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Abstract: Plant taxonomy is the scientific study of the classification and naming of various plant
species. It is a branch of biology that aims to categorize and organize the diverse variety of plant life
on earth. Traditionally, plant taxonomy has been performed using morphological and anatomical
characteristics, such as leaf shape, flower structure, and seed and fruit characters. Artificial intelli-
gence (AI), machine learning, and especially deep learning can also play an instrumental role in plant
taxonomy by automating the process of categorizing plant species based on the available features.
This study investigated transfer learning techniques to analyze images of plants and extract features
that can be used to cluster the species hierarchically using the k-means clustering algorithm. Several
pretrained deep learning models were employed and evaluated. In this regard, two separate datasets
were used in the study comprising of seed images of wild plants collected from Egypt. Extensive
experiments using the transfer learning method (DenseNet201) demonstrated that the proposed
methods achieved superior accuracy compared to traditional methods with the highest accuracy
of 93% and F1-score and area under the curve (AUC) of 95%, respectively. That is considerable in
contrast to the state-of-the-art approaches in the literature.

Keywords: clustering; deep learning; plants taxonomy; AI; transfer learning; DenseNet201

1. Introduction

Plant taxonomy has been performed using morphological and anatomical characteris-
tics, such as leaf shape, flower structure, and seed and fruit characters. Additionally, with
the advent of molecular biology and genetics, it is now possible to use DNA analysis to aid
in the classification of plant species [1]. The morphological characteristics of the seed play
an important role in the identification and classification of the plant. These characteristics
are collected and modified as a data matrix and used with a statistical program such as
PRIMER to help the scientists to illustrate the relationship as a dendrogram. Recently,
clustering algorithms have been used to discover underlying patterns in the image data
and to form categories that can be used for image taxonomy. Image clustering is the pro-
cess of grouping similar images together to simplify and organize large image datasets.
Clustering has been extensively studied in the field of machine learning and computer
vision. Deep learning has revolutionized the field of image clustering, enabling the more
accurate and efficient clustering of large-scale image datasets. This research review will
summarize the recent advancements in image clustering using deep learning. AI deep
learning algorithms complement and enhance the traditional methods of plant taxonomy
by providing a more efficient and objective approach to categorizing plant species. This can
help in the preservation and protection of biodiversity and gaining a better understanding
of the relationships between different plant species. Image clustering can be performed
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using various algorithms such as k-means, hierarchical clustering, and spectral cluster-
ing. However, these methods have limitations in terms of accuracy and scalability. Deep
learning-based approaches have shown promising results in overcoming these limitations.
Deep learning algorithms are capable of automatically learning features from images,
which can then be used for clustering. Considering that datasets are an essential part of
model building and evaluation, and although the study sample is not representative of
all wild plants and cannot generalize it to cultivated plants, they may need to apply to
different species.

In the current study, two separate datasets consist of images of wild plant seeds col-
lected from Egypt. After image preprocessing, such as image denoising, filtering, and
resizing, convolutional neural networks (CNNs) are used to extract features from the
images and clustering is consequently performed. The extracted features are based on
the shape of the seed, the color of the seed, and other characteristics of the seed. The
proposed clustering algorithm groups the plants based on their similarities in these features.
Making and constructing a CNN model from scratch is a tedious job compared to utilizing
the existing pretrained deep learning models. These models are pretrained on relatively
larger datasets and better fine-tuned. As a result, depending on the application, multiple
models may be used or retrained, a notion known as transfer learning. Fine-tuning includes
adjusting the number of convolutional layers, the number of filters, the stride window
length, the filter size, the max-pooling, and the inclusion of dropout between layers [2].
A variety of pretrained CNN models are available for prediction, feature extraction, and
fine-tuning. The performance of CNN models is heavily dependent on their architecture.
For instance, AlexNet [3] is one of the best-known CNN architectures that performs very
well in image classification, followed by VGG-16 [4], ResNet [5], DenseNet [6], and Mo-
bileNet [7], respectively. The current study picks up the best models among them based on
a comprehensive literature review and authors’ experience.

The rest of the article is sectioned as follows: Section 2 presents a review of the related
literature. Section 3 is dedicated to presenting the proposed transfer learning approach.
The results and discussion are provided in Section 4, while Section 5 concludes the paper.

2. Review of the Literature

Deep learning is a subfield of machine learning that is focused on developing artificial
neural networks with multiple layers to model complex data. Over the past few decades,
deep learning has made significant advances in various domains, such as computer vision,
natural language processing, speech recognition, and robotics.

2.1. Classification Using Deep Learning

CNNs are a class of neural networks that are particularly well-suited for image and
video recognition tasks [8]. In recent years, researchers have developed numerous vari-
ations of CNNs, such as residual networks (ResNets), inception networks, and attention
mechanisms. These networks have achieved state-of-the-art results in image classification,
object detection, and semantic segmentation tasks. Another technique used a deep learn-
ing approach to learn discriminative features from leaf images with classifiers for plant
identification [9]. The authors in [10] introduced a new convolutional-neural-network-
architecture-based model for classifying plant images.

The new method used in image classification is the transfer learning technique; three
models are visible in [11], in which the AyurLeaf CNN model is assessed and compared
to the AlexNet, Leaf, and fine-tuned AlexNet versions, with an accuracy of 96.76%. The
study of plant taxonomy examines the classification of various plant species. The aforemen-
tioned study discovered that transfer learning enhances the performance of deep learning
models, particularly those that employ deep features and use fine-tuning to produce
better performance.

The authors in [12] presented an extension work to [13] with an adaptive algorithm
that relies on deep adaptive CNNs, which are a class of neural networks that are particu-
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larly well-suited for image and video recognition tasks. In recent years, researchers have
developed numerous variations of CNNs, such as residual networks (ResNets), inception
networks, and attention mechanisms. These networks have achieved state-of-the-art results
in image classification, object detection, and semantic segmentation tasks. In [14], D-Leaf,
a cutting-edge CNN-based strategy, was presented. The three pretrained CNN models—
pretrained AlexNet, fine-tuned AlexNet, and D-Leaf—were applied, respectively. With
respect to three publicly accessible datasets—the MalayaKew, Flavia, and Swedish Leaf
Datasets—these techniques have an accuracy rate of 90–98%, enhancing the performance
of classifying plant species.

Similarly, the authors in [15] presented Inception v3, ResNet50, and DenseNet201, used
to further increase a dataset’s diversity; they used a variety of augmentation operations
on the dataset, which contained 256,288 samples, and a noisy set, with 1,432,162 samples.
Currently, a pretrained AlexNet that has been improved is ranked fourth [16]. To provide
thorough empirical guidance indicating that residual networks are easier to refine and
can attain precision by significantly increasing depth with relatively lower complexity as
evident in the ECG classification study [17].

An ensemble of these residual nets managed a 3.57% error rate on the ImageNet test
range. An inception convolutional neural network (CNN) model-based network was used
to pretrain the model with ImageNet and refine it with the PlantCLEF database. They
combined the results of five CNNs after they had been tuned using randomly chosen
database segments. On the other hand, the optimization of the hyperparameters was not
finished [18]. The authors in [19] presented a design of a multi-input CNN for large-scale
flower grading and achieved 89.6% accuracy by using the augmentation technique. The
study in [20] proposed a method of reliably matching between various views of an object or
scene using distinctive invariant features that can be extracted from images. An overview
of techniques for identifying plant species and extracting features from leaf images was
given in [21].

A similar study, [22], presented a proposed model which performed better when using
validation data when compared to other well-known transfer learning techniques. In [23],
the authors created a data article for a dataset containing examples of pictures of fruit
and leaves from healthy citrus trees. Transfer learning is a machine learning technique
in which knowledge learned from one task is applied to a related but different task [24].
Ibrahim et al. in [25] proposed a novel deep learning approach to fruit identification and
its family classification based on a fruit image dataset. In this regard, two different datasets
were used individually as well in an augmented form. Several deep learning models were
investigated, and it was concluded that the proposed CNN model outperformed the other
models with the highest accuracy of 99.82%. In transfer learning, the knowledge gained
from a pretrained model is used as a starting point for training a new model, rather than
starting from scratch [26–28].

2.2. Clustering Using Deep Learning

Clustering is a fundamental unsupervised machine learning technique that involves
grouping similar data points together. However, evaluating the quality of clustering results
can be challenging due to the absence of ground truth labels. Several clustering evaluation
methods have been proposed in the literature to assess the effectiveness of clustering
algorithms. One of the commonly used clustering evaluation methods is the silhouette
score [29]. This method measures the degree of similarity between data points within
clusters and dissimilarity between data points in different clusters. A higher silhouette
score indicates that clustering is more effective.

The Rand index and adjusted mutual information [30] are two evaluation methods
that compare the clustering results to a known ground truth clustering. The Rand index
measures the similarity between the clustering results and the ground truth, while AMI
adjusts for chance agreement. A higher Rand index or AMI indicates better agreement
between the clustering results and the ground truth. In conclusion, there are several
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clustering evaluation methods that can be used to assess the effectiveness of clustering
algorithms. However, it is essential to keep in mind that each method has its strengths
and weaknesses, and using multiple methods is often necessary to gain a comprehen-
sive understanding of the clustering results. This approach proves advantageous in sit-
uations where there is a scarcity of data for the specific task at hand or when the task
closely resembles an existing task for which ample data and computational resources are
already accessible.

Several deep learning algorithms have been proposed for image detection, classifica-
tion, and clustering, including CNNs, autoencoders, and generative adversarial networks
(GANs) [31,32]. CNNs have been widely used for image clustering due to their ability to au-
tomatically learn hierarchical features from images. Deep embedded clustering (DEC) is a
popular clustering algorithm based on CNNs that uses a two-stage process of unsupervised
pretraining followed by clustering. Other CNN-based clustering algorithms include convo-
lutional autoencoder clustering (CAE-C) and deep convolutional autoencoder clustering
(DCAE-C) [33].

Autoencoders are neural networks that learn a compressed representation of the
input data. They have been used for image clustering by training an autoencoder to
reconstruct input images and using the learned encoder to generate feature vectors for
clustering. Clustering using deep autoencoders (CDAs) is an example of an autoencoder-
based clustering algorithm [34].

Based on the literature review, the following can be concluded:

1. Deep learning is among the potential successful candidates in image feature extraction.
2. In botanical studies, there is a dire need to investigate transfer learning algorithms for

seed taxonomy.
3. Hierarchical clustering algorithms can be investigated for automated clustering seeds

that can set potential applications for classification in the future.
4. The following are the most commonly used deep learning models for images:

DenseNet121, DenseNet201, ResNet50V2, EfficientNetB6, EfficientNetB1, Efficient-
NetB0, MobileNetV2, EfficientNetB3, VGG16, VGG19, EfficientNetB5, EfficientNetB7,
EfficientNetB2, and EfficientNetB4.

3. Proposed Transfer Learning Approach

Transfer learning allows a model to learn from a pretrained model, which reduces the
amount of data and computational resources required to train the model from scratch. It
can help improve the performance of a model by leveraging the knowledge gained from a
pretrained model. Moreover, it can improve the generalization performance of a model,
and it allows the model to learn from a larger and more diverse set of data [26–28]. In the
context of plants, taxonomy involves classifying plants into different groups based on their
morphological, physiological, and molecular characteristics.

This study proposes applying deep learning methods to extract characteristics from
seed images, such as (Seed Color, Seed Texture, Seed Shape, Seed Margin, Hilum Position,
Hilum Shape, Hilum Level, Coma Color, Coma Duration, and Coma Position). The system
architecture consists of seven phases, as shown in Figure 1.

The diagram provides the steps involved in the proposed approach as well as the tradi-
tional approach. Data were collected from various sources comprising of images of various
plant species. In the proposed approach, a dataset is preprocessed by image denoising,
filtering, and resizing so it can become suitable for the following feature extraction block
where various pretrained deep learning models have been employed. After that, clustering
is performed as illustrated by the dendrogram. Finally, the evaluation takes place by means
of contrasting with the traditional approach.
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Figure 1. Proposed system architecture.

1. Common Processes:

a. Data acquisition.

2. Traditional Statistical Processes:

a. Feature extraction;
b. Clustering method.

3. Deep Learning:

a. Image preprocessing;
b. Feature extraction;
c. Deep learning clustering.

The proposed system shown in Figure 1 presents an AI model that utilizes a pretrained
deep learning model to extract image features for the purpose of image clustering. The
model aims to leverage the power of pretrained models, which have been trained on
large-scale datasets, to extract high-level and discriminative features from images. These
extracted features will then be used to group similar images together in a clustering
algorithm; the following sections present these steps one by one.

3.1. Data Acquisition

The dataset of this research was seeds of three families (Brassicaceae, Apocynaceae,
and Asclepiadaceae); the first family of samples include 22 seed images, and the second
family includes 14. All these samples were collected from areas of wild plant families from
the various deserts of Egypt, and the current study involved the first machine learning and
AI experiments applied on this dataset. We aimed to take advantage of modern technology
such as deep learning techniques to extract the features of these image samples without
effort, since before, great effort was required to extract the features which are the core of
the classification or clustering process.

Figure 2 shows the first family with 22 species images and Figure 3 shows the second
family with 14 species. These species images were used in the current study.
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3.2. Traditional Statistical Clustering Approach

In the traditional statistical clustering method, the feature list descriptions for the
first dataset are specified in Table 1. As already mentioned, the first dataset contained
22 species of Brassicaceae, as given in Figure 1. There were five features of each seed, as
enlisted in Table 1, namely: color (with four possible values, each encoded as 1 to 4), texture
(with possible four values from 1 to 4), shape (with five possible values ranging from 1 to
5), margin (with two possible values, 1–2, as seeds with a wing or no wing), and hilum
position (with two possible values of terminal or subterminal). In this step, the features’
values are encoded in decimals, depending on the possible outcomes (types).

Table 1. Feature list for species of Brassicaceae.

Feature Values

Color Brown [1]/yellowish-brown [2]/yellow [3]/dark brown [4].
Texture Smooth [1]/reticulate [2]/tuberculate [3]/rough [4].
Shape Oblong [1]/globose [2]/broad ovate–subglobose [3]/D-shaped [4]/kidney [5].
Margin Seed winged [1]/not winged [2].
Hilum position Subterminal [1]/terminal [2].
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The features are listed in Table 2 with their explained encoding, which was used as an
input to the statistical application to measure the distance between the studied species and
subsequently demonstrate the result as dendrograms. The table presents the data matrix of
the Brassicaceae seed morphological characters.

Table 2. Data matrix of Brassicaceae seed morphological characters listed in Figure 1.
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The columns’ labels in Table 2 present the 22 species’ names presented in Figure 1,
while the table entries correspond to the data values presented in Table 1 against each
feature presented in terms of five rows of color, texture, shape, margin, and hilum position
(as expressed in Table 1).

The feature list description for the second dataset that is the species of Apocynaceae
and Asclepiadaceae seeds is presented in Table 3. As mentioned already, the second dataset
contained 14 species of Apocynaceae and Asclepiadaceae. The feature list provided in
Table 3 shows the three main types of seed, hilum, and coma; the seed features are color,
texture, shape, and margin, with corresponding three, five, two, and four possible values,
as given in the third column. Similarly, hilum exhibits three features of position (with two
values), shape (with five possible values), and level (with four possible values). Likewise,
the third type, known as coma, exhibits three features of color, duration, and position with
three, three, and four possible values, respectively.

Table 3. Feature list for species of Apocynaceae and Asclepiadaceae.

Type Feature Values

Seed Color Brown [1]/off-white [2]/black [3].
Texture Warty [1]/tuberculate [2]/irregular striated [3]/hairy [4]/smooth [5].
Shape Globose [1]/flattened [2].
Margin Wingless [1]/winged [2]/folded [3]/hairy [4].

Hilum Position Terminal [1]/central [2].
Shape Oblong [1]/elliptic [2]/conical [3]/linear [4]/oblong–ovate [5].
Level Depressed [1]/semidepressed [2]/elevated [3]/superficial [4].

Coma Color Brown [1]/off-white [2]/absent [3].
Duration Deciduous [1]/persistence [2]/absent [3].
Position Terminal [1]/peripheral [2]/covering the whole seed’s surface [3]/absent [4].
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The features are listed in Table 4 with their explained encoding, which was used as
an input to the statistical application to measure the distance between the studied species
and subsequently demonstrate the result as dendrograms for the second dataset. The
table presents the data matrix of the Apocynaceae and Asclepiadaceae seed morphological
characteristics. The columns’ labels in Table 4 present the 14 species’ names presented in
Figure 2, while the table entries correspond to the data values presented in Table 3 against
three types of corresponding features, presented in terms of ten rows (4 + 3 + 3). This
results in the second dataset with 14 species.

Table 4. Data matrix of Apocynaceae and Asclepiadaceae seed morphological characteristics.
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3.3. Clustering Using Statistical Applications

The associations between the investigated species dataset are shown as dendrograms
in Figures 4 and 5, respectively. These figures were produced using the application named
PRIMER 6, version 6.1.6 for an analysis using the aggregation of the schedule measure of
Euclidean distance and complete linkage between groups.
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In a dendrogram, species are represented by branches, and the length of the branches
represents the distance or dissimilarity between them; the shorter branches are more similar.

3.4. Deep Learning Model
3.4.1. Image Preprocessing

Preprocessing is a technique for removing undesirable noise and improving images by
employing image processing techniques such as smoothing and sharpening [35]. If dataset
images are high-quality, the enhancement process will be very small. This study used image
enhancement methods to improve image quality such as sharpening and removing noise in
the image, and a segmentation process using image segmentation techniques. Open Source
Computer Vision (OpenCV) package was used to apply these techniques; the results of this
phase are shown in Figure 6.
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3.4.2. Feature Extraction

Extracting the features of interest from the segmented seed might involve computing
morphological features, such as shape, texture, and margin, as well as color features, such
as the color of the seed and the coma; extracting features related to the hilum can extract
the position, shape, level, and color. One of the most widely used global descriptors
investigated in the object detection group is the histogram of oriented gradients (HOG)
descriptor. We created a feature extraction process using the CNN model for the current
study [36]. The current study implemented the proposed method using keras applications
by importing (densenet, mobilenet_v2, mobilenet_v3, resnet_v2, . . . , etc.) packages to use
the deep learning models for feature extraction; also, the ReliefF algorithm is commonly
used in machine learning applications to improve the accuracy of models by reducing the
number of irrelevant or redundant features [37]. The formula for ReliefF is as follows:

Relie f F(S, i) = sum(w(S, i, x, y) ∗ di f f (x, y, i))/k (1)

where S is the dataset, i is the index of the feature being evaluated, w (S, i, x, y) is the weight
assigned to the feature i for the samples x and y, diff (x, y, i) is the difference between the
values of feature i for samples x and y, and k is the number of nearest neighbors used in the
algorithm. The algorithm works by iterating over each feature in the dataset and computing
the relevance score for that feature. Features with high relevance scores are important and
are retained in the final feature set, while those with low scores are discarded.

• Time Complexity:

The time complexity of extracting features from each image depends on the complexity
of the pretrained model and the size/resolution of the images. For using DenseNet, the time
complexity is typically proportional to the number of layers and the number of operations
required for each layer. This complexity is usually in the order of O(N), where N is the
number of images.

• Space complexity:

The space complexity of feature extraction depends on the memory requirements of
the pretrained model and the size of the images being processed. The memory required is
typically proportional to the model size and the number of layers. The space complexity is
generally constant in the order of O(1) per image, since only one image is processed at a time.

3.4.3. Deep Learning Clustering

Agglomerative clustering begins with N clusters, each containing one data point.
Following that, a series of merging operations are performed, which finally force all
objects into the same group. Using previously formed clusters, hierarchical algorithms find
succeeding clusters [38]. These algorithms can be agglomerative (“bottom-up”) or divisive
(“top-down”). Agglomerative algorithms start with each element as a single cluster and
gradually combine them into bigger clusters. Divisive algorithms start with the entire set
and then, consequently, split it into smaller and smaller groups [38]. The relationships
between the studied species are demonstrated as dendrograms in Figures 7 and 8 by using
the proposed AI model after applying preprocessing; the DenseNet201 deep learning model
for feature extraction; and the agglomeration of schedule measure of Euclidean distance,
using complete linkage between groups.

The dendrogram in Figure 7 represents the clustering of 14 samples of wild plant
seeds, and it appears in this hierarchy that it is close to the hierarchy which was carried out
manually and using statistical programs; the error rate between them was calculated at 5%,
and this percentage is considered excellent, given that the method of artificial intelligence
does not involve any effort. Only the seed images were entered into the model, which
extracted the features from the images and performed automatic clustering; this was the
main objective of this article.
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The dendrogram in Figure 8 represents the clustering of 22 samples of wild plant
seeds, and it appears in this hierarchy that it is close to the hierarchy which was carried out
manually and using statistical applications. The error rate between them was calculated
as 18%, and this reference percentage is considered good. Once the deep learning models
were trained, the seed images were entered into the model, which extracted the features
from the images and performed automatic clustering; this was the main objective of this
article. A dendrogram typically starts with each species represented as a separate cluster and
then merges them into larger clusters as the algorithm progresses gradually. The result is a
tree-like structure where the species are grouped into clusters at different levels of the tree.

The time and space complexity of the proposed AI image clustering method can vary
depending on the specific algorithm and implementation used:

• Time Complexity:

The time complexity of the agglomerative hierarchical clustering algorithm is typically
O(N3), where N is the number of data points. This is because, at each step, the algorithm
needs to calculate the distance between all pairs of clusters, resulting in a total of N/2
steps until a single cluster is formed. Calculating the distance between clusters can be
computationally expensive and requires O(N) operations.

• Space complexity:

The space complexity of agglomerative hierarchical clustering is typically O(N2),
where N is the number of data points. This is because the algorithm requires storing the
pairwise distance matrix or a similarity matrix, which has a size of N × N. The matrix
stores the distance or similarity values between each pair of data points.

4. Results and Discussion
Evaluation Metrics

Accuracy and error are commonly used to evaluate the performance of deep learning
models. They show the relationship between the predicted and actual values of the model.
To assess the performance of the proposed model on the given datasets, four measures are
used: accuracy, F-score, recall, and precision [39–42].

• Accuracy: The result of dividing the number of true classified outcomes by the whole
of classified instances. The accuracy is computed by the equation:

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePostive + FalseNegative
(2)

• Recall: The percentage of positive tweets that are properly determined by the model
in the dataset. The recall calculated by:

Recall =
TruePositive

TruePositive + FalseNegative
(3)

• Precision: The proportion of true positive tweets among all forecasted positive tweets.
The equation of precision measure calculated by:

Percision =
TruePositive

TruePositive + FalsePositive
(4)

• F-score: A harmonic mean of precision and recall. The F-score measure equation is:

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

The study investigated sixteen deep learning models to automatically extract the
plant image features in the feature extraction phase, and then used these features in the
clustering method. The sixteen models used in this study (DenseNet121, DenseNet201,
ResNet50V2, EfficientNetB6, EfficientNetB1, EfficientNetB0, MobileNetV2, EfficientNetB3,
VGG16, VGG19, EfficientNetB5, EfficientNetB7, EfficientNetB2, and EfficientNetB4) were
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evaluated and the results are shown in Tables 5 and 6, for both datasets, respectively. Based
on Tables 5 and 6, the best dendrograms of the best deep learning model (DensNet201) are
shown in Figures 9 and 10 for both Dataset-1 and Dataset-2, respectively. Comparing these
results with other published work [43], for the transfer learning from the deep learning
DensNet201 model, the accuracy of the classification was 49.29%, while the MobileNet
accuracy in the same work was 94.1%. The project [44] worked on determining seven skin
diseases by using the oversampling and data augmentation technique; the result of the
accuracy was 94.4%.

Table 5. Clustering evaluation result (Dataset-1).

# Method AUC Score F1-Score Accuracy Score Random Score Mean Square Error

1 EfficientNetB4 0.25 0 0.14 0.35 0.86
2 EfficientNetB7 0.4 0.4 0.36 0.03 0.64
3 VGG19 0.43 0.17 0.29 0.03 0.71
4 DenseNet121 0.43 0.17 0.29 0.03 0.71
5 MobileNetV2 0.5 0.59 0.5 0 0.5
6 VGG16 0.55 0.18 0.36 0.04 0.64
7 EfficientNetB2 0.55 0.67 0.57 0.01 0.43
8 EfficientNetB6 0.55 0.18 0.36 0.04 0.64
9 EfficientNetB0 0.6 0.3 0.43 0.09 0.57
10 EfficientNetB1 0.6 0.3 0.43 0.09 0.57
11 EfficientNetB5 0.6 0.33 0.43 0.09 0.57
12 NASNet 0.6 0.33 0.43 0.09 0.57
13 EfficientNetB3 0.75 0.67 0.64 0.26 0.36
14 ResNet50V2 0.78 0.84 0.79 0.22 0.21
15 InceptionV3 0.78 0.84 0.79 0.22 0.21
16 DenseNet201 0.95 0.95 0.93 0.7 0.07

Table 6. Clustering evaluation result (Dataset-2).

# Method AUC Score F1-Score Accuracy Score Random Score Mean Square Error

1 MobileNetV2 0.28 0.33 0.27 0.15 0.73
2 EfficientNetB1 0.33 0.35 0.32 0.09 0.7
3 DenseNet121 0.38 0 0.41 0.13 0.59
4 ResNet50V2 0.43 0.14 0.45 0.03 0.55
5 EfficientNetB5 0.43 0.25 0.45 0.02 0.55
6 EfficientNetB6 0.47 0.5 0.45 0.003 0.55
7 EfficientNetB7 0.51 0.52 0.5 0 0.5
8 InceptionV3 0.5 0.48 0.5 0 0.5
9 VGG19 0.57 0.62 0.55 0.02 0.45
10 EfficientNetB2 0.55 0.55 0.55 0.01 0.45
11 NASNet 0.57 0.62 0.55 0.02 0.45
12 EfficientNetB0 0.6 0.6 0.59 0.03 0.4
13 EfficientNetB4 0.6 0.6 0.63 0.17 0.27
14 EfficientNetB3 0.64 0.64 0.64 0.06 0.36
15 VGG16 0.67 0.59 0.68 0.09 0.32
16 DenseNet201 0.8 0.75 0.82 0.4 0.18

The entries in Table 5 are presented in almost ascending order with respect to AUC
and accuracy values obtained against the sixteen deep learning models. So, in this regard,
DensNet201, with a minimum means square error (MSE) of 7%, achieved the best metrics
for Dataset-1 that were 93% accuracy and an F1-score and AUC value of 95% each. This
was followed by InceptionV3 and ResNet50V2, with identical performance in terms of
accuracy, F1-score, and AUC (79%, 84%, and 78%, respectively). EfficientNetB4 exhibited
poor performance in every aspect of Dataset-1. Figure 9 visualizes the entries of Table 5.
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Similarly, the entries in Table 6 are presented in almost ascending order with respect
to the AUC and accuracy values obtained against the sixteen deep learning models for
the second dataset. As expressed in the table, DensNet201 achieved the best metrics for
Dataset-2, with 82% accuracy and F1-score and AUC values of 75% and 80%, respectively.
This was followed by VGG13, with lower performance in terms of accuracy, F1-score, and
AUC (68%, 59%, and 67%, respectively). Furthermore, MobileNetV2 and EfficientNetB1
exhibited the poorest performance in every aspect for Dataset-2 with respective values of
accuracy, F1-score, and AUC. Figure 10 visualizes the entries of Table 6.

The elbow technique is used to determine the optimal number of clusters in each
dataset. The method involves plotting the explained variation as a function of the number of
clusters and selecting the number of clusters at the “elbow” of the curve. This is the point of
diminishing returns, where the addition of another cluster does not significantly improve the
fit of the model, as shown in Figures 11 and 12 for Dataset-1 and Dataset-2, respectively.

As a summary of the experiments, the deep-learning-based image clustering showed
promising results in clustering large-scale image datasets. In this regard, several algorithms
were investigated for image clustering and DensNet201 was proven to be the best algorithm
for both datasets. Although the accuracy for the first dataset was more than the accuracy for
the second dataset, it outperformed the other fifteen algorithms in terms of all the evaluation
metrics. Various evaluation metrics such as clustering accuracy, MSE, AUC, and F1-score
were used to evaluate the performance of image clustering algorithms. DenseNet201
emerged as the best-performing deep learning model for both datasets, showcasing high
accuracy, F1-score, and AUC values. The study provides a comprehensive evaluation
of deep learning models and their performance in extracting plant image features for
clustering purposes.
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5. Conclusions

The current study’s objective was to use deep learning to support plant taxonomy.
The dataset for the untamed plant was gathered in Egypt, where it is native. The study
applied two approaches: The first was the traditional method of extracting the features
manually and applying clustering using statistics application; we considered this method
as a reference for the second approach. The second approach was to model and train
deep learning models using transfer learning concepts including image preprocessing and
feature reduction techniques. Subsequently, all results were compared with the first method.
Amongst the sixteen investigated deep learning models, DensNet201 achieved the highest
accuracy of 95% in Dataset-1, which included 22 species, and achieved the highest accuracy
of 82% in Dataset-2, which included 14 species. Future work can investigate different
fine-tuning strategies, including variations in learning rates, layer freezing, or the inclusion
of additional custom layers, and can investigate the effectiveness of ensemble methods in
image taxonomy using transfer learning [45] Additionally, it can focus on developing more
efficient and scalable deep learning algorithms for image clustering and using plant DNA
images for clustering to assist biological researchers in plant taxonomy.
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