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Abstract: Deep learning approaches are becoming increasingly important for the estimation of the
Remaining Useful Life (RUL) of mechanical elements such as bearings. This paper proposes and
evaluates a novel transfer learning-based approach for RUL estimations of different bearing types
with small datasets and low sampling rates. The approach is based on an intermediate domain that
abstracts features of the bearings based on their fault frequencies. The features are processed by
convolutional layers. Finally, the RUL estimation is performed using a Long Short-Term Memory
(LSTM) network. The transfer learning relies on a fixed-feature extraction. This novel deep learning
approach successfully uses data of a low-frequency range, which is a precondition to use low-cost
sensors. It is validated against the IEEE PHM 2012 Data Challenge, where it outperforms the winning
approach. The results show its suitability for low-frequency sensor data and for efficient and effective
transfer learning between different bearing types.
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1. Introduction

Bearings are used in many rotational industrial machines, where they are a critical
component because, in the case of an unexpected failure, they can lead to a failure of the
machine as a whole. If the machine is part of a production line, the entire line can suffer
from the resulting downtimes, causing significant cost and production backlogs. Numer-
ous fault diagnosis methods have been developed and applied to counteract this [1–4].
These diagnosis methods are based on measurements that are recorded and analyzed in
conjunction with further information by experts to detect or predict a defect. Statistical
methods in general and Artificial Intelligence (AI) in particular have been used to optimize
the analysis [5,6]. These methods promise timely diagnosis and predictive maintenance
processes to reduce unplanned downtime and thus increase production efficiency and
operational reliability [7].

For the case of predictive maintenance, the estimation of the Remaining Useful Life
(RUL) of bearings is of particular interest. There are classical machine learning approaches
that, for instance, rely on Support Vector Machines (SVMs) [8]. However, these approaches
use features of the time domain, e.g., Vogl and Donmez [9], or rely on features of the
time–frequency domain, such as Prudhom et al. [10]. Recently, these approaches have
been supplemented with deep learning approaches, which use models based on artificial
neural networks arranged in ‘deep’ stacked layers, such as Convolutional Neural Networks
(CNN) [11] and Long Short-Term Memory (LSTM) networks [12]. In general, the current
deep learning approaches are based on the usage of a high-resolution sensor as the input—
either using direct time-series sensor data [13] or through transformations such as a Short-
Time Fourier Transformation (STFT) [14].
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Nevertheless, deep learning approaches can suffer from limited adaptability if trained
for one type of dataset (source) and applied to a different type (target). This can be the case
for bearings when a trained model is used for a dataset with different operating conditions
or physical characteristics of the bearing [15]. In such cases, deep learning models must be
recreated from scratch, leading to an inefficient use of computational resources. For instance,
one bearing type may be replaced by another in the same machine, or a different workpiece
may be produced. This leads to many different applications of bearings, which results
in the common problem of the widespread insufficient availability of datasets for a new
domain [16]. Furthermore, in many industrial scenarios, collecting and labeling of large
datasets are also too laborious to be applicable [17]. In other words, deep learning approaches
are potentially afflicted with limited usability in practical industrial applications.

One possible solution to address the above-mentioned issues of deep learning models
for predictive maintenance tasks for machines is to use transfer learning. Here, a neural
network is trained for a new target domain with only a few samples and by additionally
using source domain knowledge. As a result, transfer learning decreases the computation
time compared to training a neural network from scratch [18]. Today, transfer learning
approaches are widely used in many applications, such as speech recognition, pattern
recognition, and image classification [7]. In addition, they are also widely used for bearing
classification and RUL tasks between different process conditions or bearing types [19,20].
Approaches for the RUL estimation are often based on LSTMs because of their ability to
analyze historical time-series data to predict the future [18]. This is also evident in their
successful usage in the RUL estimation of bearings [13,21].

Most of the current transfer learning approaches for the RUL estimation are between
different process conditions. A recent work is, for instance, the one of Cheng et al. [22].
They use a CNN to estimate the RUL of bearings of the 2012 IEEE PHM Data Challenge
dataset, which contains only one type of bearings. The transfer task in their setup is to
transfer knowledge of the fault behavior from one bearing to another. Therefore, they split
all available datasets into groups of different fault behaviors. The unsupervised transfer
learning is achieved using the Multi Kernel Maximum Mean Discrepancy (MK-MMD) as
an additional loss function. The MK-MMD uses the input of the target and the source
domain and adjusts the difference between them by learning domain invariant features.
The authors compare the accuracy of an approach with transfer learning versus one without
it and find the transfer learning approach to obtain higher accuracy.

In contrast to the previously mentioned transfer learning approaches between different
operating conditions, only a few solutions exist for the transfer learning task between
different bearing types. To the best of the authors’ knowledge, only two research works are
available today. Both are explained in the following.

The work of Xia et al. [21] uses, like most of the other RUL approaches, the dataset of
the 2012 IEEE PHM Data Challenge as the target domain dataset, where the source domain
dataset is that of Case Western Reserve University [23]. This approach is based on the
raw sensor signal as the input and has two parts: A Fault Knowledge Transfer Neural
Network (FTNN) and a convolutional LSTM ensemble network. The FTNN has three
convolutional layers, each followed by a pooling layer. This neural network is first trained
with the target domain dataset. The transfer learning starts with the pretrained but not
fixed convolutional layers. Then, this network is trained with inputs from the source and
target domains simultaneously. Maximum Mean Discrepancy (MMD), a discrepancy-based
algorithm to measure the difference between two distributions, is used for this purpose.
The output of the trained FTNN is used as the input for the LSTM ensemble network. This
network has n parallel LSTM networks with an identical layout. Each of the n networks
is for one bearing condition. As the last step, an ensemble mechanism is used to weigh
the outputs of the LSTMs to obtain the correct RUL. They use their own root mean square
error (RMSE)-based validation setup to validate their approach. The results show an RMSE
reduction of up to 48.61% compared to other self-implemented methods.
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Huang et al. [13] propose a similar approach for transfer learning between different
bearing types. They feed the raw sensor input into convolutional and pooling layers. Their
output is used as the input of an LSTM. Its output, in turn, is used as the input for fully
connected layers to estimate the RUL. They use their own backpropagation algorithm, called
the Adaptive Hybrid High Power Multi-dimensional Gradient algorithm (AHHPMG). This
algorithm considers the temporal correlation of the measurement points in the training
data. As a first step, they pretrain the network with the source RUL dataset. Afterward,
the pretrained network is trained with the target domain data. The target dataset is not
split-bearing instance-based, which means that samples of one bearing are in the training
and testing datasets. In our opinion, this is not a valid proceeding since this is only a
complex linear interpolation of the RUL values of the training samples.

To sum up, there are many transfer learning approaches between different bearing
conditions but only a few between different bearing types. The approaches between differ-
ent bearing types use the 2012 IEEE PHM Data Challenge dataset and its measurements of
a high-resolution sensor, which has a frequency range of up to 25,600 Hz. Moreover, both
approaches use their own evaluation methods. Therefore, the results are not comparable
with most other approaches, which often use the 2012 IEEE PHM Data Challenge setup
and the scoring approach of this challenge for the evaluation.

In addition to the low number of samples, industrial applications often face another
challenge: they must show a good performance and a good return on investment. This
need competes against the usage of accelerometers with high sampling rates of more than
20 kHz that are available [24] but expensive, especially when more than one accelerometer
is used. For instance, two sensors are needed to cover all possible fault positions because,
depending on the use case, either the inner or outer ring of the bearing is fixed. In
addition, bearings are used under radial load. Therefore, a horizontal and a vertical
sensor are needed to measure the accelerations of the fixed ring in every possible direction.
Triaxial accelerometers can also be used to avoid the need to use two or three separate
accelerometers. Instead, they combine three sensors in one housing, making it possible to
simultaneously record accelerations in three orthogonal axes. These sensors are cheaper
and require less installation effort than two or even three monoaxial sensors, but they
also have the disadvantage of maximum sampling rates in the range of 5000 Hz (e.g.,
4500 Hz [25] or 5500 Hz [26]).

For this reason, solutions that can cope with measurements in the frequency range
of triaxial accelerometers as inputs are of particular practical interest. To the best of the
authors’ knowledge, there are no current solutions that are capable of using only data of
sensors with low sampling rates combined with transfer learning between different bearing
types. Therefore, a novel transfer-learning-based RUL estimation approach based on data
from sensors with low sampling rates for bearings of a different type is presented to fill
this research gap. It is based on two feature extraction layers. The first is an intermediate
domain-based feature extraction, which focuses on the characteristic fault frequencies of
bearings. These frequencies are in a low-frequency range. Because of this intermediate
domain, this approach only requires data of a low-frequency range, which can be recorded
with low-cost commercial off-the-shelf triaxial accelerometers. The second feature extrac-
tion layer is based on convolutional layers, which take the intermediate domain output as
the input. The RUL estimation is done with an LSTM-based architecture, which is suitable
for transfer learning between different bearing types.

The contributions of this paper can be summarized as follows:

1. It is the first deep transfer learning approach that combines the possibility of using
data from low-cost sensors with low sampling frequencies and the usage of transfer
learning between different bearing types. This contribution is an important require-
ment for real-world applications.

2. It is a novel RUL approach that combines a hybrid feature extraction approach
(intermediate domain) with a data-driven feature extraction approach (convolu-
tional layers).
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This paper is organized as follows: The preliminaries necessary for the presented
approach are given in Section 2. Then, the proposed RUL approach is explained in detail
in Section 3. This is followed by a validation of the presented RUL approach in Section 4.
Finally, the paper concludes with a discussion and an outlook on possible future works in
Section 5.

2. Preliminaries
2.1. Scoring of an RUL Approach

There are many different solutions for classification and RUL tasks [24]. To compare
them, a scoring procedure must be used. A particular scoring procedure has been accepted
for the RUL estimation of bearings. This scoring procedure was also used during the
IEEE PHM 2012 Data Challenge [27], whose challenge was the RUL estimation of bearings.
Therefore, it is henceforth called the PHM score in this paper. The dataset as well as the
benchmark itself (including the scoring procedure) of this challenge are used in most of
the research works for the RUL of bearings [24]. Therefore, this scoring procedure is used
without any modifications. As a first step, the relative errors (Eri) of the predictions have to
be calculated according to Equation (1), where RUL_Act is the actual RUL and RUL_Est is
the estimated RUL. The index i is for the selected test dataset.

Eri = 100∗ RUL_Acti − RUL_Esti
RUL_Acti

(1)

This error rate is used to calculate the weighted error Ai (see Equation (2)). There
are two different weights. If Eri > 0, which means that the estimated RUL is less than the
actual RUL, the deviations are less serious than in cases where Eri < 0. In the first case,
a component is replaced too early, resulting only in increased material costs and a short,
planned downtime, while the second case leads to an unforeseen and thus unplanned
breakdown. Therefore, the two cases are weighted differently.

Ai =

{
e− ln 0.5∗Eri/5, if Eri ≤ 0
e− ln 0.5∗Eri/20, if Eri > 0

(2)

The calculated result of this scoring function can be seen in Figure 1.
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Figure 1. The weighted error Ai (Equation (2)) as a function of the relative error Eri. A negative Eri

represents a longer estimated RUL than the actual RUL.

According to Equation (3), the final PHM score is the mean of the Ais of all N test datasets.

score = ∑N
i=1 Ai

N
(3)

2.2. Convolutional Neural Network

Convolutional Neural Networks (CNN) are a specialized type of an artificial neural
network. A typical CNN consists of sequential aligned layers. These layers exist of
alternating convolutional layers and pooling layers. Finally, a regular feed-forward neural
network of fully connected layers is used for the classification task [18].
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A convolutional layer exists of neurons that use a small field (window) of the previous
layer’s output as the input. All output values inside the window are weighted with specific
weights and biases. Then they are combined with the other values in the window and a
filter to generate one output pixel.

A pooling layer also uses windows for calculating the output. In contrast to a con-
volutional layer, a pooling layer aims to reduce the image size by removing unnecessary
information/pixels. Therefore, only a simple aggregation function (e.g., max or mean) on
the data of the input window is used.

The lower layers of the CNN perform the more generic low-level feature extraction,
and the highest layers are used for the classification [28]. The layout of the CNN leads to
its ability to maintain information regardless of shift, scale, and distortion invariance [29].
This makes a CNN suitable for analyzing 1D and 2D data, such as time–frequency domain
data or classical images.

For a more detailed explanation of CNNs, please refer to the relevant technical litera-
ture, e.g., Géron [18].

2.3. Long Short-Term Memory Network

An LSTM is a neural network designed to analyze historical time-series data to predict
the future [18]. In contrast to a CNN, an LSTM not only uses the current input but also uses
data from the previous time steps. The LSTM architecture is based on an inner cell and three
gates: input, forget, and output [18]. LSTMs can learn which input is important (input gate)
and to what degree it should be stored in the long-term state of the inner cell. With the help
of the forget gate, it learns how long to store the input. The output gate is used to set the
extent to which the value of the inner cell is forwarded to the next cell. The four elements
of an LSTM cell are linked with sigmoid functions and vector and matrix operations. This
mechanism is well-suited for long-term patterns such as time series and audio recordings.

From the feature side, an LSTM enhances the classical Recurrent Neural Network
(RNN). The gate mechanism is a solution to the ‘vanishing gradient problem’ that an RNN
can suffer from [18]. This problem can appear during the backpropagation process of the
gradient that is used while training the network. This process starts at the highest layers of
the network and uses the gradient to update the neurons’ weights. The gradient can get
smaller from layer to layer and finally ‘vanishes’. This results in the lower layers never
being trained and the RNN being unable to converge on long-time dependencies.

For a more detailed explanation of LSTMs, please refer to the relevant technical
literature, e.g., Emmert-Streib et al. [30].

3. Intermediate-Domain-Based RUL Estimation

The starting point for estimating the RUL of bearings is raw sensor data, which comes
as time-series data. It can be analyzed in a one-dimensional or two-dimensional way by
being converted into the time–frequency domain to obtain the time and the frequency
relationship [31]. As described in Section 2.2, CNNs are a suitable approach to analyze 2D
data, such as time–frequency domain data or classical images, because of their ability to
maintain information regardless of shift, scale, and distortion invariance. In addition to the
different measurements over time, which can be analyzed as proposed with a CNN, the time
correlations during the degradation process between the different measurements should
also be considered. Therefore, input data from previous time steps need to be remembered
and used as an additional input for the current time step, which is automatically fulfilled
by the working principles of LSTMs (see Section 2.3). Because of this, the proposed and
implemented transfer learning RUL approach is based on a CNN for the feature extraction,
which is followed by an LSTM for the RUL estimation. This RUL approach is shown
in Figure 2 in detail. The feature extraction is based on two layers. The first feature
extraction layer is based on an intermediate domain, which prepares the raw sensor data
before its usage. In general, the aim of an intermediate domain is to bring the source
and the target domain closer together [32]. The proposed intermediate domain, which
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is a hybrid approach, does this by obtaining advantages from the context information of
characteristic frequency bands of the bearings inside the sensor data. These frequency
bands are selected by frequency-selective filters. In contrast, other current approaches use
pure data-driven approaches for the transformation of the input data (e.g., direct sensor
data [33] or wavelet transforms [34]). A benefit of this intermediate domain is that it only
requires low-frequency data that can be recorded with today’s triaxial accelerometers. The
second feature extraction layer is based on the convolutional layers of a CNN. Both feature
extraction techniques are based on our intermediate domain and CNN-based research
work, which showed a superior accuracy for the classification of bearing health states to
other existing techniques [35]. The high accuracy for the transfer learning tasks is achieved
mainly by the intermediate domain, which is used as the input for a CNN.

The extracted features are afterward used as the input of an LSTM, which makes
the features time-dependent. The output of this LSTM is a health indicator. A health
indicator is a common approach for deep learning based RUL estimation, which transforms
timestamps into a more useable abstraction format for neural networks [36,37].

The presented RUL approach can also be used for transfer learning. Therefore, a fixed
feature extraction is used. The usage of the intermediate domain brings the source and
target domain closer together. This results in a similar and related intermediate domain
used for both domains that enhances the transfer learning process.
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3.1. Feature Extraction: Intermediate Domain
3.1.1. Overview

An intermediate domain is used to align the features of the input data of the source
and target domain to achieve better accuracies in classification and regression models [38].
A common feature of many different mechanical systems is that they consist of components
that perform periodic movements. In the case of a bearing, these are the inner ring, the outer
ring, the cage, and the balls. In the matter of a defect, each component has its fault pattern
based on a mathematically computable fault frequency, with its harmonics and relations
to other frequencies. The fault frequencies are used for classical model-based bearing
degradation analyses [39]. In this case, they can be extracted from the sensor data with
the help of the widely used envelope analysis [40]. In data-driven approaches, the sensor
data is used directly [33] or after a transformation into the time–frequency domain [34].
In the latter case, the features are extracted by means of the machine learning algorithm
itself. A hybrid approach can close the gap between a model-based approach, which only
relies on a potentially imperfect degradation model, and the data-driven approach, which
does not consider the physical degradation process [41]. Such a hybrid approach, in the
form of an intermediate domain, can optimize the feature extraction, especially in the
case of only a small number of training data and different bearing types [35]. Therefore,
this section presents an intermediate domain, which is used as the first feature extraction
layer of the proposed RUL approach. The presented intermediate domain uses these fault
frequencies and converts them to 2D images. As shown in Figure 3, this involves the steps
of a windowed envelope, de-noising, and normalizing.
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sensor data.

3.1.2. Windowed Envelope

The first step when creating the windowed envelope is to divide the measured values
into slices of equal length. Each of the slices is the source of one image. As a next step,
the raw sensor data of each slice have to be converted into the time–frequency domain. This
is done with the windowed envelope method [35]. This method is comparable to an STFT,
in which the time domain data is divided into small segments, and an FFT is performed on
each of them. By lining up the FFTs, the frequencies can be displayed as a function of time.
For a windowed envelope, the process is similar: A sliding window is used to segment the
sensor data in the time domain (see Figure 4a). Afterward, the envelope function is applied
to them. This function is based on two steps. First, a Hilbert transform is applied to the
input data. This is followed by an FFT to obtain the windowed envelope (see Figure 4b).
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3.1.3. De-Noising

The second step in the creation of the intermediate domain is the de-noising of the data
based on the specific bearing characteristics. Bearings are made of four relevant components
(inner ring, outer ring, cage, and balls), each with specific fault frequencies depending
on the current rotational speed and bearing parameters [42]. However, these calculated
frequencies are only theoretical values under ideal conditions. They may vary depending
on manufacturing tolerances as well as on wear-out conditions of the component. Therefore,
frequency bands should be used for the de-noising. Not-yet-published studies related to
this work indicate that, in the specific case of bearings, a frequency bandwidth of 10 Hz
should be chosen; all data outside the frequency bands around the characteristic component
frequencies plus their harmonics can be removed (see Figure 4c). These studies also showed
that using four harmonics yields the best results. A big advantage of this method is that,
in addition to the de-noising, the error frequencies of each component are always at the
same position in the image. This reduces the differences between the source and the target
domain for different bearings, which can lead to better results [35].

Using the frequency selective filter, the requirement of using only frequencies of up
to 5000 Hz for the commercially available triaxial accelerometers is also fulfilled because
these frequencies usually are in the lower four-digit range. Furthermore, specially designed
measuring cycles make this even possible for bearings used in high-speed spindles running
at up to 23,000 rpm [35].

3.1.4. Normalization

The last step of the intermediate domain creation is the normalization, where the
amplitudes of the different frequencies in the image are moved into a range from 0 to 1.
The normalization cannot be performed earlier because the now out-filtered other frequen-
cies may have higher amplitudes than the remaining ones and would therefore adulterate
the normalization results. The normalization of a specific intermediate domain image (ID)
is performed by applying Equation (4) to each pixel (ID_P) of the two-dimensional inter-
mediate domain image, where Amin is the smallest value of all pixels of all intermediate
domain images. Accordingly, Amax is the highest value of all pixels among all intermediate
domain images. The result is a normalized pixel (ID_PNormalized).

ID_PNormalized =
ID_P − Amin
Amax − Amin

(4)

3.1.5. Intermediate Domain Image

Before the image can be used as input of a CNN, the image has to be aligned to the
input layer of the CNN. The later-proposed CNN uses a 64 × 64 input size. Therefore,
each image is rescaled to a 64 × 64 image: 64 pixels for the timeline and 64 pixels for the
16 areas (4 components and 4 harmonics for the component-specific fault frequencies). This
step is undertaken before saving the intermediate domain images to reduce computing
time during the training of the neural network later on. The normalized and rescaled image
is shown in Figure 4d as the final intermediate domain image.
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teristic frequencies of the cage, the ball, the inner, and the outer ring. 

 
Figure 5. An exemplary intermediate domain image for bearing data with four harmonics for each 
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Figure 4. The steps of the intermediate domain creation: (a) raw sensor data; (b) windowed envelope;
(c) the frequency selective filter; (d) final intermedia domain image (after normalization and scaling).
The layers in (c,d) correspond to the following fault areas of a bearing: 1: outer; 2: inner; 3: ball; 4: cage.

A more detailed example of an intermediate domain image for a bearing is shown
in Figure 5. It shows a slice length of 0.2 s and all 16 areas—four harmonics for the
characteristic frequencies of the cage, the ball, the inner, and the outer ring.
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3.2. Feature Extraction: Convolutional Layers

As mentioned previously, the combination of an intermediate domain and a CNN
was successfully used in our earlier work for bearing fault classification [35]. The CNN
used there is a double-layer CNN. The characteristic of a double-layer CNN is that, in-
stead of a pooling layer after a convolutional layer, a second convolutional layer is used.
A pooling layer then follows these two convolutional layers. This layout adds an additional
nonlinearity, which increases the significance of the features [31].

This CNN uses fully connected layers for the classification task. These fully connected
layers use the output of the convolutional layers. As proposed by Verstraete et al. [31],
three fully connected layers have been used for this case, where the last of these layers
performs the final classification. In the case of bearings, the last layer has four outputs: one
for each of the inner ring, the outer ring, the cage, and the ball fault. In addition, dropout
layers with a dropout rate of 0.5 are inserted between the fully connected layers. A dropout
layer replaces the value of random neurons according to the dropout rate with zero. As a
result, the remaining neurons are trained more independently. This reduces the probability
of overfitting because the remaining neurons have to take over the work of the replaced
neurons [18].

The complete CNN comprises three consecutive sequences of two convolutional layers
and one pooling layer. They are followed by three fully connected layers, where the last fully
connected layer is used for the final classification of the bearing state. Between those fully
connected layers, a dropout layer is used [35]. This adapts the work of Verstraete et al. [31]
and uses a convolutional window of 3 × 3. During the training, cross-entropy, which is a
logarithmical loss function, is used.

Since the proposed RUL approach uses the same 2D intermediate domain images,
the same convolutional layer-based approach can be used for the feature extraction. This sec-
ond feature extraction mechanism is needed because the RUL approach presented here is
based on an LSTM network. Before an LSTM network can use 2D images, the features must
be extracted somehow. For this, the feature extraction mechanism of the convolutional
layers of a CNN can be used. This results in using the first ten layers of the given CNN for
the RUL approach. As shown in Figure 6, the dropout and the fully connected layers are
for the classification and are therefore not needed for the RUL task.
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3.3. Proposed LSTM Architecture

Different deep learning approaches can be used for estimating the RUL, including a
CNN, an RNN, and an LSTM. The CNN, however, is unsuitable for establishing a time
relationship in a regression problem, as only one input is analyzed at a time, and there is no
connection to the previous input values. Higher accuracies can be reached by considering
time relations, as is achieved by an RNN or an LSTM [43]. In contrast to CNNs, RNNs
and LSTMs also use data from previous time points. As stated in Section 2.3, LSTMs have
the advantage of being more robust to the vanishing gradient problem. For these reasons,
the presented approach uses an LSTM.

For the layout of the LSTM network, the layout proposed by Sahoo [44] was taken
as a starting point because it gives very good results for a sensor-based RUL estimation
in the field of turbofan engines. It consists of three layers: the first layer has 128 outputs,
the second layer has 64 outputs, and the third layer has 32 outputs. These are followed
by fully connected layers. The output of the last fully connected layer, which consists of a
single neuron, is used for the RUL estimation based on a health indicator. The used health
indicator is in a range between 0 and 1 and has to be transformed back to a time span.
This transformation can be performed by means of the linear Equation (5):

TRUL =
TCur

1 − HI
− TCur (5)

where TRUL is the estimated RUL, TCUR is the current lifetime of the bearing, and HI is the
health indicator, which is the output of the RUL network and is in a range between 1.0 for
new and 0.0 for a defect [37]. Using a health indicator means that the network is trained
with labels between 1.0 and 0.0 instead of a time. Therefore, before the beginning of the
training, all training samples must be relabeled.

Based on the above-introduced LSTM, the three modifications listed in the following
were evaluated and compared to find a suitable layout for combining an intermediate
domain, convolutional layers, and an LSTM. The comparison is based on the PHM score
described in Section 2.1, which was selected because of its wide use in the field of the RUL
of bearings. The three modifications are explained in the following. They all have the
feature extraction part based on the CNN in common.

• Layout 1: This layout reflects an LSTM without any intermediate fully connected layer.
It is based only on the feature extraction part of the CNN, followed by the LSTM
layout proposed by Sahoo [44], which has 32 outputs after the last LSTM layer. These
outputs are directly fed into a fully connected output layer made of one neuron, giving
the final health indicator as the output.

• Layout 2: This layout reflects the common usage of several (deep) fully connected
layers [45]. Therefore, in addition to Layout 1, another fully connected layer with
32 outputs and a dropout layer with a dropout rate of 0.5 are inserted directly after the
last LSTM layer. The use of 32 outputs for the fully connected layer is based on the suc-
cess of the double convolutional layers in the classification model, where two identical
layers are used in a row. Since the previous LSTM layer has 32 outputs, 32 outputs are
also chosen here. A dropout factor of 0.5 is chosen based on recommendations in the
literature, such as Géron [18].

• Layout 3: This layout only differs from Layout 2 in that the last LSTM layer with 32 out-
puts is removed. This layout was chosen to analyze the impact of the LSTM layers.
A less complex model with fewer layers could be used if this approach was superior.

The three layouts are shown in detail in Table 1. The table also shows the PHM score
that can be achieved with each layout. Layout 2 achieved the highest PHM score (0.35) and
was therefore chosen for the final RUL framework.
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Table 1. The three evaluated layouts for the RUL approach. The number of outputs of each layer is in
parentheses. The evaluation was conducted with the IEEE PHM 2012 Data Challenge dataset. Except
for the differences in the table, all three evaluations were conducted with the same settings.

Layout 1 Layout 2 Layout 3

Used Layers

CNN (8192) CNN (8192) CNN (8192)

LSTM (128) LSTM (128) LSTM (128)

LSTM (64) LSTM (64) LSTM (64)

LSTM (32) LSTM (32) Fully Connected (32)

Fully Connected (1) Fully Connected (32) Dropout (rate = 0.5)

Dropout (rate = 0.5) Fully Connected (1)

Fully Connected (1)

PHM Score 0.1094 0.35 0.05647

Another important factor is the window size of the LSTM input. A bigger window size
means that measurements of more previous time steps are considered in the calculation.
However, this advantage comes at the price of two disadvantages. The first is that a
minimum length of the selected window size must always be available for testing as well as
for training. Therefore, short-time intervals cannot be analyzed. The second disadvantage is
the required memory, especially during the training of the network. As shown in Figure 7,
the memory increases depending on the window size, which is especially noticeable
when using images as input, like the intermediate domain. It is only a linear growth,
but the required memory quickly exceeds 16 GB, which is the maximum memory of the
current mainstream graphic cards used in commercial clouds, e.g., an NVIDIA P100 [46].
The window size depends on two factors: First, the total number of steps n, which defines
how many measurements should be used. This size is equal to the neural network’s input
layer. The second factor is the step size s, which specifies the distance between the used
measurements. The multiplication of n and s calculates the covered window of measured
values. Figure 8 shows an example with a total measurement range of 10. By setting the
parameters s to 2 and n to 3, the measurements 6, 8, and 10 are used as input for the RUL
estimation at measurement point 10.
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An evaluation was conducted to determine a suitable combination of n and s. The re-
sults, which can be seen in Figure 9, indicate that the larger the total window size, the better
the PHM score. In the example of the datasets of the PHM Data Challenge, the maxi-
mum length based on the smallest test dataset is 171 measurements. As described above,
the number of usable measurements is limited by the hardware used. This limit is also
true for the given case where not all measurements can be used together, which leads to
the largest possible window size of 170 (n = 85, s = 2). The evaluation also reveals that,
by using the same number of steps n, a higher step size s leads to an increased PHM score.
Based on this evaluation, a step size of 2 and the usage of 85 steps are suggested for the
given setup. For other datasets (e.g., with larger possible window sizes), the evaluation has
to be conducted again.
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3.4. Transfer Learning Approach

The presented RUL approach is fully functional even without transfer learning.
As mentioned previously, a widespread problem with predictive maintenance solutions is
the lack of datasets. Therefore, an approach that can benefit from datasets of a different
domain has significant importance for real-life scenarios where only a few samples are
available. The presented approach is well suited for transfer learning since it is based on
the intermediate domain and the convolutional layers for the feature extraction. The in-
termediate domain creates similar images for different bearing types. The convolutional
layers can benefit from the similarity of the images, as it leads to a similar or nearly the
same feature extraction mechanism.

A common transfer learning type is the fixed-feature extraction [28]. As mentioned
in Section 2.2, deep learning models have in common that the first layers are for low-
level feature extraction and the latter for high-level feature extraction. In a fixed-feature
extraction, the model is pretrained with a source domain dataset. Afterward, all layers
that are used only for the feature extraction are fixed. For instance, in the case of a CNN,
the feature extraction is performed in the convolutional layers. Therefore, a fixed-feature
extraction of a CNN is a transfer learning approach where the weights of the convolutional
layers are fixed. Only the fully connected layers that are used for the classification are
retrained with the target dataset. Since the intermediate domain creates very similar input
data, the feature extraction does not change much between the two domains. Therefore,
the fixed-feature extraction approach should fit very well. Only the usage of the extracted
features may be different, so the RUL estimation part has to be adapted.

There is another advantage in using the method of fixed-feature extraction for the
convolutional layers, especially for bearings. It is often the case that there are extensive
datasets available for classification but only small ones for the RUL estimation. With this
approach, however, the CNN for classification tasks, as described in Section 3.2, can be
trained with a classification dataset. Afterward, the weights of the trained convolutional
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layers can be transferred to the convolutional layers of the RUL approach. Two separate
training runs of the IEEE PHM 2012 Data Challenge datasets were performed to validate
this. One of the runs used pretrained convolutional layers. These layers were trained with
the drive-end bearing datasets of Case Western Reserve University [23].

The detailed results in terms of the relative errors Er of both runs are shown in Table 2.
For 10 out of 11 bearings, the run with pretraining is better than the one without it, and the
mean Er is reduced to 707 vs. 1213. With the help of these Ers, the final PHM score for the
RUL estimation can be calculated (see Section 2.1). As can be seen in Figure 10, the score
with pretrained convolutional layers is much higher than that without pretraining. Another
benefit of using transfer learning, as mentioned before, is the saving of computing resources.
The memory needed for training convolutional layers is around three times the memory
required for using trained convolutional layers [47]. Using this knowledge combined with
the findings of Figure 7, the approximate memory consumption expected for each n can
be determined.

Table 2. Detailed results of the proposed RUL framework with and without transfer learning. For each
of the 11 bearings, the relative error Er according to Equation (1) is shown. In addition, the mean of
all values is given.

Bearing Without Pretraining [Er] With Pretraining [Er]

1_3 −70.56 29.27

1_4 −172.46 −78.35

1_5 −968.26 −159.24

1_6 −10,570.0 −6413.71

1_7 −268.18 35.37

2_3 16.34 −0.7

2_4 −323.12 −124.18

2_5 −384.43 −919.58

2_6 −251.93 8.16

2_7 −86.63 12.13

3_3 −234.16 −0.96

Mean 1213.28 707.42
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All tests in Section 3.3 were also performed with this pretrained dataset to obtain better
results and to obtain a suitable solution for the studied task of transfer learning between
different bearing types.

3.5. Constraint

The proposed approach also has a constraint that is based on the used intermediate
domain. This constraint becomes apparent by looking at the four degradation stages
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of a bearing [48,49]. These stages are also shown in Figure 11. The first stage, in which
a crack is just developing, is only visible in the ultrasonic frequency range. In stage 2,
the crack increases, which creates impact forces sufficient to excite the natural frequencies
of the various bearing components [50]. These frequencies cannot be determined by
simple formulas and must be determined empirically. They are usually in the range of
2–6 kHz [49]. In the third stage, the bearing degradation continues, and small parts of the
defective bearing component may come off. This causes the characteristic fault frequencies
to appear. It is the first stage that can be used for a reliable analysis. Therefore, current
condition monitoring and predictive maintenance systems primarily focus on this stage [40].
In the last stage, before the total failure, some severe flaws may be fixed with metal parts
removed from other flaws and then smoothed over by the rolling elements. In addition,
the clearance within the bearing increases. As a result, the intensity of the previously visible
characteristic fault frequencies may decrease again. Instead, random frequencies appear in
the form of background noise.
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Since the proposed intermediate domain relies on the characteristic fault frequencies
that appear in the degradation stage 3, it cannot detect incipient bearing damage in the
fault in stage 2. However, this is not only a problem of the used intermediate domain but
also of the triaxial sensors, which are the focus of this research work. These sensors, which
have a maximum resolution of 5000 Hz, can also not detect every natural frequency of the
bearing components. Nevertheless, this is not a big problem for a real-life scenario since,
in stage 3, 1% to 5% of the expected life of the bearing still remains [49]. Therefore, this is
still enough time for planned maintenance.

3.6. Generalization

The proposed transfer learning approach consists of three parts: intermediate domain,
convolutional layers, and LSTM layers. In order to provide a general solution for different
bearing types, it is essential to know which parts have to be adapted and which can be
directly transferred.

The intermediate domain is dependent only on the physical parameters of the used
bearing. Based on these parameters, the characteristic fault frequencies are calculated.
All other parameters can be kept constant. This was verified with the Case Western Reserve



J. Imaging 2023, 9, 34 16 of 23

University dataset for the RUL estimation of the IEEE PHM 2012 Data Challenge dataset
(see Section 3.4).

The architecture of the convolutional layers can be used for all kinds of bearings
without modification because the input is always the intermediate domain with the same
characteristics. This assumption can also be taken over to the LSTM architecture. However,
one exception is the window size (see Section 3.3). The window size must be adjusted
depending on the dataset and available hardware.

4. Benchmark

To validate the presented RUL approach, a benchmark was performed. For this pur-
pose, the IEEE PHM 2012 Data Challenge dataset was chosen due to its widespread use
and good documentation. This also includes the benchmark setup and scoring procedures.
Hosted by the IEEE Reliability Society and the FEMTO-ST Institute, this challenge took
place in 2012. To the best of the authors’ knowledge and additional sources such as [5],
there is still no more recent or better reference dataset available. Unfortunately, as described
in Section 1, the works of Xia et al. [21] and of Huang et al. [13], which are the only other
current transfer learning approaches between different bearing types, do not use this bench-
mark. Instead, they use the IEEE PHM 2012 Data Challenge dataset in combination with a
custom benchmark that is not described in detail. Therefore, our presented RUL approach
cannot be compared to their approaches.

This section is divided into four parts. The first describes the benchmark. This is
followed by supplements to the test positions. Afterward, the execution of the benchmark
itself is provided. Lastly, a conclusion summarizes the results.

4.1. Benchmark Description

The IEEE PHM 2012 Data Challenge focused on estimating the RUL of bearings and
was open to both industrial and academic participants. All participants had access to
datasets from 17 different test runs provided by FEMTO-ST. Each test run was recorded
with a horizontal and a vertical accelerometer. Each test run was terminated as soon
as an acceleration of more than 20 g was reached. The accelerometer had a sampling
frequency of 25.6 kHz. Therefore, other approaches that use data from the whole available
frequency range might have better results than the proposed approach, which focuses
on data from sensors with low sampling rates. The datasets, available at three different
operating conditions, were split into six learning and 11 test datasets (see Table 3). The test
datasets were truncated to a random length to estimate the RUL. The winners were chosen
based on the PHM score presented in Section 2.1.

Table 3. Assignment of the different datasets to test and training data.

Datasets

Operating Conditions

1800 rpm; 4000 N
Load

1650 rpm; 4200 N
Load

1500 rpm; 5000 N
Load

Learning set
Bearing1_1 Bearing2_1 Bearing3_1

Bearing1_2 Bearing2_2 Bearing3_2

Test set

Bearing1_3 Bearing2_3 Bearing3_3

Bearing1_4 Bearing2_4

Bearing1_5 Bearing2_5

Bearing1_6 Bearing2_6

Bearing1_7 Bearing2_7
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4.2. Supplements to the Test Positions

The test position of the test dataset can be in different degradation stages, such as
stage 2 or 3. The IEEE PHM 2012 Data Challenge has two datasets in stage 2. To illustrate
this, a dataset in stage 3 (bearing 1_4) and the two datasets in stage 2 (bearing 1_6 and
bearing 2_5) are analyzed in the following. Therefore, two plots are used for each dataset:
a time domain plot that shows the amplitudes of the horizontal and vertical accelerometer
values. In addition, the test position is marked, and a time–frequency plot in the frequency
range of the fault frequencies of the degradation stage 3 is shown. Here, the amplitudes of
the horizontal accelerometers are shown based on an FFT calculated every 500 s.

4.2.1. Bearing Dataset 1_4

This dataset has a total length 14,280 s. A lifetime of 11,390 s was defined as the test
position. According to Figure 12, this dataset is in degradation stage 3.
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Figure 12. The sensor values of bearing dataset 1_4 in the time domain (a) and in the time–frequency
domain (b). Both figures show increased amplitudes at the test position.

This assumption is based on the time domain plot in Figure 12a that shows that, at the
test position, both accelerometers have an increased acceleration value. These acceleration
values show an increasing trend until the end of the lifetime. This characteristic also
matches the characteristics in the time–frequency domain, shown in Figure 12b, which
shows increased amplitudes at the test position, especially at the fault frequencies of
degradation in stage 3.

4.2.2. Bearing Dataset 2_5

This dataset has a total length of 23,110 s. The test position is after a lifetime of
20,020 s. As can be seen in Figure 13, there are no indications of a degradation of stage 3.
This degradation stage starts only after approximately 23,000 s of lifetime.
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Figure 13. The sensor values of bearing dataset 2_5 in the time domain (a) and the time–frequency
domain (b). Both plots do not indicate a degradation at the test position.

4.2.3. Bearing Dataset 1_6

This is the second dataset which is probably in degradation stage 2. It has a total
length of 24,480 s, and the test position is after a lifetime of 23,020 s.

Figure 14 shows that, as well as in the case of bearing 2_5, there are no indications of a
monotonous degradation either in the time domain or in the time–frequency domain at
the test position. The degradation of stage 3 starts at approximately 24,000 s. It is worth
mentioning that the measurement has some short-term high peaks before the test position
of an unknown source. Furthermore, compared to bearing 1_4 and bearing 2_5, there is a
strong scattering of the measured values over the entire bearing lifetime.
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4.3. Benchmark Execution

This benchmark was executed under the same conditions as in the IEEE PHM 2012
Data Challenge. In addition, the drive-end dataset of Case Western Reserve University [23]
was used for the proposed transfer learning approach, as described in Section 3.4. After-
ward, the pretrained RUL network was trained with the following parameters:

• Used environment: The relevant components are an NVIDIA P100 GPU in combination
with Python (version 3.6.8) and the TensorFlow machine learning library (version 2.2).
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• Intermediate domain: The used bearing, in combination with the used process param-
eters, results in the following characteristic fault frequencies: outer ring fault: 168 Hz,
inner ring fault: 222 Hz, ball fault: 108 Hz, and cage fault: 13 Hz. This results in a
maximum frequency of 888 Hz, which is required for the fourth harmonics of the inner
ring fault. The intermediate domain thus fulfills the requirement of having a solution
that can be used in use cases with current industrial triaxial accelerometers with low
sampling rates.

• LSTM layout: The intermediate domain images were used in an LSTM, according
to Section 3.3. Among other parameters, a window size based on 85 measurements
(n = 85) and a step size of two (s = 2) were used.

• Training settings: A batch size of 120 was used for the training. A larger batch size
could not be used because of hardware limitations. In addition, a learning rate of 0.0005
was used. An Adam optimizer with the mean squared error (MSE) as a loss function
was used during the training. This was based on the recommendation of Liu et al. [12]
that, of all common loss functions, MSE is the most sensitive to measurement errors.
For the training itself, 300 epochs were used since no improvements in the result of
the loss function could be achieved afterward.

Subsequently, the trained network was tested with the test datasets. The results in
the form of the relative error (Er), its mean, and the PHM score are presented in Table 4.
In addition, the results of Sturisno et al. [51] (winner of the academics), Porotsky and
Bluvband [52] (winner of the industrial), Zheng [53] (a current work), and Zhang et al. [54]
are also presented. The approach of Zhang et al. is the best current one in terms of
PHM score and mean relative error. In addition, they compared their PHM score to those
of other current approaches, which have PHM scores in a range between 0.26 and 0.62.
All the above-presented works used pure data-driven approaches, which do not rely on
any physical parameters.

Table 4. This table shows the relative error (Er), its mean, and the PHM score of the different RUL
approaches and the proposed approach (with and without bearing datasets 1_6 and 2_5).

Bearing Sutrisno et al.
[51] (%)

Porotsky and
Bluvband [52] (%) Zheng [53] (%) Zhang et al.

[54](%)
Proposed RUL
Framework (%)

Proposed RUL
Framework without

1_6 and 2_5 (%)

Bearing 1_3 97 N/A 92.44 2.27 29.27 29.27

Bearing 1_4 80 N/A 100 5.6 −78.35 −78.35

Bearing 1_5 9 N/A 20.43 12.42 −159.24 −159.24

Bearing 1_6 −5 N/A 7.76 10.96 −6413.71 N/A

Bearing 1_7 −2 N/A 82.29 −22.46 35.37 35.37

Bearing 2_3 64 N/A 82.93 0.99 −0.7 −0.7

Bearing 2_4 10 N/A 3.22 5.76 −124.18 −124.18

Bearing 2_5 −440 N/A 58.77 25.89 −919.58 N/A

Bearing 2_6 49 N/A 5.63 −10.85 8.16 8.16

Bearing 2_7 −317 N/A −121.94 1.72 12.13 12.13

Bearing 3_3 90 N/A −54.38 −3.66 −0.96 −0.96

Mean 105.73 N/A 57.25 9.32 707.42 40.76

Score 0.3066 0.28 0.2992 0.64 0.35 0.43

Using only the result of the PHM score, which was the relevant metric for the IEEE
PHM 2012 Data Challenge, as a metric, the presented approach is superior to the two
winning approaches of the challenge and many others, such as Zheng [53]. Unfortunately,
the presented approach is the worst when looking at the relative error. Caused by two
outliers, which have a relative error of −6413.71% (bearing 1_6) and −919.58% (bearing 2_5),
the mean relative error is 707.42%. These datasets are of bearings in degradation stage 2.
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If the benchmark is conducted without these two datasets, the mean relative error decreases
to 40.76%, which is again a good result. It is noteworthy that, for the case of Sturisno et al.,
the highest deviation is also for bearing dataset 2_5.

Both outliers of the presented approach (bearing 1_6 and bearing 2_5) have a negative
value of Er. According to Equation (3), a negative Er represents a too-large estimated
RUL. This behavior is based on the constraint mentioned in Section 3.5 for this approach:
the bearing has to be at degradation stage 3, at least, to emit the fault frequencies that are
used by the intermediate domain. If these frequencies have no increased amplitude yet,
the proposed approach cannot detect a degradation leading to the too-large estimated RUL.

There are also current approaches, such as the one by Zhang et al. [54], that are superior
to the presented one. To the best of the authors’ knowledge, all superior approaches use
features of the time–frequency domain as the input. In contrast to the presented approach,
which uses only frequencies less than 900 Hz, these approaches use the complete possible
frequency range of the datasets, which is up to 12,800 Hz. This results in having more
features for the RUL estimation, which enhances the results.

4.4. Conclusion

The performed benchmark showed that very good results can be achieved by the pre-
sented RUL approach in combination with transfer learning by using only low-frequency
features. Even a dataset of an entirely different bearing can be used for transfer learning.
The results are even better than the winning approaches of the IEEE PHM 2012 Data
Challenge. This is especially remarkable since the presented approach does not use fre-
quencies above 900 Hz. For most of the used test datasets, the estimated RUL is close to
the actual RUL. Two datasets were not estimated correctly. This is because this approach,
which is based on the intermediate domain created by the characteristic fault frequencies,
is optimized for the RUL estimation inside the degradation area of the characteristic fault
frequencies. The test positions of the two outlier datasets are before the beginning of
this degradation area. Therefore, for a real-world scenario using this approach, the RUL
estimation should be started only if a degradation is already recognizable, because only
then a realistic RUL value can be determined.

The few other current approaches that reach a higher PHM score, such as the one of
Zhang et al. [54], use the time–frequency domain. They consider the natural frequencies
of the bearing components Hz, 6000 Hz, and 12,000 Hz, for their RUL estimation by
using the whole bandwidth of the available frequencies. In fact, some approaches even
focus on these high-frequency ranges, for example, the work of Yoo and Baek [55], which
is the second-best current approach with a PHM score of 0.62. Instead, the proposed
intermediate-domain-based approach does have a smaller frequency range for the analysis,
which leads to worse preconditions and therefore lower performance in contrast to some
other approaches. However, although the intermediate domain does not cover the natural
frequencies (degradation stages 2 and 3), these frequencies also cannot be recorded with
the currently available industrial triaxial sensors. These sensors, which are the focus of
this work, often have a maximal sampling rate of about 5000 Hz (see Section 1). Therefore,
as described in Section 3.5, this is also a limitation of the usage of the targeted sensors.
Due to this limitation, the proposed approach can only detect defects in degradation stage
3. For this reason, we believe it can be justified to skip the two datasets from stage 2
(bearing 1_6 and bearing 2_5).

Although the used benchmark contains test positions at degradation stage 2, this bench-
mark is used because it is the most widespread benchmark for the RUL estimation of
bearings. In addition, no publicly available dataset contains only data with low sam-
pling frequencies.

5. Discussion and Future Work

This research work presented a new approach for estimating the RUL of bearings for
accelerometers with low sampling rates based on an LSTM and intermediate-domain-based



J. Imaging 2023, 9, 34 21 of 23

transfer learning. This framework can increase the accuracy for small datasets through
transfer learning of knowledge of a different bearing type. These datasets do not even have
to be RUL datasets; it is also possible to use datasets that are for the bearing classification.
This significantly increases the usability of the transfer learning approach because other
well-documented, publicly available datasets can be used. In addition, the presented
approach can be used with today’s triaxial accelerometers, which often have sampling rates
in the range of 5000 Hz. Using these accelerometers decreases the costs of material and the
wiring complexity. The process was verified with a benchmark based on the IEEE PHM
2012 Data Challenge. This benchmark demonstrates the effectiveness of the presented
approach based on the PHM score. It reached an even higher score than the winning
approaches of the IEEE PHM 2012 Data Challenge. In addition, the above-mentioned
possibility of using a classification dataset of a different bearing for transfer learning was
proven with a classification dataset of Case Western Reserve University. Furthermore,
the capability of using triaxial sensors was also proven since the intermediate domain for
this use case only used frequencies of up to 900 Hz.

At the same time, the constraint of this approach became apparent through the two
test positions in degradation stage 2. This constraint is that the intermediate domain is
unsuitable for cases where the degradation based on the characteristic fault frequencies
has not started yet. This is the case when the bearing is in the second degradation stage,
where only excited natural frequencies of the bearing components appear. For an industrial
use case, this constraint is not of significant consequence because, at the time point of the
beginning of such a degradation, there is still enough time for planning a maintenance
service. Starting with the third degradation stage, which is based on the fault frequencies,
this approach delivers accurate RUL times, which is important for the industrial use case.
The few other approaches that reach higher PHM scores consider the frequency ranges of
the exciting natural frequencies or even focus on them. Accordingly, they achieve better
results than the presented approach. However, they do not fulfill the requirement that they
can be used for industrial triaxial sensors.

There are three suggested directions for future research: first, validate this approach
with other bearing datasets; second, adopt this approach to other components with char-
acteristic fault frequencies, such as gears; third, improve the RUL estimation for measure-
ments in the lower frequency ranges.
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