techniques since it
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can efficiently improve the antenna diversity gain and mitigate

multiuser interference. In the last two decades, beamforming

optimization has been well studied for some specifical prob-

lems, such as signal-to-interference-plus-noise ratio (SINR)

balancing problem [3], [4], power minimization problem [5],

[6] and sum rate maximization problem [4], [7]–[9]. Most

beamforming design problems are solved using either tailor-

made iterative algorithms or general iterative algorithms using

convex optimization tools. However, iterative algorithms may

have slow convergence. This fact causes severe computational

latency and makes the optimized beamforming solutions out-

dated. Hence, existing beamforming techniques have difficulty

meeting the demands for real-time applications in the fifth

generation (5G) systems. Although heuristic methods such

as zero-forcing (ZF) beamforming are faster to implement,

they often show far from optimal system performance. Hence,

designing efficient solutions that balance computational com-

plexity and performance has attracted much attention.

Recently, deep learning (DL) has been recognized as an

efficient technique to solve difficult design problems in wire-

less communications due to its ability of modeling highly

non-linear functions at considerably lower complexity [10]–

[12]. Accordingly, DL techniques have been widely used in

many applications of wireless networks to address specific

physical layer issues, such as channel estimation and decoding

[13]–[15], hybrid precoding [16]–[18] and resource allocation

[19]–[21]. The successful application of the DL techniques on

the problems of resource allocation [19]–[21] is based on the

learning to optimize framework, which aims to learn a simple

mapping through the deep neural network (DNN) instead of

optimizing the complex mathematic problems. Motivated by

the above successful applications of DL techniques, it is possi-

ble to address the tradeoff issue between complexity and per-

formance in the beamforming design. This is the result of the

mapping from the input channel state to output beamforming

that is obtained by training the neural networks in an offline

manner. The beamforming solution can be directly predicted

using the trained network in real time. The advantage of the

learning to optimize framework is to transfer the complex real-

time optimization procedures to offline training showing great

potential to solve the beamforming design problems in multi-

antenna systems [22]–[26]. In [22], a DL model was proposed

to predict the beamforming matrix with a restricted codebook

and a finite solution space which cause performance loss. In

order to improve the performance, the works in [23], [24]

directly predicted the beamforming matrix using the trained

network. However, the direct prediction method may cause
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high training complexity and low learning accuracy of the

neural networks since the number of variables to predict

increases significantly as the number of transmit antennas and

users increases. To overcome this drawback, the authors in

[25] exploited the problem structure and proposed a model-

based DL framework to optimize the beamforming matrix.

The proposed model-based framework includes two parts: the

DL part used to learn the optimal mapping from the channel

to the uplink power allocation as key features with much

reduced dimension than the original beamforming matrix, and

the signal processing part used to recover beamforming from

the predicted uplink power allocation. By utilizing the specific

problem structure, a DL enabled approach was proposed

to optimize beamforming of the SINR balancing problem

under per-antenna power constraints [26]. The proposed DL

algorithms in [22]–[26] are based on a common assumption

that the training and testing channel data are drawn from the

same distribution in a fixed stationary environment. However,

this assumption may be violated in real-world systems due to

the dynamic nature of wireless networks. As a result, existing

DL based optimization algorithms may cause a task mismatch

issue when the network environment changes. A straightfor-

ward way is to re-train the model from scratch using newly

collected data for each new network environment. However,

this method results in huge overhead of data collection and

training time. Hence, overcoming the task mismatch issue

in deep learning to optimize beamforming becomes a major

challenge in dynamic communications environments.

Transfer learning is a promising technique to deal with

the task mismatch issue experienced in the practical wireless

communication systems due to its ability to transfer the useful

prior knowledge to a new scenario [27]. The basic idea of

transfer learning is to extract the key features of the source

domain and refine the pre-trained model in the target domain.

The efficiency of the transfer learning technique on solving

the task mismatch issue has been investigated in the resource

allocation of wireless communications [28], [29]. Another

efficient way to deal with the task mismatch issue is meta-

learning, which aims to improve the learning ability by lever-

aging the different but related training and testing data [30].

Most existing meta-learning algorithms are problem-specific.

In order to eliminate the model architecture restriction on the

applications of meta-learning, the authors in [31] proposed

the model-agnostic meta-learning (MAML) algorithm. The

MAML algorithm aims to learn a parameter initialization of

the model for fast adaptation by alternating between inner-

task procedure and cross-task procedure. Specifically, the task-

specific parameters are updated by performing the gradient

descent on the loss function of the corresponding task in

the inner-task procedure, and the global network parameter

is updated by performing the gradient descent on the sum

of the loss function of the associated tasks in the cross-task

procedure. Based on the advantages of the MAML algorithm

on solving mismatch issues, it has been used to deal with

the channel estimation problems in wireless communication

systems [32]–[34]. For instance, MAML-based meta-learning

algorithm was proposed to solve the decoding problem over

fading channels [32], to estimate the end-to-end channel with

insufficient pilots [33], and to predict channel state information

(CSI) of frequency division duplexing systems [34]. The

simulation results in [32]–[34] indicate that meta-learning is

able to achieve better adaptation performance compared to the

joint training method since the joint training method uses the

overall available data in the source domain and target domain

to train the model without the adaptation process.

Although transfer learning and meta learning techniques

have been used to solve the channel estimation and decoding

problems [32]–[34], they are still in the early stage for

wireless communications applications. Different from channel

estimation and decoding problems, beamforming design is

a well-known challenging problem and there is no known

solution to the optimal adaptive beamforming in a dynamic

wireless environment. Hence, it is important to design adap-

tive beamforming algorithms to solve the mismatch issue.

In addition, directly applying adaptive learning techniques to

solve the high dimensional beamforming solution will cause

high training complexity and inaccurate results. In order to

improve the accuracy and reduce the complexity of neural

network training, we choose the uplink power allocation vector

as the low dimensional feature to predict. To be specific, we

propose the offline and online fast adaptive algorithms using

transfer learning and meta learning techniques to solve the

mismatch issue of beamforming design in dynamic wireless

environments. Our main contributions are summarized as

follows:

• We propose an offline adaptive learning algorithm based

on deep transfer learning (DTL) by combining DL tech-

niques and transfer learning to achieve the adaption to a

new environment. This algorithm first trains a model in

the source domain which includes channel data different

from those in the testing environment. It then refines

the pre-trained model by fixing common feature layers

and re-training the fully connected layer in the target

domain which includes few labelled data from the testing

environment.

• We proposed an offline adaptive learning algorithm based

on meta-learning by utilizing the idea of MAML. This al-

gorithm includes two parts: the meta-training part and the

fine-tuning part. The meta-training aims to optimize the

global parameter initialization via alternating between the

inner-task procedure and the cross-task procedure using

data in the source domain. The fine-tuning part refines

the initialized parameter using the global parameter and

limited data in the new environment. The advantages of

the proposed meta-learning include fast adaptation and

near optimal performance.

• We propose an online adaptation algorithm to further

improve the adaptation capability of the offline meta-

learning algorithm in the real-world non-stationary com-

munications scenarios where the environment constantly

changes such that new labelled data only arrive sequen-

tially. This algorithm is designed based on meta-learning

and the ‘follow the leader (FTL)’ method. The FTL

method is used to deal with the sequential data in real-

time systems and the meta-learning method is used for
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fast adaptation.

• Extensive simulations are carried out to evaluate the

adaption capability of the proposed algorithms in realistic

communications scenarios using WINNER II and 3GPP

channel models. The results verify the adaption perfor-

mance of the proposed offline algorithms and indicate

that the offline meta-learning algorithm can achieve near

optimal performance by avoiding the huge data collection

and training time in new communications scenarios. In

addition, the proposed online algorithm can significantly

improve the adaption of the offline meta-learning algo-

rithm in non-stationary scenarios.

The remainder of this paper is organized as follows. Section

II introduces the system model and the beamforming neural

network (BNN) learning framework. In section III, the offline

DTL algorithm and meta-learning algorithm are proposed.

Section IV develops the online meta-learning based adaptation

algorithm. Simulation results and conclusions are presented in

Section V and Section VI, respectively.

Notions: The boldface lower case letters and capital letters

are used to represent column vectors and matrices, respec-

tively. The notation aH and ‖a‖2 denote the Hermitian conju-

gate transpose and the l2-norm of a vector a, respectively. The

operator CN (0,Θ) represents a complex Gaussian vector with

zero-mean and covariance matrix Θ. IM denotes an identity

matrix of size M × M . Finally, ← denotes the assignment

operation.

II. SYSTEM MODEL

A multi-input single-output (MISO) downlink transmission

system is considered, in which K single antenna users are

served by a base station (BS) with M antennas. The received

signal at user k can be expressed as

yk = hH
k wksk + nk, ∀k (1)

where hk ∈ C
M×1 denotes the channel coefficient between

the BS and user k, wk and sk ∼ CN (0, 1) denote the

transmit beamforming and the information signal for user k,

respectively, and the additive Gaussian white noise (AWGN)

is given by nk ∼ CN (0, σ2
k). Consequently, the signal-to-

interference-plus-noise ratio (SINR) balancing problem can be

formulated as:

max
wk,k=1,...,K

min
1≤k≤K

|hH
k wk|2

∑K
j 6=k |hH

k wj |2 + σ2
k

,

s.t.
K
∑

k=1

‖wk‖2 ≤ P, (2)

where P is power budget. Many existing algorithms can

be used to generate the optimal solution of problem (2).

Although the existing DL-based algorithms can solve the

issue of outdated beamforming caused by the conventional

optimization algorithms, they will cause the task mismatch

issue when the network environment changes. Hence, we focus

on the design of fast adaptive learning algorithms to overcome

the task mismatch issue in beamforming design in dynamic

network environments.

Fig. 1. The DL-based BNN for uplink power prediction and beamforming
recovery [25].

Directly predicting beamforming causes high training com-

plexity and inaccurate results due to the high dimensional

beamforming matrix, so instead we predict the low dimen-

sional uplink power allocation vector. According to the uplink-

downlink duality in [3] and [25], using the uplink power

allocation vector to replace beamforming as the output of the

neural network is possible because the same SINR region of

the uplink and downlink problems can be achieved. Based on

uplink-downlink duality and normalized beamforming wk =
w̃k
√
pk, the downlink problem (2) can be converted into the

following uplink problem

max
q

min
1≤k≤K

qk|hH
k w̃k|2

∑K
j 6=k qj |hH

j w̃k|2 + σ2
k

,

s.t. ‖q‖1 ≤ P, ‖w̃k‖2 = 1, ∀k, (3)

where q = [q1, . . . , qK ]T and qk is the uplink power allocation

for user k, w̃k and pk are the normalized beamforming and

downlink power allocation of user k, respectively. Sufficient

labelled data can be generated by solving problem (3). The

model-based BNN approach proposed in [25] is chosen for

our algorithms design since it can efficiently extract features

and can recover the high dimensional beamforming matrix

from the low dimensional feature vector. The BNN framework

shown in Fig. 1 includes two modules: the neural network

module and the beamforming recovery module. First, we

introduce how to recover beamforming matrices by using the

recovery module. With the predicted uplink power allocation

vector, the normalized beamforming vector can be obtained

as w̃k =
(σ2

kI+
∑K

k=1 qkhkh
H
k )−1hk

‖(σ2
k
I+

∑
K
k=1 qkhkh

H
k
)−1hk‖2

, ∀k. Then, the optimal

downlink power allocation vector p = [p1, . . . , pK ]T can be

obtained by finding the first K components of the eigenvector

of the following matrix

Υ(W̃, P ) =

[

DU Dσ
1
P
1TDU 1

P
1TDσ,

]

, (4)

where 1 = [1, 1, . . . , 1]T , D =
diag{1/|w̃H

1 h1|2, . . . , 1/|w̃H
KhK |2}, σ = [σ2

1 , σ
2
2 , . . . , σ

2
K ]T ,

and [U]kk′ = |w̃H
k
′hk|2, if k

′

= k, otherwise [U]kk′ = 0.

Finally, the downlink beamforming matrix W = [w1, . . . ,wk]
is derived as W = W̃

√
P, where W̃ = [w̃1, . . . , w̃K ] and

P = diag(p). Second, we briefly describe the neural network

framework used in the paper according to the neural network

module of BNN. The convolutional neural network (CNN)
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architecture is chosen as the base of the learning framework in

this paper due to its ability of extracting features and reducing

learned parameters. Specifically, the CNN framework includes

the input layer, convolutional layer (CL), batch normalization

(BN) layer, activation (AC) layer, and fully connected layer

(FC). Channel realization is split into two real value inputs.

One is the in-phase component R(h) of channel realization

and the other one is the quadrature component I(h) of

channel realization.

As a regression problem is considered in this paper, we

use supervised learning and the standard mean squared error

(MSE) as the loss function to calculate the loss of the neural

network. The loss function is defined as follows:

LossD(θ) =
1

N

N
∑

i=1

‖q̂(i)(θ)− q(i)‖22, (5)

where D = {(h(i),q(i))}Ni=1 is the training dataset, q(i) and

q̂(i)(θ) denote the optimal uplink power allocation vector

generated by solving (3) and the predicted uplink power

allocation vector of the neural network for the i-th sample

in each batch, respectively, θ is the network parameter and N
is the batch size. In the following sections, we will design our

fast adaptive learning algorithms.

III. OFFLINE LEARNING ALGORITHMS

In this section, we design two offline adaptive learning

methods to optimize beamforming: 1) DTL algorithm and 2)

meta-learning algorithm. These two algorithms aim to achieve

fast adaptation in the new test wireless environment with

limited channel data whose distribution is different from that

in the training environment. In the following subsections, we

describe the details of these two algorithms.

A. Joint Training

In this subsection, we introduce the joint training method,

which is considered as a benchmark for evaluating the adap-

tation ability of the proposed offline algorithms. The joint

training method aims to learn a single model on a joint

dataset. Hence, the objective of the joint training method can

be expressed by the following optimization problem

ϕ = argmin
ϕ

LossDjoint
(ϕ), (6)

where Djoint denotes the joint training dataset, which is

generated by merging the training data and adaptation data,

and ϕ is the parameter vector of the single model. The

parameter vector ϕ can be iteratively updated based on the

following gradient-based learning rule

ϕ← ϕ− α∇ϕLossDjoint
(ϕ), (7)

where α is the learning rate.

B. Deep Transfer Learning

Transfer learning has been recognized as an efficient method

for model prediction as it not only reduces the dependence

on a large amount of labelled data but also avoids training

the model from scratch. Different transfer learning methods

and corresponding applications have been introduced in [27].

Since the same SINR balancing optimization problem are

used to guide beamforming design over different wireless

environments, it indicates that some common features inherent

in the optimization problem can be extracted and transferred.

Therefore, a DTL algorithm via fine-tuning, which combines

the DL and transfer learning techniques, is proposed to

generalize the beamforming prediction in different channel

distributions.

1) Definition of Datasets: The fundamental idea of transfer

learning is to train the neural network in a given source domain

and then adapt the model to a target domain. To apply DTL,

we first define datasets for the network model. We use the

algorithm in [3, Table 1] to generate NTr sample pairs for

each user to compose the training dataset DTr(·), which will

be used to create the pre-trained model. Then, we use the

same process to generate the adaptation dataset DAd(·) with

NAd sample pairs using the test channel fading distribution

different from that used in generating DTr(·). We assume that

any sample pair in the testing dataset DTe(·) does not appear

in the adaptation dataset DTe(·).
2) Transfer Learning: The proposed DTL includes two

stages: 1) building the pre-trained neural network model in

the source domain 2) refining the pre-trained model in the

target domain. In the first stage, we minimize the loss function

LossDTr
(θ) on the training dataset {DTr(k)}NTr

k=1 , which in-

cludes sufficient sample pairs, to optimize the network model.

The network parameter can be updated by using the following

equation

θ ← θ − α∇θLossDTr(θ), (8)

where α is the network learning rate, ∇θLossDTr(θ) is the

gradient of the loss function over θ. Alternatively, the network

parameter θ also can be updated by using the existing adaptive

moment estimation (ADAM) algorithm [39].

Next, we move to the fine-tuning stage when the pre-training

stage is finished. Fine-tuning aims to refine all or partial

parameters of the pre-trained neural network on the target

task. To fast adapt to the new environment, there are only

limited labelled data of the target task available. In [35], it

is reported that given a small dataset overfitting may happen

if all parameters are re-trained, hence we only re-train partial

parameters by freezing the remaining parameters to implement

the fine-tuning. To be specific, we assume the number of neural

network layers is L and divide the pre-trained model into two

parts. We set the first L − 1 layers as the extractor, which is

used to extract features of the problem and the last FC layer

as the learner which is used to refine the network in the target

domain. We assume that the extractor part is non-trainable

and only the learner part is trainable when the network is

trained using the adaption dataset. Then, the parameter of

FC layer of the pre-trained network can be updated by using

either (8) or ADAM on the adaption dataset DAd(·). After

finishing the training and fine-tuning steps, we obtain the

adapted network model which can be used to predict the uplink

power allocation coefficient on DTe(·). The proposed DTL
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Algorithm 1: The proposed offline adaptation algorithm based on DTL.

Input: Learning rate α and β, batch size Nb, training dataset

{DTr(k)}
NTr
k=1

, adaptation dataset {DAd(k)}
NAd
k=1

Output: Learned network parameter θ

Pre− training

1) Randomly initialize the network parameter θ
2) Initialize the step: t = 0
3) while not done do

4) Randomly select Nb sample pairs form {DTr(k)}
NTr
k=1

to compose
a batch task

5) t← t+ 1
6) Update the network parameter by θt ← θt−1 −

α∇θt−1
LossDTr

(θt−1) or by ADAM optimizer
7) end while

Fine− tuning

1) Initialize θ̃ ← θ
2) for j = 1, . . . , GAd do

3) Update the parameter of the FC layer in θ̃ by using ADAM
4) end

algorithm is summarized in Algorithm 1 which includes pre-

training and fine-tuning stages.

C. Meta Learning Algorithm

Different from transfer learning, meta learning aims to learn

the best learning strategy, which is used to acquire an inductive

bias for the entire class of tasks of interest for fast adaptation

[31]. We will design an offline meta learning algorithm to

achieve faster and better adaptation than DTL in dynamic

environments based on the MAML algorithm proposed in [31].

1) Definition of Task: Since the goal of the MAML al-

gorithm is to train an efficient parameter initialization based

on the multiple tasks, we define and form tasks before using

MAML to design our algorithm. In our algorithm, a task is

defined as a prediction process of uplink power allocation from

channel realizations in a chosen dataset. Each such dataset is

composed of training data and validation data for a particular

task. We define a task set {Tmt(k)}Kmt

k=1 , which includes Kmt

tasks. Each task in the task set is formed by randomly selecting

training data and validation data from the meta training dataset

DTr(·).
2) Definition of Dataset: Channel realizations and the as-

sociated optimal uplink power allocation vectors are involved

in both training data and validation data of each task. The

set of training data is defined as the support set Dmts(·) and

the set of validation data is defined as the query set Dmtq(·).
The support set and query set include Ns and Nq labelled

data, respectively. We define the set used for adaption as the

adaption dataset DAp(·), which includes NAd sample pairs.

Note that the distribution of channel realizations in DAp(·) is

different from the distribution in DTr(·).
3) Meta-training Stage: The MAML algorithm uses two

iterative processes, inner-task update and cross-task update,

to generate the parameter initialization with the good gen-

eralization ability. Inner-task update is used to optimize the

neural network parameter of each task, and cross-task update

is used to optimize the global neural network based on the

sum of the loss functions of all tasks. In order to efficiently

solve the mismatch issue of beamforming design, these two

Fig. 2. The workflow of the meta learning.

iterative processes are adopted to design our meta learning

based adaptive beamforming algorithm. In Fig. 2, the workflow

of two iterative training processes is provided to explain the

training process of our meta algorithm. In the following, we

use a batch of tasks (include Nb tasks) as an example to

introduce the two processes in Fig. 2. The same neural network

architecture is used in inner-task update and cross-task update.

Inner-task update is a process of training the neural network

parameters of each task in the related batch. The goal of each

task is to optimize its own neural network parameter on its

support set via the global network parameter. The objective of

each task is achieved by minimizing the loss function based on

supervised learning. Although the objective function of each

task is the same, the dataset used to achieve the goal of each

task is different. The objective function of each task can be

expressed as

φk = argmin
φk

LossDmts(k)(φk), k = 1, . . . , Nb, (9)

where φk is the neural network parameter of task k and it is

initialized by the global network parameter θ, Dmts(k) is the

support set of task k. Since the loss function LossDmts(k) in (9)

is represented by the MSE between the predicted value and the

true value shown in (5), such loss function is differentiable.

Hence, the gradient descent technique can be used to solve

the optimization problem in (9). Multiple gradient updates are

considered to update the parameter of each task rather than

one gradient update originally proposed in [31]. Notice that

the neural network parameter of each task is independently

updated. As we can see from Fig. 2, the updating process

of the neural network parameter for each task on its support

set is parallel. Since the objective function of each task is

the same and the updating processes of the parameters for all

tasks are parallel, we use task k as an example to explain the

updating process of its own neural network parameter on the

related support set Dmts(k). The neural network parameter of

all tasks is initialized by the global parameter θ. By using the

gradient descent technique, the neural network parameter φk

of task k can be estimated by

φ
(0)
k = θ − β∇θLossDmts(k)(θ), (10)
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where β is the learning rate of the inner-task update, the

superscript 0 of φk denotes the first iteration of gradient

update. When the number of iterative steps is greater than

one, the parameter φk of task k is updated by calculating the

gradient of the loss function over its own parameter obtained

at the previous iterative step, where is given by

φ
(i)
k = φ

(i−1)
k − β∇

φ
(i−1)
k

LossDmts(k)(φ
(i−1)
k ), (11)

where the superscript i of φk is the index of the iteration

step and i = 1, . . . , Gin, Gin is the number of inner iterative

steps. The ‘compute gradient’ function in Fig. 2 is used to

compute the gradient of the loss function in (10) and (11).

The repeated updating processes are represented by φk, k =
1, . . . , Nb, which is fed back to ‘compute gradient’ in Fig. 2.

The neural network parameter of task k can be updated as

φk = φGin

k when the number of iterations arrives at the final

step Gin. Notice that the loss function LossDmts(k)(φk), ∀k of

each task is unknown and needs to be estimated on its support

set Dmts(k) at each iterative step. When all tasks in the batch

finish their iterations, the loss function can be considered as

a metric to evaluate the trained parameter of each task on the

related query set Dmtq(·). These loss functions can be used to

optimize the global network parameter θ in cross-task update,

which is described in the following part.

Cross-task update is a process of optimizing the global

network parameter θ based on the sum of the loss functions of

all tasks in the batch. As mentioned in the inner-task update

process, the loss functions of all tasks in the batch can be

estimated based on the neural network parameter of the related

tasks and their query sets when the maximum iteration step

is achieved. Such loss functions can be added together to

form the loss function used to optimize the global network

parameter θ. This process is implemented by the sum function

in Fig. 2. The objective function of optimizing the global

network parameter θ on a batch of tasks can be expressed

as

θ = argmin
θ

Nb
∑

k=1

LossDmtq(k)(φk), (12)

where Dmtq(k) is the query set of task k. Similar to inner-task

update, the gradient descent technique can be used to update

θ in (12), which is given by

θ ← θ − α∇θ

Nb
∑

k=1

LossDmtq(k)(φk), (13)

where α is the learning rate of cross-task update. Notice that

there exists the chain rule when calculating the gradient of

the loss function of each task in (13) since the neural network

parameter of each task is updated at each iteration based on

the updated parameter of this task at the previous iteration.

Hence, the update of the neural network parameter in each

iterative step needs to compute the gradient with respect to

the parameter of the previous iterative step when computing

the gradient of the loss function with respect to θ, which

can be expressed as
∂LossDmtq(k)(φk)

∂(φk)
=

∂LossDmtq(k)(φ
Gin
k

)

∂(φ
Gin
k

)
·

∂(φ
Gin
k

)

∂(φ
Gin−1

k
)
· ∂(φ

Gin−1

k
)

∂(φ
Gin−2

k
)
· . . . · ∂(φ

0
k)

∂θ
. It indicates that the MAML

algorithm needs an additional backward pass since it involves

a gradient through a gradient process. As shown in Fig. 2,

the updated global network parameter θ is considered as the

initialized parameter of the tasks in the next batch and will

be continuously updated. The algorithm will move to the

next training step when the global network parameter in all

batches completes the updating process by alternating inner-

task update and across-task update in Fig. 2. An efficient

parameter initialization θ will be obtained when the training

is completed.

Different from the joint training method, which optimizes

the neural network parameter based on the loss function of

the single model shown in (7), the proposed meta learning

algorithm optimizes the model parameter via the loss functions

of multiple tasks on their own model shown in (13). Using

multiple models will improve the generalization ability. Com-

pared to the joint training method, the proposed MAML-based

learning algorithm can generate the parameter initialization,

which has better generalization ability and can help any task

from the same distribution to achieve their optimal parameter

more efficiently.

4) Meta-adaption Stage: Based on the initial global net-

work parameter θ obtained from the above meta-training stage,

the network parameter will be updated using the adaptation

dataset DAp(·) to achieve fast adaptation to the new task. We

set the number of adaptation steps as GAd. Before implement-

ing the adaptation, we initialize the adaptation parameter φAp

as θ, which is obtained through the meta training stage. In the

jth adaptation step, the network parameter φAp can be updated

as

φ
(j+1)
Ap ← φ

(j)
Ap − β∇

φ
(j)
Ap

LossDAp
(φ

(j)
Ap). (14)

The iteration will finish when the stoping criterion is

achieved. Full details for implementing meta-learning and

meta-adaptation are summarized in Algorithm 2.

Comparison of transfer learning and meta leaning: Trans-

fer learning and meta learning both have the training and

adaption stages. Although they have the same objective of

achieving fast adaption, the strategies used in the training

and adaption stages are different. Hence, transfer learning is

not a special case of meta learning. Meta learning uses two

iterative procedures to train the model, which means that it

needs two backward passes in the training stage. However,

transfer learning uses one backward pass to train the model

in the training stage. In the adaption stage, meta learning re-

trains all parameters on the new task whereas transfer learning

only re-trains the parameter of the last layer while retaining

the rest parameters.

IV. ONLINE META-LEARNING ALGORITHM

Although the proposed offline learning algorithms offer

effective strategies to achieve fast adaptation to a new task,

the design of the adaptation stage is based on the assumption

that the dataset used for adaptation is available in advance and

comes from a stationary distribution. Under this assumption,

the offline adaptation algorithms may not perform well in real-

world wireless communication applications, such as vehicular
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Algorithm 2: The proposed offline adaptation algorithm based on meta-
learning.

Input: Learning rate α and β, batch size Nb, meta-training task set

{Tmt(k)}
Kmt
k=1

, support set Dmts(k)
Kmt
k=1

with Ns labelled

data, query set Dmtq(k)
Kmt
k=1

with Nq labelled data, the number
of inner-task update steps Gin, adaptation dataset DAp,

and the number of adaptation steps GAp

Output: Learned initial network parameter θ

Meta− training
1) Randomly initialize the network parameter θ
2) while not done do

3) Randomly sample batch of task Tk from {Tmt(k)}
Kmt
k=1

4) for Tk, k = 1, . . . , Nb do

5) Randomly sample support set Dmts(k) with Ns sample pair and
query set Dmtq(k) with Nq sample pair from Tk

6) for i = 1, . . . , Gin do

7) Evaluate the gradient of the loss function of task k on
Dmts(k)

8) Update the task parameter based on (10) and (11)
9) end

10) end

11) Update the global network parameter θ by (13) or by using ADAM
optimizer

12) end while

Meta− adaptation
1) Initialize φAp ← θ
2) for j = 1, . . . , GAd do

3) Update all parameters in φAp by using ADAM
4) end

communications in which the communications environment

may keep changing. This is because of two reasons: 1)

the channel is likely to become available sequentially since

channel estimation methods normally need time to first ob-

tain the channel statistics and then estimate the channel; 2)

the channel may follow a non-stationary distribution as the

environment continues to change. In order to enhance the

adaptation capability of the proposed offline meta-learning

algorithm in real-world applications, we propose an online

adaptation algorithm in this section based on the online meta-

learning framework introduced in [36].

A. Online learning

Online learning is a learning paradigm which uses the idea

of continual learning on a non-stationary distribution of tasks

over time [37]. The learner aims to sequentially learn the

model parameter θt over all time slots. In order to measure the

learning ability of a learner, the notion of regret is introduced,

which is defined as difference between the cumulative loss of

the learner
∑T

t=1 LossDt
(θt) and the cumulative loss of best

single model
∑T

t=1 LossDt
(θ). The parameter θt is determined

by the online learner, while and the parameter θ is obtained

by training the model based on the hindsight data [38]. The

aim of online learning is to design an algorithm which can

make the corresponding regret grow as slowly as possible.

FTL is a standard online learning algorithm [37] which aims

to update the parameter θt at slot t based on the sum of the

loss functions of the previous data Dt−1. It can be expressed

as

θt = argmin
θ

t−1
∑

k=1

LossDk
(θ). (15)

B. Online Meta-learning

FTL may not learn an effective online model because

it trains a single model on a single dataset from all prior

time slots. In order to learn effective models to adapt to the

non-stationary scenario, we consider to incorporate the meta-

learning technique into FTL to design the online adaptation

algorithm. Note that we cannot directly apply the offline meta-

training learning introduced in section III-B to design the on-

line algorithm for the following reason. In the offline scenario,

the data used for adaptation are available in advance and come

from a stationary distribution, which means all data in the

adaptation set can be used to adapt the learning model. In the

online scenario, however, the data used for adaptation arrive

sequentially and may come from a non-stationary distribution,

which means we cannot use the whole data in the adaptive

set to implement the adaptation like the offline scenario. We

need to use the cumulative data to implement adaptation in an

online manner. Based on the aforementioned difference, in the

following we will provide details for the design of our online

meta adaptive algorithm.

Similar to the offline meta learning algorithm in section

III-C, the proposed online meta algorithm involves two pro-

cesses of calculating the gradient in the meta training phase.

The first gradient is used to update the task-specific parameter

based on the network parameter. The second gradient is used

to update the network parameter based on the updated task-

specific parameters. To implement online learning, we assume

that data received at each time slot is a task for adaptation in

subsequent time slots, and each task includes N input/output

pairs for each user. We use Tt to denote the task of the time

slot t. Then, we define an empty task set Bt to store the data

of the task Tt at the time slot t. Notice that there is no training

process at the beginning t = 0. In the following, we use time

slot t > 1 as the example to describe the online learning

process of the proposed algorithm. At the beginning of the

time slot t, the algorithm uses the task set Bt to store the

sample pairs of Tt as the data of the task Tt arrives. The

algorithm samples a minibatch of tasks with size Ntask from

previous task sets {Bk, k = 0, . . . , t − 1}. For each task in

the minibatch, we sample its training set Dtr
k with Ntr sample

pairs and validation set Dval
k with Nval sample pairs from the

corresponding task set Bk, k = 0, . . . , t− 1. In the following,

we will describe two iterative processes, one is the process

to update the task-specific parameter and the other one is to

update the network parameter at the time slot t. First, we use

task Tk as an example to describe the updating process of

the task-specific parameter. Based on the training set Dtr
k , the

task-specific parameter φk for task Tk can be updated by the

stochastic gradient descent method as follows:

φk ← θt − β∇θtLossDtr
k
(θt), (16)

where β is the learning rate, Loss is the MSE loss function

provided in (5). θt is the network parameter at the time slot

t, which is used to initialize the task-specific parameter φk

of the task k at the beginning of the updating process. The

equation in (16) is used for the first gradient descent update

on the task parameter φk. If multiple gradient descent updates
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Algorithm 3: The proposed online meta-learning algorithm.

Input: Learning rate α and β, offline trained network parameter θmeta,
empty task sets Bt, ∀t, the number of inner update

steps Nin, the number of adaptation steps Nad, the number of
minibatch size Ntask , the received sample pairs N , the

sample pairs of training set and validation set Ntr and Nval

Output: Learned network parameter θt for each slot t

1) initialize the network parameter θ1 ← θmeta

2) for t = 0, . . . do

3) if t = 0
4) B0 ← {h0,q0} of task T0
5) else

6) Bt ← {ht,qt} of task Tt
7) while not done do

8) random sample a minibatch of tasks and the corresponding
set Dtr

k
and Dval

k
from Bk , k = 0, . . . , t− 1,

9) for all sampled task do

10) for j = 1, . . . , Nin do

11) update the parameter of each task by (16) and (17)
12) end for

13) end for

14) update the shared network parameter θt by using (18)
15) end while

16) −−−−−−−−−−Adaptation−−−−−−−−−
17) initialize θad ← θt
18) for n = 1, . . . , Nad do

19) update θad on current task set Bt: θad ←
θadβ∇θad

LossBt (θad)
20) end for

21) θt+1 ← θt
22) end if

23) end for

are used, the updating equation after the first update is given

by

φ
(j)
k ← φ

(j−1)
k − β∇

φ
(j−1)
k

LossDtr
k
(φ

(j−1)
k ), (17)

where superscript j of φk is the index of the iterative step and

j = 2, . . . , Nin. Second, we move to estimate the network

parameter once the updating process of the task-specific pa-

rameter for each task in the minibatch is finished. Note that the

same task may appear several times in a minibatch. Hence, we

use index Zk ∈ [0, Ntask] to record the number of appearance

times of task Tk in the corresponding minibatch. Based on

the updated task-specific parameter φNin

k of each task in the

minibatch, the shared network parameter θt at the time slot t
can be updated using the validation set of the corresponding

tasks as follows:

θt ← θt − α∇θ

t−1
∑

k=1

ZkLossDval
k
(φNin

k ), (18)

where α is the learning rate. Once the iterative procedure of

updating the network parameter θt of time slot t is finished,

we adapt the trained model using the current received the data

in Bt. The process is repeated in the next time slot t + 1.

Full details of the online meta adaptation are summarized in

Algorithm 3. We use the network parameter obtained from

offline meta learning as the initialized network parameter for

the learning algorithm.

V. SIMULATION RESULTS

In this section, numerical simulations are carried out to

evaluate the advantages of the proposed adaptive beamforming

optimization algorithms for different wireless communications

scenarios. A MISO downlink system with one BS and multiple

users is considered. The main simulation parameters are set as

follows: carrier frequency is 2.9 GHz, bandwidth is 20 MHz,

noise power spectral density is -174 dBm/Hz, the learning

rates are α = 0.001, β = 0.01, the iterative steps are

Gin = Gad = Nin = Nad = 20, and the batch size is

Nb = 20. Other specific parameters including the number

of antennas at the BS M , the number of users K and the

transmit power P are provided in each figure. All input data

and corresponding labels are generated by using MATLAB.

Tensorflow 2.0.0 and Keras 2.3.1 are used to implement the

proposed DTL algorithm. PyTorch 1.4.0 is used to implement

the proposed meta-learning algorithms. All simulation results

are generated by using a computer with Intel i7-7700HQ CPU

and 8 GB RAM.

In our simulation, we assume that the BS can obtain perfect

CSI based on channel estimation or feedback. Each sample

pair in all datasets is composed of channel realization and the

uplink power allocation vector. For each channel realization,

we can generate its associated uplink power allocation vector

by solving the uplink problem (3). Channel realizations of

the testing dataset and the adaption dataset come from the

same distribution. The distribution of channel realizations in

the testing dataset is different from that of the training dataset.

The channel realizations in training dataset used for transfer

learning and meta-learning algorithms are generated by using

three small-scale fading channel models: Rayleigh model with

distribution CN (0, IM ), Rician model with rician factor 3, and

Nakagami model with fading parameter 5 and the average

power gain 2. We generate 5000 channel samples for each

of the three small fading models. Hence, the training dataset

includes 15000 sample pairs. For meta-learning algorithm,

we randomly sample labelled data from 15000 sample pairs

to construct 1500 tasks, Kmt = 1500. Each task includes

Ns = 50 training sample pairs and Nq = 50 validation sample

pairs. In addition, 5000 testing sample pairs are generated

for each testing channel model, which uses different channel

distribution from the training data. The DL network shown in

Fig. 1 includes eleven layers, one input layer, two CL layers,

two BN layers, three AC layers, one flatten layer, one FC

layer, and one output layer. The input size of the input layer

is 2 ×MK. For the two CL layers, each CL layer applies 8

kernels of size 3× 3, one stride, and one padding. The input

size of the first CL layer equals to the size of the input data.

The input size of the second CL layer and the output size

of both CL layers equal to 2×MK × 8. Besides, ReLU and

Sigmoid functions are adopted at the first two activation layers

and the last activation layer, respectively. Adam optimizer is

adopted [39]. The exponential decay rates for the first moment

estimates and the second moment estimates are set to 0.9 and

0.999, respectively. The epsilon of Adam is set to 10−8.

We consider the following four typical fading scenarios

for testing the adaptation capability of the proposed learning

algorithms:

• Large-scale fading case: this model is a typically fading

model used in communications systems.
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• WINNER II indoor case: the WINNER II indoor office

scenario specified in [40].

• WINNER II outdoor case: a typical WINNER II urban

scenario specified in [40].

• Vehicular case: we adopt an urban vehicle-to-

infrastructure (V2I) scenario defined in Annex A

of 3GPP TR 36.885 [41].

For comparison, we introduce other three benchmarks,

namely, the optimal solution, the BNN solution, and the

joint learning solution. The definitions of all solutions for

comparison are listed below:

• The optimal solution: this solution shows the optimal

result of the problem in (2) obtained by using the iterative

algorithm proposed in [3]. It serves as a performance

upper bound for all other schemes.

• The BNN solution: this solution [25] shows the predicted

result, which is obtained based on the assumption that

wireless channels in the training dataset follow the same

fading distribution as those in the testing dataset. It

provides a performance upper bound for our proposed

adaptive algorithms.

• The transfer learning solution: this solution shows the

adaptation result of the proposed DTL algorithm in

Section III-A.

• The meta-learning solution: this solution shows the fast

adaptation result of the proposed meta-learning algorithm

in Section III-B.

• The joint training solution: this solution shows the result

obtained by training the neural network using all available

data without adaptation.

For fair comparison, we set the same convergence criteria for

the iterative procedures of all schemes. In addition, we set the

same size of training set of fine-tuning for transfer learning

and meta-learning algorithms. The results and analysis are

provided for each case below.

A. Large-scale fading case
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The number of fine-tuning samples
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Fig. 3. The comparison of fine-tuning samples for meta and transfer learning
when M = 8,K = 8.

In this case, the pathloss model is given by PL = 128.1 +
37.6 log10(d [km]), where d is the distance between a user and

BS. The shadow fading follows the log-normal distribution

with zero mean and 8 dB standard deviation. The Rayleigh

fading channel with zero mean and unit variance is adopted

as the small-scale fading for this case. All users are randomly

distributed within a disc with a radius of 500 m. In order

to choose the proper size of fine-tuning samples for the

proposed two adaptation algorithms, we first investigate the

effect of the number of fine-tuning samples used in the

transfer learning and the meta-learning algorithms in Fig. 3.

As the figure shows, the SINR increases when the number

of fine-tuning samples increases for both algorithms under

different transmit power settings. The SINR generated by

the proposed meta-learning algorithm almost converges by

using only 20 fine-tuning samples. However, there is still an

obviously gap (almost 1 dB for 25 dBm and 0.5 dB for 20 dBm

of transmit power) between the meta-learning and transfer

learning algorithms when the number of fine-tuning samples

increases to 100. By considering the adaptation overhead and

the SINR performance, we choose 20 samples for fine-tuning

of the transfer-learning and the meta-learning algorithms in all

testing channel models.

Based on the 20 fine-tuning samples, we demonstrate the

adaptation capability of the proposed algorithms via the SINR

performance using two different metrics in Fig. 4. Fig. 4(a)

shows the effects of the transmit power on the SINR perfor-

mance. As can be seen, the SINR increases as the transmit

power increases for all schemes. The SINR result generated

by the proposed meta-learning algorithm is very close to

that of the BNN scheme which validates its effectiveness.

It is observed that the performance gap between the trans-

fer learning and the meta-learning is significantly enlarged

as the transmit power increases. The joint training scheme

without adaptation achieves the worst SINR compared to other

schemes. In Fig. 4(b), the SINR performance becomes worse

as the number of users increases. The proposed meta-learning

algorithm still produces better result which is close to the

BNN scheme, compared to the transfer learning and the joint

training scheme. It is interesting that there is an obviously

reduction of the SINR performance gap between the meta-

learning algorithm and the transfer learning algorithm when

the number of users is greater than 6. This is because more

channel features can be extracted and transferred by using the

transfer learning algorithm as more users are involved. Overall,

the results plotted in Fig. 4 demonstrates that the proposed

meta-learning algorithm provides an efficient beamforming

adaptation solution.

B. WINNER II indoor case

In the WINNER II indoor case, we assume that the access

point (AP) and users are located on the same floor. Users

are randomly located between 10 m to 100 m away from

the AP. We adopt the corridor-to-room scenario, in which

only non line-of-sight (NLOS) path is considered due to the

blocked light-of-sight (LOS) path. The pathloss is given by

PL = 43.8+36.8 log10(d [m])+ 20 log10(fc/5)+5(nw− 1),
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Fig. 4. The SINR performance comparison on large-scale case for different
metrics: (a) transmit power when M = 4, K = 4 and (b) the number of
users when M = 8, P = 25 dBm.

where fc is carrier frequency and nw is the number of

walls. The standard deviation of shadow fading is 4 dB. The

adaptation capability of the proposed learning algorithms in

the WINNER indoor case is investigated in Fig. 5 based on two

factors: the transmit power at the AP and the number of walls.

Fig. 5(a) shows that the adaptation capability of the proposed

meta-learning algorithm in the indoor fading case is similar

to that demonstrated in the large-scale case. Different from

the results shown in Fig. 4(a), the SINR performance of the

transfer learning algorithm is close to that of the meta-learning

algorithm when the transmit power is smaller than 15 dBm in

Fig. 5(a). This fact may indicate that the system needs to spend

more power on overcoming the fading caused by the walls.

Hence, the effects of the number of walls on the adaptation

capability for the proposed algorithms are provided in Fig.

5(b). As can be seen from Fig. 5(b), the SINR performance

decreases for all schemes when the number of walls between

the user and AP increases. In addition, the performance gap

between the meta learning and the transfer learning algorithm

rapidly reduces as the number of walls increases.
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Fig. 5. The SINR performance comparison in the WINNER II indoor case
when M = 4, K = 4: (a) transmit power when nw = 2 and (b) the number
of walls when P = 25 dBm.

C. WINNER II outdoor case

In the WINNER II outdoor case, we assume that the BS

is located in the cell center and covers a disc with a radius

of 1000 m. Users are randomly distributed between 100 m

to 1000 m away from the BS. The pathloss and shadowing

of LOS in WINNER B1 are adopted to generate the large-

scale fading for this case. Fig. 6 demonstrates the adaptation

capability of the proposed learning algorithms in the WINNER

II outdoor case through the SINR performance. As can be seen

from Fig. 6, the proposed meta-learning algorithm achieves the

highest SINR performance compared to the proposed transfer

learning algorithm and the joint training algorithm as the trans-

mit power and the number of users change. Compare with the

SINR performance in Fig. 4(a) and Fig. 5(a), the performance

gap between the proposed transfer learning algorithm and the

joint training algorithm is significantly increased when the

transmit power is greater than 15 dBm in Fig. 6(a).

D. Vehicular case

In the vehicular case, we use the Manhattan grid layout with

the region size of 750 m × 1299 m to set up a realistic V2I
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Fig. 6. The SINR performance comparison in the WINNER II outdoor case:
(a) transmit power when M = 4, K = 4 and (b) the number of users when
M = 8, P = 25 dBm.

communication scenario as shown in Fig. 7. The size of each

grid is 250 m× 433 m. There are two lanes in each direction

for vehicles with 3.5 m lane width. The BS is located in the

center of the layout. The vehicles are uniformly placed on

each direction of the road. The probability of each vehicle to

change its direction at the intersection is set to be 0.4. Each

vehicle will change its direction when it arrives at the edge

of the layout. We assume that the velocity of each vehicle is

60 km/h. The pathloss and shadowing adopted in this case are

the same to those in the large-scale case. Besides, the antenna

gains of the BS and each vehicle user are set to be 8 dBi

and 3 dBi, respectively. The decorrelation distance is set to 50

m. We use Clarke’s model introduced in [42] to generate the

small-scale fading of the moving vehicles.

The effects of the transmit power and the number of vehicles

on the SINR performance are presented in Fig. 8(a) and Fig.

8(b), respectively. For both factors, the SINR performance of

the proposed meta-leaning algorithm is close to that of the

BNN scheme. Fig. 8(a) shows that the proposed meta-learning

and transfer learning algorithms significantly outperform the

joint training scheme when the transmit power is greater than

Fig. 7. Manhattan road grid 750 m× 1299 m [41].

14 dBm. There exists an obvious performance gap between

the two learning algorithms when the transmit power is greater

than 25 dBm. Fig. 8(b) shows that the meta-learning algorithm

significantly outperforms the transfer learning algorithm and

the joint training method. The SINR performance gap between

the transfer learning algorithm and joint training method

becomes large as the number of vehicles increases. Similar

to the above three fading cases, the proposed meta-learning

algorithm provides superior performance thanks to its fast

adaptation even in the moving scenario. Fig. 8(c) shows the

comparison of the execution time between the proposed algo-

rithms (same for the transfer learning and the meta-learning

algorithms) and the optimal solution. From the figure, we can

see that the proposed learning algorithms requires much less

time compared to the optimal solution. This is because no

iterative process is used in the proposed learning algorithms

to predict the beamforming solution.

In addition, we compare the fine-tuning execution time of

the meta-learning algorithm and transfer learning algorithm

in Table I. The results are obtained by using 20 fine-tuning

samples and 20 iterative steps. In order to make the fair

comparison between the proposed two algorithms, the adaption

of the transfer learning algorithm is also implemented by using

PyTorch. From Table I, we can see that the execution time of

the transfer learning algorithm to achieve adaption is less than

that of the meta learning algorithm and this is because only

part of the neural network needs to be re-trained in transfer

learning.
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TABLE I
COMPARISON OF FINE-TUNING EXECUTION TIME BETWEEN META LEARNING AND TRANSFER LEARNING.

No. Users 2 3 4 5 6 7 8

Meta-learning (ms) 95 97 100 102 106 108 113

Transfer learning (ms) 74 78 80 85 87 90 95

E. Online learning

In this case, we evaluate the performance of the proposed

online meta-learning algorithm in real-world non-stationary

scenarios. We consider mobile users travelling from outdoor

to urban and then highway environments in the simulation to

investigate the adaptation capability of the proposed online

algorithm in the changing environments. The WINNER II

outdoor and vehicular case are used to generate channel

data for the outdoor and urban scenarios, respectively. The

freeway case introduced in 3GPP TR 36.885 [41] is used to

generate channel data for the highway scenario. The number

of lanes in each direction and the velocity of each vehicle

are set as 3 and 120 km/h, respectively. The antenna gains

of the BS and vehicle in the urban and highway scenario are

set as 8 dBi and 3 dBi, respectively. We set the minibatch

Ntask = 20, the same sample pairs for training set and

validation set Ntr = Nval = 4. The results of the online

joint adaptation algorithm is obtained by using the FTL

method. Fig. 9 shows the adaptation performance comparison

between the proposed offline and online learning algorithm

over the whole communications period as the users move

across different environments. Each simulation point in the

figure is obtained by averaging all of the actual experimental

points at the individual time slots over the previous time slots

in the corresponding communications scenario. To implement

simulation, we assume that five adaptation channels N = 5
and ten testing channels of each user are received at each time

slot. Each communications scenario lasts 50 time slots. For

the offline meta adaptation case, the neural network model

will be updated periodically at every 60 time slots based

on the collected channel information during that period. For

the offline upper bound case, we assume that the system

knows the exact environment for all communications scenarios

in advance and also knows when to update the model, so

it provides a performance upper bound. The online joint

adaptation uses all data until slots t − 1 to train the model

and then use the data at slot t to fine tune the model. As we

can see from the figure, there is an obvious drop on the average

SINR for all cases when the communications scenario changes,

which indicates that the changing communications scenario

can significantly affect the system performance. There exists

an obvious gap between the online algorithm and the offline

upper bound, and the performance gap is obviously enlarged

when the communication scenario changes from outdoor to

urban, whereas the performance gap is slightly increased when

the scenario changes from urban to highway. The reason is

that urban and highway are both scenarios with high mobility

and they share more similar channel statistics features. It

is interesting to point out that the offline meta adaptation

algorithm performs worse than the online joint method from

the beginning of the urban scenario to the beginning of

the highway scenario. The reason is that the offline meta

adaptation algorithm still uses the trained model based on

the previous scenario (outdoor/urban) to the new scenarios

(urban/highway). The difference in mobility between different

environments causes the task mismatch issue for the offline

meta learning algorithm before its periodic update. Whereas

the offline meta adaptation algorithm outperforms the online

joint method after updating its model in the highway case.

This fact indicates that the offline algorithm heavily relies

on the stationary environment. The proposed online meta

adaptation algorithm has the best performance compared to the

online joint method and the offline meta adaptation, and it can

fast adapt to the new communications scenario by effectively

making use of sequential data.

VI. CONCLUSION

In this paper, we have proposed two offline learning al-

gorithms to achieve fast adaptation on the beamforming de-

sign when the distribution of testing wireless environments

changes. For the DTL algorithm, it utilizes the pre-trained

model to re-train part of the parameter in order to achieve

the adaption on the new environment. Different from the

DTL algorithm, the meta learning algorithm aims to learn

the parameter initialization, which can be used to achieve

fast adaption to the new environment by re-training the whole

neural network. In order to enhance the adaption capability of

the proposed offline meta-learning algorithm in the real-world

scenarios, an online adaptive learning algorithm was proposed

based on the meta-learning algorithm and the FTL approach.

Simulation results demonstrated that both offline algorithms

can achieve fast adaption when testing data come from a dif-

ferent distribution, and the proposed meta learning algorithm

provides better generalization ability by using slightly more

adaptation time compared to the DTL algorithm. The online

adaptive algorithm can significantly enhance the adaption

capability of the proposed offline meta-learning algorithm in

non-stationary scenarios. In this paper we only consider a

single task distribution which is to optimize beamforming. In

the future, we plan to use the lifelong learning technique [43]

to solve more complex problems in self-organizing networks,

in which tasks may come from different distributions, so

bidirectional learning, knowledge retention and accumulation

are necessary.
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