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Abstract

The combination of transfer learning (TL) a low level potential energy surface (PES)

to a higher level of electronic structure theory together with ring-polymer instanton

(RPI) theory is explored and applied to malonaldehyde. The RPI approach provides a

semiclassical approximation of the tunneling splitting and depends sensitively on the

accuracy of the PES. With second order Møller-Plesset perturbation theory (MP2) as

the low-level (LL) model and energies and forces from coupled cluster singles, doubles

and perturbative triples (CCSD(T)) as the high-level (HL) model, it is demonstrated

that CCSD(T) information from only 25 to 50 judiciously selected structures along and

around the instanton path suffice to reach HL-accuracy for the tunneling splitting. In

addition, the global quality of the HL-PES is demonstrated through a mean average

error of 0.3 kcal/mol for energies up to 40 kcal/mol above the minimum energy structure

(a factor of 2 higher than the energies employed during TL) and < 2 cm−1 for harmonic

frequencies compared with computationally challenging normal mode calculations at

the CCSD(T) level.

1 Introduction

Tunneling splittings are exquisitely sensitive to the accuracy of a molecular potential energy

surface (PES). The nuclear wave-functions corresponding to the two or multiple quantum

mechanical bound states involved in the split energy levels probe an extended region on the

underlying PES. Furthermore, the tunneling splitting also informs about the barrier height

and the shape of the PES in the region connecting the two wells, see Figure 1. Due to all the

above, tunneling splittings constitute a meaningful and stringent test of the level of theory at

which the underlying PESs were calculated and the accuracy of their representation required

for simulations from which the splittings are determined.
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Figure 1: Schematic illustration of two symmetric double-well potentials with the same
energy barrier EB but differing curvatures and tunneling splittings ∆. Malonaldehyde and
its instanton path are shown.

Even if a PES is given, accurate computation of tunneling splittings for multidimensional

systems from quantum-based methods itself is a formidable task. The ring-polymer instan-

ton (RPI) approach provides a semiclassical approximation of a tunneling process and can be

used to calculate tunneling splittings in molecular systems.1–4 As was shown for the formic

acid dimer,4 it is necessary to include all degrees of freedom of the molecule for a quantita-

tive comparison with experiment. This often means that the (semiclassical) full-dimensional

instanton approximation is more accurate than a reduced-dimensional quantum calculation.

Instanton theory is based on the path-integral formulation of quantum mechanics and is

formally exact only in the limit of ~ → 0.5 In many previous studies it has been shown to

give predictions within about 20% of fully quantum-mechanical calculations using the same

PES for typical molecular systems, as long as the barrier height is significantly higher than

the zero-point energy along the tunneling mode.1,4,6 Instanton calculations which, contrary

to exact quantum calculations such as wave-function propagation,7,8 scale well with system
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size, are often used in combination with analytical, full-dimensional PESs. Path-integral

molecular dynamics (PIMD) simulations also scale well with system size but are consider-

ably more expensive than an instanton calculation.9,10

In principle it is possible to implement the instanton approach using on-the-fly ab-initio

electronic structure calculations.11,12 However, because energies, gradients and Hessians are

needed for each ring-polymer bead, this may be impractical for medium-sized molecules if

high accuracy from coupled cluster with perturbative triples (CCSD(T)) level of theory is

sought. More recent work has been devoted to combining machine learning (ML) and in-

stanton theory to reduce overall computational expense. Gaussian process regression (GPR)

has been used to obtain a local fit of the PES around the dominant tunneling pathway to

calculate rate constants.13 It has been shown that the GPR rate constants are on par with

the ab initio results, however, reducing the number of required electronic structure calcu-

lations by an order of magnitude. Similarly, instanton rate theory has been combined with

NNs to obtain the PES more efficiently as compared to the on-the-fly approach.14,15

As an alternative, full-dimensional PESs can now be constructed for medium-sized molecules

from which tunneling splittings can also be determined using the instanton approach. The

generation of ML PESs based on large data sets of ab initio data is a challenging task16 and

accuracy as well as the level of theory of the PES is of crucial importance for the accurate

determination of tunneling splittings. The “gold standard” CCSD(T) approach scales as

N7 (with N being the number of basis functions)17 which quickly becomes computationally

prohibitive for generating data to build a full-dimensional PESs even for relatively small

molecules. To avoid the need for calculating large ab initio data sets at high levels of theory

transfer learning (TL)18–20 and related ∆-ML21 were shown to be data and cost-effective

alternatives.22–27
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The combination of TL and instanton theory appears particularly appealing as the instanton

path (IP) can be determined on a low-level PES, which gives a rough approximation to the

true tunneling path, and can be included (and iteratively refined if needed) into the TL data

set. Additionally, the IP is inherently local and, thus, allows concentrating on improving

only a small part of a PES. While instanton theory has been used in combination with ML

schemes,13,15,28 the present work demonstrates the first combination of instanton theory with

TL. The capability of the combined approach is demonstrated for the extensively studied

malonaldehyde system exhibiting intramolecular hydrogen transfer (HT).

Ring Polymer Instanton theory has been employed to calculate the tunneling splitting of

malonaldehyde on a permutationally invariant polynomial (PIP) PES fitted to 11147 near

basis-set-limit frozen-core CCSD(T) electronic energies.29 The splitting was found to be

25 cm−1 with RPI6 as well as with a strongly related instanton method.30 The same PES

was also used to calculate tunneling splittings using the fixed-node diffusion Monte Carlo

(DMC) method giving 21.6 cm−1 with a statistical uncertainty of 2 to 3 cm−1.29 For DT,

computed values on the PIP PES are 3.3 and 3.4 cm−1 using RPI6 and the related instanton

method,30 and 3.0± 2− 3 cm−1 from DMC simulations.29 The tunneling splitting from RPI

calculations on a LASSO fit to CCSD(T)(F12*) energies was found to be 19.3 cm−1.6,31

To validate such computations, direct comparison with experiment is also of interest. Re-

liable tunneling splittings from experiment are only available for a few select systems.32–39

For malonaldehyde, the experimentally determined tunneling splitting is 21.583 cm−1 and

2.915 cm−1 for HT and deuterium transfer (DT), respectively.32,33,40 Although these results

are not in perfect agreement with experiment, they are close enough that spectroscopic as-

signments can be made and provide detailed mechanistic information about the tunneling

process.

The purpose of the present work is to develop and quantitatively assess an evidence-based
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procedure to determine reliable tunneling splittings by combining transfer learned PESs with

instanton calculations. It is shown that this can dramatically reduce the cost of the overall

simulation in comparison to working with ab initio potentials. The work is structured as fol-

lows. First, the methods and the generation of the data sets are presented. This is followed

by a thorough evaluation of the accuracy of the transfer leaned PESs in terms of tunneling

splittings and harmonic frequencies. Finally, the results are discussed and conclusions are

drawn.

2 Methods

2.1 Ring-Polymer Instanton Theory

In a one-dimensional model, instanton theory is strongly related to the WKB approxima-

tion.41 Its main advantage, however, is that it can also be applied to multidimensional sys-

tems, in which it locates the uniquely defined optimal tunneling pathway.42 This pathway,

known as the instanton, is defined as a long imaginary-time τ → ∞ path connecting two

degenerate wells which minimizes the action, S. In computations, the path is located using

an efficient ring-polymer optimization based on discretizing the path into N ring-polymer

beads and taking the limit N → ∞ (typically on the order of 1000 is sufficient for conver-

gence). The action is determined by the distance between neighbouring beads as well as the

potential-energy of each bead, i.e. it uses information along the IP. Full technical details are

presented in previous work.1,2 In general, the IP is not equivalent to the minimum-energy

pathway (MEP) and will not even pass through a saddle point. This is because the instanton

finds a compromise between length and height to optimize the tunneling path. Unlike PIMD

or DMC, no random numbers or statistical errors are involved and so the instanton (once it

is converged with τ →∞ and N/τ →∞) is in principle uniquely determined by the PES.
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Once the IP has been located, fluctuations around the path are computed to second order

and the information is combined into the term Φ, i.e. this is based on information around

the IP. For this, one requires the Hessians (second-derivative matrix of PES) at each bead.

The final prediction for the tunneling splitting (in a double-well system) is given by

∆ =
2~
Φ

√
S

2π~
e−S/~. (1)

Because S appears in the exponent it is particularly important to determine this quantity

with high accuracy.

The method has also been generalized to treat tunneling in systems with multiple (more

than two) wells3,43 and in cases with non-degenerate wells for instance due to asymmetric

isotopic substitution.6 The approach outlined in this work is, in principle, also applicable to

these extensions.

2.2 Machine Learning

All PESs used in this work are represented with a high-dimensional neural network (NN)

of the PhysNet44 architecture. PhysNet is a ‘message-passing’45 NN that employs learnable

descriptors of the atomic environments to predict individual atomic energy contributions Ei

and partial charges qi. The descriptors are initialized as x0
i = eZi

, where eZi
corresponds to

a parameter vector defined by the nuclear charge Zi, i.e. atoms of the same element share

the same descriptor. The descriptor is then iteratively updated and refined to best describe

the local chemical environment of each atom i by passing ‘messages’ between atoms within

a cut-off rcut following

xl+1
i = xl

i +
∑

rij<rcut

F(xl
i,x

l
j, rij). (2)
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where rcut was 10 Å. Here, xl
i and xl

j are the descriptors of atoms i and j at iteration

l, rij is their interatomic distance and F(xl
i,x

l
j, rij) is the ‘message-passing’ function (for

details see Ref. 44). Because only pairwise distances are used to encode the atoms’ chem-

ical environment and summation is commutative, the resulting descriptors (and thus the

PES) are invariant with respect to translation, rotation and permutation of identical atoms,

which is of particular importance when describing tunneling between degenerate wells. The

descriptors are then used to predict partial charges qi (which are corrected to ensure total

charge conservation) and the total energy of the chemical system by summation of the atomic

contributions and explicitly including long-range electrostatics according to

E =
∑

i

Ei + ke

N∑

i=1

N∑

j>i

qiqj
rij

(3)

Here, ke represents Coulomb’s constant and the second term involving
qiqj
rij

is damped to

avoid numerical instabilities caused by the singularity at rij = 0 (for details refer to Ref.

44). The forces F and Hessians H can be obtained analytically using reverse mode auto-

matic differentiation46 as implemented in Tensorflow.47

The learnable parameters of PhysNet are fitted to reference ab initio energies, forces and

dipole moments following the strategy outlined in Reference 44. The partial charges qi are

fitted to the ab initio dipole moment (µ =
∑N

i qiri) and explicitly enter the energy expression

(see equation 3). In the present work, the TL scheme is employed whereby the parameters

of a low-level (LL) treatment are used as a meaningful initial guess and are fine-tuned using

higher-level information. For TL, the learning rate is reduced from 10−3 (as for learning a

model from scratch) to 10−4. The LL in the present work is the full-dimensional PES for

malonaldehyde at the MP2/aug-cc-pVTZ level of theory (henceforth, PhysNet MP2 PES)

which is available from previous work and was trained on ∼ 70000 reference structures.22

This PhysNet PES has a barrier for HT of 2.79 kcal/mol which compares to a reference value
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of 2.74 kcal/mol calculated at the MP2/aug-cc-pVTZ level of theory and the reference har-

monic frequencies are reproduced with a root-mean-square deviation (RMSD) of 3.6 cm−1.

The high-level (HL) treatment is the considerably higher and computationally much more

demanding CCSD(T)/aug-cc-pVTZ level of theory at which energies, forces and dipole mo-

ments are calculated using Molpro48 for all data points used in TL.

2.3 Data Set Generation

Transfer learning requires high-level energies, forces and dipole moments for selected geome-

tries of the system considered and ideally cover all spatial regions relevant for the observ-

able(s) of interest. Without additional a priori information it is advantageous to generate

an initial pool of structures which can be used for TL to fine-tune the LL treatment. When

selecting configurations, it is not necessary to sample both potential wells since PhysNet

handles this symmetry by construction. Here, the initial pool contained 862 malonaldehyde

configurations consisting of:

• 111 geometries along the MEP of the PhysNet MP2 PES.

• 110 geometries along the IP of the PhysNet MP2 PES.

• 111 geometries along the IP determined on a PES that was transfer learned by using

CCSD(T) information of the 111 MEP geometries (see above) to have an energy barrier

closer to the ab initio CCSD(T) barrier.

• 280 geometries obtained from normal mode sampling (NMS) around the equilibrium

geometry. For this purpose, normal mode vectors and corresponding force constants

are determined ab initio at the MP2/aug-cc-pVTZ level of theory.

• 240 geometries around the IP as obtained from NMS.

• 10 geometries along the IP of TL1 (see Section 3.2).
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This data set is referred to as the “Extended Data Set” and transfer learned models using

it are called TLext. To probe the dependence of barrier heights and tunneling splittings on

details of the training, ten independent models were trained on different splits of the data

for TLext (and all the subsequent TLs). For each of the ten resulting PESs an instanton

calculation was carried out. From this information, averages and standard deviations for the

barrier heights and tunneling splittings were determined.

After validating the performance of TLext from instanton calculations on each of the inde-

pendently trained models, smaller subsets of the Extended Data Set were selected, employed

for TL and subsequent tunneling splitting calculations.

3 Results

To set the stage, the tunneling splittings for malonaldehyde were calculated on the Phys-

Net MP2 PES using RPI theory. The tunneling splitting calculations were carried out with

three different values of the imaginary time, τ , corresponding to effective ‘temperatures’

T = ~/kBτ ∈ [50, 25, 12.5] K and with different numbers of beads N ∈ [25, .., 212] to ensure

convergence. Formally the instanton result is defined in the low-temperature limit, which is

equivalent to infinitely-long imaginary times. The results are summarized in Table S1. A

tunneling splitting of 96 cm−1 is obtained compared with 25 cm−1 from instanton calcula-

tions6,30 on the PIP-representation29 of the CCSD(T) reference data and 21.6 cm−1 from

experiments.32,33,40 This illustrates the insufficient quality of the MP2 level of theory to cap-

ture tunneling splittings correctly. For the following, all instanton calculations were carried

out with N = 4096 beads at an effective temperature of T = 25 K, which was found to be

more than sufficient for convergence of ∆ to two significant figures.
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Figure 2: Data sets used for TL projected onto a 2D cut through the TLext PES spanned by
the O–O distance and the reaction coordinate q = rOAH − rOBH, for labels see Fig. 1. The
Extended Data Set (862 structures, gray circles) is shown together with sets for TL0 (25
structures, yellow crosses), TL1 (50 structures, turquoise circles), and TL2 (100 structures,
salmon squares). The MEP and the instanton path (as determined on the TLext PES) are
marked with a dash-dotted and a dashed line, respectively. The IP on the PhysNet MP2
PES is the white dashed line and clearly differs from that (black dashed) on the CCSD(T)
PES.

3.1 Performance of TLext

As a reference for the following exploration, the performance of TLext using the full set of

862 energies, forces and dipole moments determined at the CCSD(T)/aug-cc-pVTZ level is

first assessed. These geometries are shown as a projection onto the PES spanned by the

O–O distance and the reaction coordinate q = rOAH − rOBH in Figure 2 (gray circles). As

the PES is symmetric with respect to q = 0, the same geometry appears to the left and to

the right of the mirror plane. The Extended Data Set was split according to ∼ 80/10/10 %
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into training/validation/test sets, from which the test sets were used only for testing. Across

the 10 TL models, the separate test sets were predicted on average with MAE(E) ≈ 0.006,

RMSE(E) ≈ 0.009 kcal/mol, MAE(F ) ≈ 0.03 and RMSE(F ) ≈ 0.07 kcal/mol/Å. The av-

erage barrier height on the ten transfer-learned PESs (〈TLext〉) was EB = 3.8945 ± 0.0006

kcal/mol which compares with an ab initio barrier of 3.8948 kcal/mol determined at the

CCSD(T)/aug-cc-pVTZ level of theory determined from present calculations. The RPI tun-

neling splittings for HT and DT were ∆H = 25.3 ± 0.2 cm−1 and ∆D = 3.7 ± 0.03 cm−1,

respectively, see Table 1 and S2. These results compare with computed splittings on the PIP

representation of CCSD(T)/aug-cc-pVTZ reference calculations using instanton calculations

that yield 25/3.4 cm−1 6,30 and experimental splittings of 21.6/2.9 cm−1.32,33,40 Hence, the

transfer-learned PES using fewer than 1000 higher level CCSD(T)/aug-cc-pVTZ energies

and forces together with the same method for determining the tunneling splitting performs

on par with calculations on the PIP representation of the ∼ 11000 CCSD(T)/aug-cc-pVTZ

energies.29 Based on this it is of much practical interest to further reduce the number of HL

calculations required to achieve the same result. Therefore, in a next step, different sub-

sets of the Extended Data Set are considered and used for TL to arrive at an ideally small

number of HL points while still retaining the accuracy in tunneling splittings from instanton

calculations.

Table 1: Energy barriers EB (kcal/mol), tunneling splittings ∆ (in cm−1) at
T = 25 K and with N = 4096, action S/~ and fluctuation factor Φ (in a.u. of
time ~/Eh) for malonaldehyde determined from TLext and TL0,1,2 PESs. The
ab initio barrier height for HT at the CCSD(T)/aug-cc-pVTZ level of theory is
3.8948 kcal/mol.

Ndata EB ∆H S/~ Φ
MP2 70k 2.7889 96.3 4.502 42.770
〈TL0〉 25 3.8925± 0.0119 23.4± 1.9 5.749± 0.026 57.405± 4.486
〈TL1〉 50 3.8974± 0.0161 24.9± 1.1 5.764± 0.012 53.096± 2.375
〈TL2〉 100 3.8941± 0.0021 25.2± 0.5 5.748± 0.005 53.053± 1.156
〈TLext〉 862 3.8945± 0.0006 25.3± 0.2 5.743± 0.002 53.241± 0.454
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3.2 Performance on Smaller Datasets: TL0, TL1, and TL2

From the Extended Data Set containing 862 geometries, different subsets were extracted.

The size of the data set has to be chosen small enough for efficient computation but suf-

ficiently large to still cover the appropriate regions of configurational space probed by the

instanton calculation.

TL0: To check whether a considerably smaller data set suffices as a starting point, ten TLs

were preformed on a data set containing only 25 geometries: a) 5 IP geometries (approx-

imately equally spaced) determined on a PES that was transfer learned to have a barrier

closer to the ab initio CCSD(T) barrier; b) 10 geometries, each, selected from the NMS

around the equilibrium geometry and the IP. This can be done by selecting geometries based

on a RMSD criterion on the n atomic positions (
√

1
n

∑n
i=1 ||vi − wi||2 where vi and wi are

two sets of Cartesian coordinates of atom n), which was done as follows for both groups of

geometries that were generated with NMS. Starting from a random geometry, new geome-

tries are added iteratively if the RMSD with respect to the selected ones is larger than a

threshold. For this reason, the threshold is maximized to include 10 geometries. Note that

no MEP geometries are added. The data set for TL0 are the yellow crosses in Figure 2.

With this smallest subset the barrier height of the (ensemble of the) transfer learned PES

〈TL0〉 is EB = 3.8925 ± 0.012 kcal/mol which is, within errors, close to the target value

of 3.8948 kcal/mol determined at the CCSD(T)/aug-cc-pVTZ level. From 10 independent

instanton calculations the average splitting is ∆H = 23.4 ± 1.9 cm−1 which is ∼ 2 cm−1

below that from the simulations on the TLext PES but still within statistical fluctuation.

Comparing the action S/~ of the IPs on TL0 and TLext shows that they are comparable

(5.743 ± 0.002 vs. 5.749 ± 0.026) and even identical within the error bars. However, the

uncertainty on TL0 is larger by an order of magnitude compared with that on TLext. Thus,

the action, S/~, of the path is clearly less well defined on TL0. For the fluctuation factor
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Φ the differences are considerably larger between the two families of PESs. Still, the values

themselves are within error bounds but again, the fluctuation around the mean for TL0 is ten

times larger than that for the TLext PESs. This conclusion also hold for DT, see Table S2.

Overall, using only 25 additional data points as done for TL0 already yields encouraging

results for the barrier height and tunneling splittings. To explore further improvements new

points were added and the process was repeated.

TL
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23
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27

 (c
m

1 )

H

TL
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TL
2
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3.6

3.8
D

Figure 3: Tunneling splittings for H- and D-transfer (left and right panels) from all TL PESs
(transparent circles). The corresponding averages (opaque circle) and standard deviations
(error bars as ±σ) as obtained from TL0 (blue), TL1 (red), TL2 (green) and TLext are
reported, too. Comprehensive lists of the tunneling splittings for all TL PESs are given in
Tables S3 to S6.

TL1: For TL1 the points used for TL0 were extended and increased to 50 points, see turquoise

circles in Figure 2. The data set for TL1 contained: a) 5 geometries along the MEP of the

PhysNet MP2 PES; b) 5 geometries along the IP of a transfer learned PES from using the

MEP points calculated at CCSD(T); c) 20 geometries, each, selected from the NMS around

the equilibrium geometry and the IP. The MEP and IP geometries are chosen with a uniform

spacing along the respective path and the geometries from NMS are selected following the
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RMSD approach outlined for TL0.

TL
0

TL
1

TL
2

TL
ext

5.68

5.70

5.72

5.74

5.76

5.78

5.80
S/

TL
0

TL
1

TL
2

TL
ext

50

52

54

56

58

60

62

 (a
.u

.)

Figure 4: Action S/~ (left panel) and fluctuation factor Φ (right panel) from all TL PESs
(transparent circles) for HT (for DT see Figure S5). The corresponding averages (opaque
circle) and standard deviations (error bars as ±σ) as obtained from TL0 (blue), TL1 (red),
TL2 (green) and TLext are indicated as well.

TL1 yields an averaged barrier height EB = 3.8974± 0.0161 which agrees within error bars

with that of TLext and the ab initio value (3.8948 kcal/mol). The splitting ∆H = 24.9± 1.1

cm−1 is only 0.4 cm−1 below that of TLext. The key improvement is that the fluctuation

factor Φ agrees considerably better with TLext than for TL0 and the remaining 2% discrep-

ancy can be traced to the 0.02 absolute difference in S/~. Overall, increasing the number of

geometries used for TL to Ndata = 50 in this fashion leads to a PES which reproduces the

barrier height and splittings from TLext. To further probe convergence of these results yet a

larger data set was considered.

TL2: While the accuracy of TL1 might appear satisfactory, convergence of TL1 cannot be

checked without TLext. Thus, TL1 was further extended to yield TL2. This was accom-

plished from a strategy related to adaptive sampling.49 Two independent models from TL1
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were used to predict the energy E of the remaining pool of geometries obtained from NMS.

From these geometries, the 40 geometries with the largest deviation (here ∼ 0.02 kcal/mol)

between the prediction of the two NNs are added to the data set. If a large deviation between

the energy predictions of the two models is found, it is likely that no or too little reference

data has been included in TL1. In addition, 5 geometries along the MEP and instanton of

the TL1 were added such that TL2 contained a total of 100 geometries (see salmon squares

in Figure 2).

With TL2 the barrier height EB, splitting ∆, action S/~ and fluctuation Φ further improve

over those from TL1 and are closer to the results from TLext, see Table 1 and S2. Within

1σ all values for HT and DT agree with those from TLext and with the reference from the

literature except for the tunneling splitting for DT. Overall, addition of 50 to 100 additional

points from the HL treatment appears to suffice to arrive at a quantitatively correct PES

transfer-learned from the LL treatment (MP2/aug-cc-pVTZ). Figure 3 illustrates the gradual

convergence for TL0 to TL2 towards the results found for TLext, which is promising. While

exceptional agreement regarding the energy barrier EB (as the “simpler” property) is found

for all the TLs the standard deviation of the splittings ∆H (which is more challenging to

obtain) can be reduced from 1.9 cm−1 (7.5%) for TL0 to 0.5 cm−1 (2%) for TL2. The results

from TL2 are accurate to within 0.1 cm−1 for HT and 0.04 cm−1 for DT as compared to

TLext. This corresponds to deviations of 0.4% and 1.1%. The IPs themselves are reported in

Figures S1 to S4 and show slight deviations between the different TLs on the smallest data

set (TL0), but for TL1, TL2 and TLext they are hardly distinguishable.

In summary, it has been found that with between 25 and 50 HL energies and forces for

judiciously chosen structures the correct barrier height, tunneling splitting, action and fluc-

tuation can be obtained, see Table 1. This is the foundation to further optimize the proce-

dure, ideally based entirely on information available from the LL surface by minimizing the
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amount of data required from the HL treatment.

3.3 Towards an Optimized Procedure

For an even more efficient procedure, an approach is sought that is based on information

about the LL-PES only. Hence, an attempt is made to further reduce the computational

effort by minimizing the number of structures for which HL calculations need to be carried

out for an improved PES and tunneling splittings. Therefore, it is explored which elements

of the procedure are most important for obtaining high accuracy to cost ratios. For moving

towards a more evidence-guided, optimized procedure, TL is carried out from LL-information

that is only contained in the MEP and IP as follows: a) only the MEP (TLMEP) using 111

geometries along the MEP of the PhysNet MP2 PES; b) only the IP (TLIP) using 110 ge-

ometries along the IP of the PhysNet MP2 PES; and c) a combination of the MEP and the

IP (TLMI) including 111 MEP and 110 instanton geometries as obtained from the PhysNet

MP2 PES. The HL information for TL consisted again of energies, forces and dipole moment

determined at the CCSD(T)/aug-cc-pVTZ level of theory. A total of 5 TLs were performed,

each on different splits of the data. The two best NNs (judged from the performance on the

validation set) were used for further analysis.

First, it is noted that for TLMEP and TLMI the barrier EB for HT agrees well with the target

value of 3.8948 kcal/mol (ab initio CCSD(T)/aug-cc-pVTZ level value) whereas this is not

the case for TLIP, as expected, because the instanton path does not pass through the transi-

tion state of the MEP (see Table 2). Also, despite starting from MP2 information only, TL

to the HL model yields considerably improved tunneling splittings ∆H for all three models,

ranging from 15 to 18 cm−1, compared to those from the PhysNet MP2 PES (96 cm−1).

Considering the action S/~ from TLMEP, TLIP and TLMI it is seen that it progressively
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Table 2: Energy barriers EB, tunneling splittings ∆H (at T = 25 K and N = 4096),
action S/~ and fluctuation factor Φ (in a.u. of time ~/Eh) for HT determined from
TL PESs using MEP points only (TLMEP), instanton points only (TLIP), and a
combination of MEP and instanton points (TLMI). TLa

x and TLb
x correspond to

two NNs that are trained on different splits of the data. Note that the energy
barrier for TLIP is inaccurate, as expected, because the IP misses the transition
state of the PES. The ab initio barrier at the CCSD(T)/aug-cc-pVTZ level of
theory is 3.8948 kcal/mol.

EB [kcal/mol] ∆H [cm−1] S/~ Φ
TLa

MEP 3.94 15.4 5.887 76.482
TLb

MEP 3.95 14.1 5.912 81.921
TLa

IP 3.49 16.7 5.792 76.975
TLb

IP 3.50 16.9 5.794 75.858
TLa

MI 3.90 18.2 5.768 72.262
TLb

MI 3.90 16.9 5.774 77.374

〈TLext〉 3.8945 25.3 5.743 53.241

approaches that from TLext. For TLMEP the action overshoots the target value from TLext

by ∼ 0.15 which leads to an error of ∼ 15 % in the splitting because S/~ appears in the

exponential factor in Eq. 1. Conversely, with a difference of 0.04 compared with TLext, the

error for TLMI due to S/~ is only ∼ 4 %. The influence of Φ on the difference between TLext

and the three models considered in Table 2 is minor because for all of them Φ is uniformly

too large by ∼ 40 % compared with that from TLext.

Table 2 suggests that a combination of information from the MEP and the IP used for trans-

fer learning, i.e. TLMI, yields EB and ∆H closest to the results from TLext. However, the

tunneling splittings still differ by more than 10 % from the target value obtained on the TLext

PESs. Considering the actions S/~ and fluctuations Φ for all the transfer learned PESs in

Table 2 it is found that in particular the values of Φ, which are sensitive to fluctuations

around the IP, differ considerably from that on TLext. Hence as a last improvement points

along the MEP and IP are combined with structures around the IP.

For two final, evidence-based TLs (TLEB1 and TLEB2), a set of 25 data points was generated
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Table 3: Energy barriers EB (kcal/mol), tunneling splittings ∆H (in cm−1) at
T = 25 K and with N = 4096, action S/~ and fluctuation factor Φ (in a.u. of
time ~/Eh) for malonaldehyde determined from TLEB. The ab initio barrier at
the CCSD(T)/aug-cc-pVTZ level of theory is 3.8948 kcal/mol.

Ndata EB ∆H S/~ Φ
MP2 70k 2.7889 96.3 4.502 42.770
〈TL0〉 25 3.8925± 0.0119 23.4± 1.9 5.749± 0.026 57.405± 4.486
〈TL1〉 50 3.8974± 0.0161 24.9± 1.1 5.764± 0.012 53.096± 2.375
〈TL2〉 100 3.8941± 0.0021 25.2± 0.5 5.748± 0.005 53.053± 1.156
〈TLext〉 862 3.8945± 0.0006 25.3± 0.2 5.743± 0.002 53.241± 0.454
〈TLEB1〉 25 3.9025± 0.0232 23.7± 1.1 5.740± 0.013 57.099± 3.249
〈TLEB2〉 25 3.9041± 0.0189 23.5± 2.1 5.733± 0.025 58.241± 4.850

as follows. A total of 5 points was selected along the MEP and IP (one close to the minimum

and 2 points along the PhysNet MP2 PES MEP and IP each, see black points in Figure 5).

These were supplemented by 20 geometries from NMS around the equilibrium structure and

the IP that are selected by means of an RMSD criterion. For TLEB1 (orange circles in Fig-

ure 5), the geometries with largest RMSD are selected (single geometries which occupy the

same rOO and q coordinates are eliminated). For TLEB2 (green crosses in Figure 5), besides

the RMSD criterion, the geometries were selected to cover the important configurational

space more regularly (as judged by Figure 5).

For both sets of points the corresponding CCSD(T)/aug-cc-pVTZ energies, forces and dipole

moments were used for TL, resulting in two sets of transfer learned PESs: TLEB1 and TLEB2.

For both of them the barrier height (3.90 kcal/mol) is within error bars of TLext for which it

was 3.89 kcal/mol. The action S/~ for both EB-models agree with TLext within error bounds

although the fluctuations around the mean is larger by almost an order of magnitude, see

Table 3. For the fluctuation Φ the differences compared with TLext are ∼ 5 %, commensurate

with TL0 and evidently improved over those using MEP, IP or MI, see Table 2 which do

not train on geometries around the path. The tunneling splittings are ∆H,EB1 = 23.7 ± 1.1

cm−1 and ∆H,EB2 = 23.5± 2.1 cm−1, both of which are close to/within error bounds of the

reference value (25.3 ± 0.2), see Table 3. These results are comparable and slightly better
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to those on TL0 which also was based on only 25 points for TL. However, the training data

for TLEB1,EB2 are selected based entirely on the PhysNet MP2 PES whereas TL0 made use

of HL information in that it employed geometries along the IP of a PES with corrected

barrier. Hence, from a computational perspective, the EB models are considerably more

cost-effective.
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Figure 5: The data sets used for TLEB1 (orange circles) and TLEB2 (green crosses) are shown
on a 2D projection of the PES spanned by the O–O distance and the reaction coordinate
q = rOAH−rOBH. Both data set contain 25 geometries. The MEP and the IP (as determined
on the TLext PES) are marked with a dash-dotted and a dashed line, respectively. The IP
on the MP2 PES is illustrated as white dashed line.

Overall, it is found that TL to the HL with 25 additional points yields a barrier height that

agrees with the full HL treatment and the tunneling splitting differs by only ∼ 1 cm−1. Any

further improvement requires additional points. Based on the results in Table 3 it is expected

that using a TL model trained on fewer than 50 judiciously selected HL data points yields

results within 1% of the HL reference TLext. This needs also be contrasted with an expected
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accuracy of instanton calculations for tunneling splittings of ∼ 20 %.

4 Discussion and Conclusions

The present work aimed at developing a computationally efficient and accurate road-map

for how to improve a given LL model - which was assumed to be “comprehensive” (here

7× 104 MP2 energies and forces were used) for the observable of interest - to a HL model by

providing a small amount of additional information at the higher level of theory considering

a particular observable. Here, the observable was the tunneling splitting for HT/DT in mal-

onaldehyde for which the LL model (MP2/aug-cc-pVTZ) yielded ∆ = 96 cm−1, compared

with a literature value of ∆H ∼ 25 cm−1 from a PIP-represented PES of CCSD(T)/aug-cc-

pVTZ reference energies using a range of methods for computing ∆H/D, see Table S7. Most

HL models generated were based on TL using 10s to 100s of HL points and yield ∆ ∼ 25

cm−1 which is a substantial improvement over the LL model and consistent with computa-

tions in the literature at the same level of theory but employing computationally much more

demanding approaches. The remaining differences between computations and experiments

are due to a) shortcomings of the CCSD(T) level of theory compared with a full CI treat-

ment, b) the incompleteness of the basis set, and c) inherent semiclassical approximations

of instanton theory (e.g. neglect of coupling to overall molecule rotation and anharmonicity

perpendicular to the instanton path).

A typically used shortcut is to optimize the instanton using a LL ab initio method, e.g. DFT

or MP2, and then compute the CCSD(T) properties along the path to correct the action

S/~. Such a hybrid approach was assessed using the PhysNet MP2 PES to optimize the

instanton and then calculate the action S/~ on the TLext PES.11,12,50,51 The results are sum-

marized in Table 4 and illustrate that although the hybrid approach is, in this case, able to
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infer the correct value for S/~, the TL approach additionally improves Φ. Using Equation 1

with the action as determined by the hybrid approach (S/~ = 5.7401) and the fluctuation

factor determined on the PhysNet MP2 PES (Φ = 42.7705) yields ∆H ∼ 31.5 cm−1 which

overestimates the value of 25.1 cm−1 from TLext. The TL approach is thus able to provide

a more accurate prediction of ∆ for a similar computational cost.

Table 4: Actions S/~ and fluctuation factor Φ as obtained from the MP2 Phys-
Net PES (MP2), on a representative TLext PES (TLext) and a hybrid approach
optimizing the IP on the PhysNet MP2 PES and using TLext to obtain CCSD(T)
properties along resulting IP6

H D
PES ∆H S/~ Φ ∆D S/~ Φ
MP2 96.3 4.502 42.771 18.8 5.705 73.964

Hybrid 31.5 5.740 42.771 4.4 7.276 73.964
〈TLEB2〉 23.5 5.733 58.241 3.5 7.266 94.777

TLext 25.1 5.744 53.586 3.6 7.274 89.957
〈TLext〉 25.3 5.743 53.241 3.7 7.273 89.350
Lit.6 25 6.129 37.794 3.3 7.790 61.392

For calculating the tunneling splittings based on the instanton approach it was found that

an evidence-based approach starting from MEP and IP on the LL PES, augmented with

geometries drawn from a pool of structures selected such that their RMSD is maximal with

respect to an existing set of structures requires of the order of 50 points at the HL for TL.

Therefore, only local and not global knowledge of the PES is required as would, e.g. be

necessary for fully quantum-mechanical methods such as wavepackets. The bottleneck to

a “direct” ab initio-based instanton approach is typically the calculation of N Hessians, as

these are rather expensive to compute.11,12 Earlier work on instanton rate theory combined

with machine-learning techniques for the H + CH4 and H + C2H6 reactions required ∼ 50

energies and forces and 8 Hessians in the training set to converge the rate constant to within

1 % of the ab initio result at 200 K.13 Using TL, calculating any high-level ab initio Hessians

at all has been avoided. As is demonstrated here, this can significantly lower the computa-

tional expense with no loss of accuracy.
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Table 5: Averaged harmonic frequencies calculated from PhysNet potentials and
using ab initio techniques are given in cm−1. As judged from the MAE(ω) the
PhysNet model trained on the Extended Data Set containing 862 geometries is
the most accurate, followed by the TL2 (100 data points), TL1 (50 data points)
TLEB1 (25 data points) and TL0 (25 data points). The ab initio harmonic fre-
quencies obtained at the MP2 level are shown for comparison.

Mode MP2 〈TL0〉 〈TL1〉 〈TL2〉 〈TLEB1〉 〈TLext〉 CCSD(T)
1 277.49 266.68 265.48 265.28 266.93 265.17 264.71
2 286.59 285.58 283.96 280.88 286.01 283.77 281.85
3 394.33 389.41 387.06 389.09 392.05 389.70 389.12
4 514.07 501.82 502.93 503.23 505.62 505.50 505.07
5 789.38 772.93 774.86 775.82 773.14 775.33 775.06
6 888.62 885.17 886.17 886.92 885.18 886.39 886.07
7 937.61 906.84 907.54 908.64 908.10 908.03 907.18
8 1012.29 988.09 989.05 992.64 991.79 990.78 989.73
9 1023.82 1005.95 1004.01 1002.71 1006.17 1002.93 1002.60

10 1048.75 1039.62 1039.69 1038.19 1039.50 1037.56 1037.85
11 1109.69 1104.46 1104.81 1102.64 1102.08 1102.20 1101.03
12 1288.28 1274.86 1271.94 1272.65 1272.27 1273.41 1272.73
13 1403.09 1400.18 1399.97 1401.56 1402.15 1401.73 1400.73
14 1407.97 1404.80 1408.40 1407.17 1406.59 1408.81 1406.94
15 1482.06 1458.89 1463.84 1463.95 1462.21 1467.70 1469.33
16 1641.52 1624.37 1627.95 1630.14 1631.91 1633.35 1632.52
17 1692.91 1681.91 1687.06 1691.27 1686.72 1693.59 1693.63
18 3039.02 3003.37 2999.68 2999.67 3005.82 3000.03 3001.26
19 3107.12 3176.46 3178.76 3180.11 3176.23 3176.74 3176.35
20 3217.85 3229.25 3228.54 3228.74 3232.47 3226.75 3227.12
21 3267.30 3259.40 3260.39 3262.98 3254.33 3263.25 3260.27

MAE 14.62 3.01 1.93 1.54 2.61 0.89
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With regards to the accuracy of the TL PESs it is of interest to compare their perfor-

mance on out-of-sample structures. For this a test set was generated from MD simulations

at 700 K on one of the TLext PESs from which 100 geometries were randomly extracted.

In addition, 10 equally spaced off-grid geometries along the IP on the same PES were se-

lected. The CCSD(T)/aug-cc-pVTZ energies of these 110 geometries cover a range from

∼ 5 to 40 kcal/mol above the global minimum. The energies for these structures were

computed based on TLext (most rigorous TL using 862 HL structures) and TLEB1 (follow-

ing the recommended procedure; TL with 25 HL energies and forces), respectively, and

the [MAE100(E),MAE10(E)] for the two out-of-sample sets are [0.21,0.004] kcal/mol and

[0.34,0.005] kcal/mol. Notably, the energies of the geometries used for TLext and TLEB1 only

cover a range 20 kcal/mol above the global minimum whereas the out-of-sample energies

reach twice as high, up to 40 kcal/mol above the minimum. Hence, the out-of-sample struc-

tures contain true predictions on the HL-PES. As a comparison, for the PIP PES, which

used energies only and no forces, the reported fitting errors (i.e. in-sample) are 32 cm−1

(0.09 kcal/mol) for energies below 2000 cm−1 (5.7 kcal/mol) above the global minimum and

211 cm−1 (0.6 kcal/mol) for energies up to 20000 cm−1 (51.2 kcal/mol).29

TL as used in the present work - namely as a local refinement of a LL-PES - can also be

regarded as a variant of the more global “morphing” approach for PESs.52 It is therefore of

interest to consider in what way observables other than the tunneling splitting change upon

TL from LL to HL. For this, harmonic frequencies were determined for a number of trans-

fer learned PESs. The harmonic frequencies averaged over the 10 individually trained NNs

for different TLs are reported in Table 5, where they are compared with frequencies deter-

mined from CCSD(T)/aug-cc-pVTZ calculations at the corresponding equilibrium structure

of malonaldehyde. As judged from the MAE(ω) the PhysNet model for TLext is most ac-

curate (MAE < 1 cm−1), followed by TL2 (MAE < 2 cm−1), TL1 (MAE ∼ 2 cm−1)and
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TL0 (MAE ∼ 3 cm−1), as expected, and show a considerable improvement over the MP2

frequencies. For TLEB1 the MAE is < 3 cm−1. Thus, TL to the HL model also improves the

shape of the PES in degrees orthogonal to the two reaction coordinates considered for the

tunneling splitting.

Figure 6: Flowchart of the recommended TL + RPI procedure.

In terms of a recommended procedure it is noted that the strategy outlined in going from TL1

to TL2 (adaptive sampling/active learning) can also be pursued recursively from a “pool”

of geometries generated from sampling the PhysNet MP2 PES. This procedure can be re-

peated until convergence of the barrier height and the tunneling splittings. The approach

proposed for future application is (see Figure 6): i) create a LL-PES from a fine grid (here

7× 104 points) and train a ML model (here PhysNet) ii) generate a pool of structures based

on the LL-PES (including MEP, Instanton, NMS) iii) choose N ∼ 25 geometries following

EB1/2 and determine energies and forces from HL ab initio calculations iv) perform TL

and instanton calculations on the HL-PES v) refine the data set using adaptive sampling

and structures along the new IP. Then repeat TL and instanton calculations vi) repeat iv)

and v) until convergence. The present work demonstrates that following such a road-map

requires ∼ 50 HL energy and force evaluations to determine an accurate tunneling splitting

of malonaldehyde which is manifestly more efficient than previously explored approaches.

In summary, given that LL models can be constructed efficiently even for moderately sized
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molecules such as malonaldehyde or larger,53 the present work confirms that with specific,

evidence-based information grounded in physical understanding of the process in question,

several 10 points from a HL treatment are sufficient to generate high-quality PESs for a

target observable which was the tunneling splitting in malonaldehyde in the present work.

The MAE(E) for the TL-PESs trained on energies spanning 20 kcal/mol above the global

minimum is ∼ 0.3 kcal/mol on off-grid structures spanning 40 kcal/mol and the resulting

harmonic frequencies agree to within 1 to 3 cm−1 with rigorous and very time consuming

normal mode analysis at the CCSD(T)/aug-cc-pVTZ level of theory. The recommended

approach deduced from the present work is based on information about the MEP, the IP,

and fluctuations around the IP determined on the LL-PES for which HL calculations are

required for TL to determine the HL-PES. It is expected that - with suitable adaptations

due to the particular observable considered - the present approach can also be applied to

other observables that are computationally expensive to determine for a given PES, e.g. the

quantum bound states of molecules or scattering cross sections for gas phase reactions from

wavepacket propagation.
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Table S1: Tunneling splittings in cm−1 for MA determined from the PhysNet
MP2 PES.1 Convergence is tested by looking down the diagonals of the ta-
ble from which the optimal working effective temperature and N can be deter-
mined.2 Here 25 K and N ≥ 1024 is seen to be sufficient.

N \T 50 K 25 K 12.5 K
512 96 94 87

1024 97 96 94
2048 97 96 96
4096 97 96 96

Table S2: Energy barriers EB (kcal/mol), tunneling splittings ∆ (in cm−1) at
T = 25 K and with N = 4096, action S/~ and fluctuation factor Φ for deuterated
MA determined from TLext and TL0,1,2 PESs. The ab initio barrier height for HT
at the CCSD(T)/aug-cc-pVTZ level of theory is 3.8948 kcal/mol.

Ndata EB ∆D S/~ Φ
MP2 70k 2.7889 18.8 5.705 73.964
〈TL0〉 25 3.8925± 0.0119 3.3± 0.3 7.281± 0.030 97.876± 7.794
〈TL1〉 50 3.8974± 0.0161 3.5± 0.2 7.297± 0.014 90.997± 4.188
〈TL2〉 100 3.8941± 0.0021 3.6± 0.1 7.279± 0.006 89.754± 2.126
〈TLext〉 862 3.8945± 0.0006 3.7± 0.0 7.273± 0.002 89.350± 0.762
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Table S3: Energy barriers EB (kcal/mol), tunneling splittings ∆0 (at T = 25 K
and N = 4096 given in cm−1), action S/~ and fluctuation factor Φ for MA and
deuterated MA determined from TLext PES using an extended data set.

H D

TL#
ext EB ∆0 S/~ Φ ∆0 S/~ Φ

0 3.8938 25.1 5.744 53.586 3.64 7.273 89.957
1 3.8942 25.4 5.742 52.925 3.70 7.272 88.696
2 3.8942 25.6 5.744 52.513 3.71 7.274 88.308
3 3.8938 24.9 5.740 54.138 3.61 7.270 91.017
4 3.8939 25.3 5.740 53.238 3.69 7.270 89.014
5 3.8953 25.1 5.745 53.418 3.65 7.275 89.498
6 3.8943 25.4 5.743 52.959 3.69 7.273 88.870
7 3.8953 25.4 5.743 52.943 3.67 7.273 89.321
8 3.8953 25.1 5.744 53.542 3.65 7.275 89.723
9 3.8950 25.4 5.741 53.142 3.69 7.271 89.097

〈TLext〉 3.8945 25.3 5.743 53.241 3.67 7.273 89.350
σ 0.0006 0.2 0.002 0.454 0.03 0.002 0.762

Table S4: Energy barriers EB (kcal/mol), tunneling splittings ∆0 (at T = 25 K
and N = 4096 given in cm−1), action S/~ and fluctuation factor Φ for MA and
deuterated MA determined from TL0 PES using a data set containing 50 struc-
tures.

H D

TL#
0 EB ∆0 S/~ Φ ∆0 S/~ Φ

0 3.8877 21.5 5.760 61.639 3.04 7.292 105.980
1 3.8935 26.6 5.696 52.768 3.88 7.225 88.422
2 3.8841 22.2 5.745 60.600 3.18 7.276 102.895
3 3.8976 24.6 5.749 54.460 3.49 7.284 93.066
4 3.8844 21.4 5.745 62.833 3.05 7.274 107.429
5 3.8926 25.1 5.781 51.690 3.50 7.318 89.771
6 3.8904 25.4 5.736 53.338 3.65 7.266 90.392
7 3.8771 22.2 5.734 61.140 3.18 7.264 103.839
8 3.9214 23.8 5.793 53.925 3.37 7.336 91.624
9 3.8958 21.8 5.745 61.659 3.10 7.277 105.346

〈TL0〉 3.8925 23.4 5.749 57.405 3.34 7.281 97.876
σ 0.0119 1.9 0.026 4.486 0.28 0.030 7.794
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Table S5: Energy barriers EB (kcal/mol), tunneling splittings ∆0 (at T = 25 K
and N = 4096 given in cm−1), action S/~ and fluctuation factor Φ for MA and
deuterated MA determined from TL1 PES using a data set containing 50 struc-
tures.

H D

TL#
1 EB ∆0 S/~ Φ ∆0 S/~ Φ

0 3.8526 26.3 5.783 49.262 3.75 7.319 83.824
1 3.9004 24.4 5.759 54.272 3.46 7.291 93.226
2 3.9002 25.5 5.750 52.310 3.61 7.283 90.000
3 3.9056 24.1 5.768 54.546 3.38 7.301 94.446
4 3.9029 27.1 5.748 49.444 3.84 7.279 84.932
5 3.9019 24.2 5.766 54.405 3.45 7.299 92.843
6 3.9099 25.0 5.783 51.920 3.54 7.320 88.713
7 3.8972 23.4 5.756 56.820 3.33 7.288 97.192
8 3.9022 24.4 5.769 53.811 3.48 7.302 91.769
9 3.9014 24.5 5.757 54.174 3.47 7.288 93.026

〈TL1〉 3.8974 24.9 5.764 53.096 3.53 7.297 90.997
σ 0.0161 1.1 0.012 2.375 0.16 0.014 4.188

Table S6: Energy barriers EB (kcal/mol), tunneling splittings ∆0 (at T = 25 K
and N = 4096 given in cm−1), action S/~ and fluctuation factor Φ for MA and
deuterated MA determined from TL2 PES using a data set containing 100 struc-
tures.

H D

TL#
2 EB ∆0 S/~ Φ ∆0 S/~ Φ

0 3.8950 25.1 5.754 53.109 3.60 7.285 90.133
1 3.8974 24.8 5.753 53.760 3.55 7.285 91.390
2 3.8931 24.8 5.742 54.284 3.62 7.272 90.596
3 3.8920 25.9 5.751 51.488 3.72 7.282 87.312
4 3.8922 26.0 5.744 51.648 3.74 7.273 87.720
5 3.8932 25.5 5.746 52.648 3.68 7.276 88.701
6 3.8942 24.8 5.753 53.636 3.55 7.285 91.271
7 3.8968 25.5 5.752 52.316 3.67 7.283 88.488
8 3.8959 25.6 5.743 52.528 3.73 7.272 87.869
9 3.8917 24.4 5.745 55.116 3.48 7.274 94.056

〈TL2〉 3.8941 25.2 5.748 53.053 3.63 7.279 89.754
σ 0.0021 0.5 0.005 1.156 0.09 0.006 2.126
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Figure S1: Overlay of the instanton path obtained form the ten TLs using the extended data
set, TLext. q corresponds to q = rOAH − rOBH.
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Figure S2: Overlay of the instanton path obtained form the ten TLs from TL0. q corresponds
to q = rOAH − rOBH.
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Figure S3: Overlay of the instanton path obtained form the ten TLs from TL1. q corresponds
to q = rOAH − rOBH.
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Figure S4: Overlay of the instanton path obtained form the ten TLs from TL2. q corresponds
to q = rOAH − rOBH.
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Figure S5: Action S/~ and fluctuation factor Φ from all TL PESs (transparent circles),
the corresponding averages (opaque circle) and standard deviations (error bars as ±σ) as
obtained from TL0 (blue), TL1 (red), TL2 (green) and TLext for DT.
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Table S7: Summary of recent work on ground state tunneling splitting for MA.
EB is given in kcal/mol. The results emphasized in red are supposed to be closest
to the present results due to a similar PES and method to obtain the tunneling
splittings (RPI).

Ref. PES EB Dynamics H/D ∆ [cm−1]
Exp. 3,4 H 21.583

5 D 2.915
Theo. 6 FFa 10.0 semiclassicalb H 21.8

7 FFa,6 10.0 RPIi H 51
8 AIc(B3LYP/double-ζ) 2.3 semiclassicalb H 21± 1
9 SId (MP2/6-31G(d,p))10 3.6 instanton H 30.7
11 SI (MP2/6-31G(d,p))10 3.6 POITSEe H 25.7± 0.3
12 AI (MC-QCISD/3) 4.1 rainbow instanton H 25.4
9 AI (CCSD(T)/(a)VTZ) 3.8 instanton H 21 - 22
13 PIPf (CCSD(T)/aVTZ) 4.1 DMC H 21.6± (2− 3)
14 PIP (CCSD(T)/aVTZ) 4.1 MCTDHg H 23.4
15 PIP (CCSD(T)/aVTZ) 4.1 MCTDH H 23.8
16 PIP (CCSD(T)/aVTZ) 4.1 RPI H 25
17 PIP (CCSD(T)/aVTZ) 4.1 RPI H 24.9
18 PIP (CCSD(T)/aVTZ) 4.1 ti-QMh H 24.5
17 LASSOj(CCSD(T)(F12*)) 4.0 RPI H 19.3
9 SI (MP2/6-31G(d,p))10 3.6 instanton D 4.58
11 SI (MP2/6-31G(d,p))10 3.6 POITSE D 3.21± 0.09
12 AI (MC-QCISD/3) 4.1 rainbow instanton D 3.4
9 AI (CCSD(T)/(a)VTZ) 3.8 instanton D 3.0
13 PIP (CCSD(T)/aVTZ) 4.1 DMC D 3.0± (2− 3)
16 PIP (CCSD(T)/aVTZ) 4.1 RPI D 3.4

a experimental vibrational force field derived by Wilson et al.19,20
b semiclassical method based on the Makri-Miller model
c Ab initio
d Shepard interpolation
e Monte Carlo projection operator, imaginary time spectral evolution
f Permutationally invariant polynomial method
g Multiconfiguration time-dependent Hartree approach
h time-independent quantum mechanical method
i Ring-polymer instanton method
j least absolute shrinkage and selection operator
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