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Abstract

Network attacks are serious concerns in today’s increasingly interconnected society. Recent studies have applied

conventional machine learning to network attack detection by learning the patterns of the network behaviors and

training a classification model. These models usually require large labeled datasets; however, the rapid pace and

unpredictability of cyber attacks make this labeling impossible in real time. To address these problems, we proposed

utilizing transfer learning for detecting new and unseen attacks by transferring the knowledge of the known attacks.

In our previous work, we have proposed a transfer learning-enabled framework and approach, called HeTL, which can

find the common latent subspace of two different attacks and learn an optimized representation, which was invariant

to attack behaviors’ changes. However, HeTL relied on manual pre-settings of hyper-parameters such as relativeness

between the source and target attacks. In this paper, we extended this study by proposing a clustering-enhanced

transfer learning approach, called CeHTL, which can automatically find the relation between the new attack and

known attack. We evaluated these approaches by stimulating scenarios where the testing dataset contains different

attack types or subtypes from the training set. We chose several conventional classification models such as decision

trees, random forests, KNN, and other novel transfer learning approaches as strong baselines. Results showed that

proposed HeTL and CeHTL improved the performance remarkably. CeHTL performed best, demonstrating the

effectiveness of transfer learning in detecting new network attacks.
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1 Introduction
In recent years, cyber attack is a growing serious concern

due to its increased sophistication and variations, such

as denial-of-service (DoS) tactics and the zero-day attack,

posing a great threat to government, military, and indus-

trial networks. Conventional signature-based detection

approaches may fail to address the increased variability

of today’s cyber attacks. Developing novel anomaly detec-

tion techniques to better learn, adapt, and detect threats

in diverse network environments becomes essential.

Machine learning/data mining approaches have been

applied to the attack detection in networked environ-

ments to improve the detection rate [1–4]. Data-driven

supervised models achieved better accuracy than unsu-

pervised approaches but relied on a large number of

labeled malicious samples [5]. As attacks evolved by
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varying their behaviors, the distributions of feature may

change, making the trained models work poorly [6] and

unable to detect the new attacks. This is a domain-shift

problem, which usually needs recollecting new training

data and retraining the model to adapt to the changes in

the target domain. However, collecting sufficient labeled

data for such continuously rising attack variants is infea-

sible. Further, detecting evolving attacks usually needs

incorporating new features from various network layers

[7]. This also needs to retrain the model because of the

different feature dimensions.

To address the above problems, we proposed using

transductive transfer learning to enhance the detection of

new threats [6]. Transductive transfer learning, a novel

machine learning technique, can adapt features in a target

domain with deficient labeled data by transferring learned

knowledge from a related source domain [8]. The intu-

ition behind is the human’s transitive inference ability to

extending what has been learned in one domain to a new

similar domain [9]. Our study is motivated by the fact that

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-019-0084-4&domain=pdf
mailto: sshetty@odu.edu
http://creativecommons.org/licenses/by/4.0/


Zhao et al. EURASIP Journal on Information Security          (2019) 2019:1 Page 2 of 13

most network attacks belong to variants of known net-

work attack families and share common traits in features

[6, 10], which suggested a good fit for applying transfer

learning.

In this study, source and target domain data refers to

the same network environment at a different time. We

assumed that attacks in a source domain are already

known and labeled, and attacks in a target domain are

new and different than the source. We formularized the

problem by using source domain data to differentiate new

attacks in the target domain. Previously, we developed a

transfer learning-enabled detection framework and pro-

posed a feature-based heterogeneous transfer learning,

called HeTL [6], to detect unseen variants of attacks.

HeTL can find new feature representations for source

and target domain by transforming them on a common

latent space. Nevertheless, we observed that the per-

formance of HeTL depended on manual pre-settings of

a hyper-parameter: relevance between the source and

target domain [6]. In this paper, we proposed another

approach—a hierarchical transfer learning algorithm with

clustering enhancement, called CeHTL, which can clus-

ter source and target domain and compute the relevance

between them.

We utilized a benchmark network intrusion dataset

NSL-KDD [11]. To stimulate the domain shift, we gen-

erated training and testing datasets by sampling attacks

from different types of attacks, from big category of

attacks (e.g., DoS, R2L), and also the subcategory of

attacks (i.e., 22 subtypes). We compared the proposed

CeHTL with HeTL [6], as well as any other baselines,

including traditional classification without transfer learn-

ing and several novel transfer learning approaches. We

also evaluated the approaches on imbalanced datasets,

which is common in real-world cyber attack practice. We

performed sensitivity analysis by tuning parameters and

using different sizes of training set. The results showed

that CeHTL demonstrated the most stable results, which

means that it does not rely on the pre-setting of param-

eters and thus is more effective in detecting unknown

attacks.

The rest of this paper is organized as follows: Section 2

reviews the related work. Section 3 outlines the trans-

fer learning framework. Section 4 describes the proposed

approaches. Section 6 presents the experiments, evalua-

tions, and discussions. Finally, we conclude the work in

Section 7.

2 Related work

2.1 Network attack detection

One of the well-known techniques for network attack

detection is signature-based detection, which is based on

an extensive knowledge of the particular characteristics

of each attack, referred to as its “signature.” One study

[12] proposed a methodology to craft traffic with dif-

ferent characteristics. Other studies [13, 14] focused on

how to find effective signatures. However, one major lim-

itation of the signature-based technique is its failure to

detect new attacks, as their signatures are unknown to the

system. In addition, building new signatures needs man-

ual inspection by human experts, which is very expensive

and time-consuming, and also introduces an important

latency between the discovery of a new attack and the

construction of its signature.

Another type of technique for network attack detec-

tion is the supervised learning-based technique, which

uses instances of known attacks to build a classifica-

tion model that distinguishes attacks from good programs

[1, 3]. Nari and Ghorbani [15] present a network behav-

ioral modeling approach for malware detection and

malware family classification. Rafique et al. [16] eval-

uated the evolutionary algorithms for classification of

malware families through different network behaviors.

Iglesias and Zseby [17] focused on the feature selection

approach to improve the performance of network-based

anomaly detection. However, these learning-based tech-

niques share the same limitation as the signature-based

detection in that they both perform poorly on new attacks.

Since different attacks usually have different distributions

of network behaviors, the learned patterns are unable to

work accurately. A significant advantage of our approach

is its ability to identify an unknown attack that has not

been previously investigated.

2.2 Transfer learning

Transfer learning was designed to use knowledge from

the source domain, which has sufficient labeled data, to

help build more precise models in a related, but differ-

ent, domain with only a few or no labeled data. Transfer

learning approaches can be mainly categorized into three

classes [18]. The first class is instance-based [19, 20],

which assumes that certain parts in the source data can

be reused for the target domain by re-weighting related

samples. Dai et al. [20] introduced a boosting algorithm,

TrAdaBoost, which iteratively re-weighted the source

domain data and the target domain data to reduce the

effect of “bad” source data while encouraging the “good”

source data to contribute more to the target domains.

However, these approaches require a lot of labeled sam-

ples from the target domain. The second class can be

viewed asmodel-based approaches [21, 22], which assume

both source and target tasks share some parameters or

priors of their models. The third class of transfer learning

approaches is feature-based [23–25], where a new fea-

ture representation is learned from the source and the

target domain and is used to transfer knowledge across

domains. Shi et al. [26] proposed a heterogeneous transfer

learning method, called HeMap, to project the source and
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target domain onto latent subspace via linear transforma-

tions. They assumed the subspace is orthogonal. Pan et al.

[24] have performed transfer component analysis (TCA)

to reduce the distance between domains by projecting

the features onto a shared subspace. Nam et al. [27] then

applied TCA to the software defect detection problem.

Sun et al. [23] proposed an approach, called Correlation

Alignment (CORAL), to project source data onto target

data by aligning the second-order statistics of the source

and target distributions, which do not need any labeled

data from the target domain. The work has been applied

to the object detection problem and achieves good results.

Shi et al. first proposed a state-of-the-art approach called

HeMap [26], which uses spectral embedding to unify the

different feature spaces of the target and source datasets,

and applies this approach to image classification.

2.3 Transfer learning for network attack detection

Even though transfer learning has many great applications

in natural language processing and visual recognition

[25, 28], not many studies have applied it to the network

attack detection problem. Bekerman et al. [4] mentioned

that transfer learning can improve robustness in detecting

unknown malware between non-similar environments.

However, they did not present much detailed and formal

work on this idea. The study in [29] applied an instance-

based transfer learning approach in network intrusion

detection. However, they require plenty of labeled data

from target domain. Gao et al. [30] proposed a model-

based transfer learning approach and apply it to the

KDD99 cup network dataset. Both of these instance and

model-based transfer learning approaches depend heav-

ily on the assumption of homogeneous features. This is

often not the case for network attack detection, which typ-

ically exhibits heterogeneous features. Another advantage

of feature-based approaches is its flexibility to adopt dif-

ferent base classifiers according to different cases, which

motivated us to derive a feature-based transfer learning

approach for our network attack detection study. To our

best knowledge, this paper is the first effort in applying

a feature-based transfer learning approach for improving

the robustness of network attack detection.

3 Framework of using transfer learning for

detecting new network attacks
We have present a transfer learning-enabled network

attack detection framework to enhance detecting new

network attacks in a target domain in [6]. From a practi-

cal standpoint, source and target domains can represent

different or the same network environments with differ-

ent attacks captured at different times and at separate

instances. In this study, we primarily consider the latter

scenario, wherein the source and target domains com-

prise different attacks. We assume that the attack in the

source domain is known and labeled appropriately, and

attacks in the target domain are new and not labeled.

Unlike prior studies [29, 30] assuming that the source and

target domains should have the same feature sets, our

framework supports introducing new features into the tar-

get domain. This is relevant to evolving network attacks

where the adversary may change their behaviors, resulting

in a need to incorporating new features in the network or

system layers. Thus, in this scenario, the source and tar-

get domains have different attack distributions or feature

sets. The goal of the transfer learning framework is to use

source domain data to differentiate new attacks from the

target domain.

The framework consists of a machine learning pipeline,

which includes the following stages: (i) extracting features

from raw network traffic data, (ii) learning representations

with feature-based transfer learning, and (iii) classifica-

tion. In the first stage, features are extracted from the

raw network trace data with a statistic calculation of

the network flow. Second, we used feature-based transfer

learning algorithms to learn a good new feature represen-

tation from both source and target domains. Then, we fed

the new representation to a common base classifier. The

choice of a common base classifier can be decision trees,

SVM, and KNN.

4 Transfer learning approach via spectral

transformation
We model the network attack detection as a binary clas-

sification problem, which is to classify each network con-

nection as a malicious or as normal connection. Suppose

we are provided with source domain training examples

S =
{

�xi
}

, �x ∈ R
m that have labels LS = {yi}, and tar-

get domain data T = { �ui}, �u ∈ R
n. Suppose �x and �u

are drawn from different distributions, PS(X) �= PT (X),

where PT (X) is unknown, and the dimensions of �x and �u
are different, Rm �= R

n. Our goal is to accurately predict

the labels on T.

Since network attacks share similar traits, our approach

is to find the common latent subspace and transform

the source and target data onto it to get new feature

representations, which can then be used in classifcation.

We demonstrated the approach in our previous paper

[6]. Given source domain data and target domain data

with different attacks, the model explores the common

latent space, in which the original structure of the data is

preserved while the discriminative examples are still far

apart.

4.1 Optimization

Given source data S and target data T, we compute an

optimal projection of S and T onto an optimal sub-

space VS and VT according to the following optimization

objective:
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min
VS,VT

ℓ(VS, S) + ℓ(VT,T) + βD(VS,VT), (1)

where ℓ(∗, ∗) is a distortion function that evaluates the dif-

ference between the original data and the projected data.

D(VS,VT) denotes the difference between the projected

data of the source and target domains. β is a trade-off

parameter that controls the similarity between the two

datasets.

Thus, the first two elements of (1) ensure that the pro-

jected data preserve the structures of the original data as

much as possible.

We defined D(VS,VT) in terms of l(∗, ∗) as:

D(VS,VT) = ‖VT − VS‖
2 (2)

which is the difference between the projected target

data and the projected source data. Hence, the projected

source and target data are constrained to be similar by

minimizing the difference function (2).

We applied linear transformation to finding the pro-

jected space. We define ℓ(∗, ∗) as follows:

ℓ(VS, S) = ‖S−VSPS‖
2, ℓ(VT,T) = ‖T−VTPT‖2, (3)

where VS and VT are achieved by a linear transformations

with linear mapping matrices, denoted as PS ∈ R
k×m

and PT ∈ R
k×n to the source and target, respectively.

‖X‖2 is the Frobenius norm that can also be expressed

as a matrix trace norm. In a different view, PS
T ∈ R

m×k

and PT
T ∈ R

n×k project the original data S and T into a

k-dimensional latent subspace, where the projected data

are comparable
(

ℓ(VS, S) = ‖SPS
T − VS‖

2
)

. This will lead

to a trivial solution PS = 0,VS = 0. We thus apply

(3). It can be viewed as a matrix factorization problem,

which is widely known as an effective tool to extract latent

subspaces while preserving the original data structures.

4.2 Optimization objective 1

Substituting (3) and (2) into (1), we obtain the follow-

ing optimization objective to minimize with regard to

VS,VT,PS and PT as follows:

minG(VS,VT,PS,PT) = min ‖S − VSPS‖
2

+ ‖T−VTPT‖2

+ β · ‖VT − VS‖
2)

(4)

In our previous work [6], we used a gradient method to

get the global minimums by iteratively fixing three of the

matrices to solve the remaining one until convergence.

The detailed HeTL algorithm was presented in [6].

5 Clustering-enhanced hierarchical transfer

learning
In previous study, we have observed that the perfor-

mance of HeTL depends on the manual presetting of

a hyper-parameter—relevance between the source and

target domains (β). Inappropriate choice of parameters

might lead to suboptimal efficacy results. The row order

of the class type for S and T could also affect the results of

D(VS,VT). Practically, we may know little about the new

attack in T, so the transformation process in (4) could be

misleading.

To address this problem, we proposed a hierarchi-

cal transfer learning with clustering enhancement, called

CeHTL, through automatically finding the relevance

between the source and target domain before we per-

form the projection. CeHTL first clustered the instances

for the target domains, as the source domain already has

two natural clusters (classes). By computing the similarity

of each cluster and choosing the mapping for two simi-

lar clusters in the source and target domains, we can get

the correspondence (mapping) of each cluster in the tar-

get domain to the source domain. We sorted the instances

by order of their cluster labels, so that the rows in matri-

cesT and Swill have the same class order. Then, we solved

objective (4) for the ordered T and S. We illustrated the

comparison between CeHTL with HeTL in Fig. 1. The

algorithm for CeHTL is listed in Algorithm 1. We chose

K-means++ [31] for clustering and used the Euclidean

distance to compute the similarity.

Algorithm 1: Clustering Enhanced Hierarchical

Transfer Learning (CeHTL)

Input: T, S

Output: Tnew, Snew
1 Initialize: c clusters for each domain, c = 2

2 CT = kmeans(T, c); %CT is the cluster label for each

instance.

3 CS = YS;%CS is the cluster label for each instance. YS is

the class label for source domain

4 If the dimensions of T and S is not equal,

5 T = pca(T); S = pca(S);

6 Compute the Euclidean distance between centroid of

each cluster in T and S.

7 For each cluster in T, choose the similar cluster from

CS, which has the smallest Euclidean distance value, to

form a similar cluster pair, and assign the same label to

each similar pair of clusters.

8 Sort the matrices [T,CT ] and[ S,CS] in the order of

CT and CS, to get the Tnew, Snew for the new input for

the HeTL algorithm.

In case that the source and target domains have hetero-

geneous feature sets, where T and S may have different

dimensions, the Euclidean distance cannot be applied.

To overcome this problem, we use principal component

analysis (PCA) [32] for each source and target domain

to perform feature reduction. By choosing the same size

of components for source and target domains, they will
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(a) (b)

Fig. 1 Comparison between the HeTL and CeHTL

have the same dimensions. The notation description are

presented in Table 1.

6 Experimental evaluation
In this section, we evaluated the performance the of pro-

posed transfer learning HeTL and CeHTL for detecting

“unknown” network attacks. We addressed the following

questions: Does transfer learning approach provide any

advantage compared with a single classifier without using

transfer learning approach? and Which technique is the

most appropriate transfer learning approach? We utilized

a benchmark network intrusion dataset—the NSL-KDD

benchmark dataset [11] (in Section 6.1). We carried out

two experiments to stimulate the “unknown” network

attacks and different feature spaces (in Section 6.2). We

demonstrated the benefits of HeTL and CeHTL compared

Table 1 Notation descriptions

Notations Descriptions

S Source data

VS Projected source data

PS Projection function to the source space

T Target data

VT Projected target data

PT Projection function to the target space

β Weights of the relevance between the source and target data

k Dimensions of the projected space

α Learning rates

Step Learning step

to other traditional machine learning algorithms as well

as other several novel transfer learning methods (in

Section 6.3). We also performed the parameter sensitiv-

ity analysis and showed the impact of imbalanced datasets

and training data sizes (Section 6.4).

6.1 Network datasets

NSL-KDD contains network features extracted from a

series of TCP connection records captured from a local

area network. Each record in the dataset corresponds to

a connection labeled as either an normal or attack type.

The dataset has 22 different types of attack, which can

be grouped into 4 main categories: DoS, R2L, Probe, and

User to root (U2R). Tables 2 and 3 provide the details of

the attacks and their distribution in the training dataset.

Since the portion of U2R is very small, we only focus on

DoS, R2L, and Probe.

NSL-KDD contains 41 network features that can be split

into 3 groups: (1) basic features deduced from TCP/IP

connection packet headers; (2) traffic features, usually

extracted by flow analysis tools; and (3) content features,

Table 2 Category of the attack in NSL-KDD

Main categories Attack

DoS Neptune, back, land, smurf, teardrop,pod

R2L buffer_overflow, ftp_write, guess_passwd, imap,
multihop, phf, spy, warezclient, warezmaster

Probe ipsweep, nmap, portsweep, satan

U2R loadmodule, perl, rootkit
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Table 3 Number of instances in NSL-KDD

Class Instances Percentage

Normal 67343 53.46

DoS 45927 36.46

R2L 995 0.79

Probe 11656 9.25

U2R 52 0.04

requiring the processing of the packet content. Some

example of features are listed in Table 4.

6.2 Experimental setting

6.2.1 Detection of unknown network attacks

This experiment is to evaluate the proposed transfer

learning approaches for detecting new variants of attacks.

Stimulating new attacks is challenging. We can assume

attacks in the target data has no labels and differ from

attacks in the source domain. We randomly selected mali-

cious examples from one main attack category (e.g., DoS,

R2L, Probe) and normal examples as the source domain.

Then, we chose a different attack type combined with

normal samples for the target domain. We finally gener-

ated three groups: DoS→Probe (DoS is the source domain

for training and Probe is target domain for testing),

DoS→R2L and Probe→R2L). To evaluate the general-

ization, we also chose attacks from 22 sub-attack types

for each source and target set and generated 11 tasks.

We repeated the processes ten times and reported the

averages and standard deviations. We make the attack

data, and the normal data in each domain are balanced

unless stated otherwise. We further studied the effects of

imbalanced data in Section 6.4.

6.2.2 Network attacks with different feature spaces

To evaluate the performance in detecting attacks using

different feature spaces, we used different feature sets for

source and target domains, based on the first experiment

setting. In network security, there are circumstances that

we need to incorporate new features to better detect

the attacks. For example, traffic feature is more distin-

guishable for DoS attack. However, for the R2L attack,

the content feature is more distinguishable. This usually

need to retrain the model. To stimulate this scenario, we

selected the most relative features for the source and tar-

get domains using information gain, resulting in unequal

feature dimensions. The final selected features were listed

in Appendix Tables 5 and 6. Of note, using information

gain here is only for generating different feature sets, not

for improving the performance. In real practice, features

can be changed due to the manual feature engineering

as we have less information about the target dataset. The

baseline approach manually mapping the target data into

the source feature space and applied the traditional clas-

sifiers. We compared our transfer learning approach with

the baselines.

6.3 Evaluation

We chose the accuracy, F1 score (F − Measure) and

receiver operating characteristic curve (ROC curve) as the

performance metrics. F1 score combines precision and

recall to measure the per-class performance of classifica-

tion or detection algorithms.

We firstly chose C4.5 decision tree (CART), linear

SVM, and KNN as the baselines, which were also served

for base classifiers for HeTL and CeHTL. We com-

pared HeTL and CeHTL with baselines on three main

transfer learning tasks (i.e., DoS→Probe, DoS→R2l, and

Probe→R2L). Figures 2 and 3 show the box plots of accu-

racy and F1 score on ten iterations on three main tasks.

We observed that the baseline models performed poorly,

with accuracy of 0.47–0.74 and F1 score of 0.1–0.65.

Our HeTL and CeHTL significantly outperformed the

baselines, obtained over 0.70 accuracy and 0.75 F1 score.

CeHTL outperformed HeTL with all three base classi-

fiers in DoS→Probe and in decision tree and KNN in

Table 4 Some selected features in NSL-KDD

Feature name Description Feature category

Duration Duration of the connection Basic features

Src_bytes Data bytes from source to destination Basic feature

Dst_bytes Data bytes from destination to source Basic feature

Num_failed_logins Number of incorrect login in a connection Content feature

Srv_count Sum of connections to the same destination port number Traffic feature

Serror_rate Percentage of connections that have “SYN” errors among the connections to the same
host in the past 2 s

Traffic feature

Srv_serror_rate Percentage of connections that have “SYN” errors among the connections to the same
destination port in the past 2 s

Traffic feature

Dst_host_count Sum of connections to the same destination IP address Traffic feature

Dst_host_same_srv_rate The percentage of connections that were to the same service, among the connections
aggregated in dst_host_count

Traffic feature



Zhao et al. EURASIP Journal on Information Security          (2019) 2019:1 Page 7 of 13

Fig. 2 Box plot of accuracy of transfer learning approaches and baselines on three main tasks

Probe→R2L. CeHTL achieved the best result with an

average accuracy and F1 score of 0.88.

Then, we applied HeTL, CeHTL, and two baseline

methods—SVM and HeMap [26], a novel transfer learn-

ing approach—to the 11 transfer learning tasks generated

by the subtypes of attacks, along with the 3main tasks.We

run the experiment for 10 iterations with different random

seeds and reported the average and standard deviations

of accuracy and F1 scores in Figs. 4 and 5. We observed

(1) transfer learning approaches outperformed the tradi-

tional classifiers without using transfer learning in all 14

tasks, (2) HeTL and CeHTL can improve the accuracy to

0.8–0.9 in 5 tasks, (3) HeTL and CeHTL outperformed

HeMap, and (4) CeHTL outperformed all other methods

in 10 cases. Figure 6 shows the ROC curves on 3 main

transfer learning tasks using KNN as the base classi-

fier. CeHTL achieved the best area under ROC curves

(AUC) in 2 DoS→Probe and Probe→R2L (CeHTL 0.93

and 0.91 AUC vs. HeTL 0.82 and 0.65 AUC). Besides

HeMap, we compared our approaches with more base-

lines, TCA [24] and CORAL [23]. Figure 7 showed the

results of approaches on 5 classifiers in DoS→R2L. HeTL

and CeHTL outperformed all baselines.

Finally, we carried out the second experimental set-

ting, where the source domain and target domain have

different feature spaces. We compare the transfer learn-

ing approach with the manual mapping approach on

DoS→R2L. From the results shown in Fig. 8, we can see

that the transfer learning approaches outperformed the

baselines.

6.4 Discussion

The study proposed two transfer learning methods, HeTL

and CeHTL, on network attack detection methods to

address the issues of lacking sufficient labels for new

attacks. The results showed that HeTL and CeHTL signif-

icantly improved the accuracy compared to the traditional

classifiers and other transfer learning methods. Especially,

CeHTL performed the best in most of the tasks, espe-

cially in DoS→Probe tasks. One of the reason is DoS had

more similarities with Probe than R2L, according to the

top selected features in Appendix Table 5 and 6. This can

improve the accuracy of computing the cluster correspon-

dence, which thus resulted in a better performance.

6.4.1 Parameter sensitivity

Two hyper-parameters, the similarity confidence param-

eter β and the dimensions of the new feature space k,

need to be set for optimization (4). There are several

ways to determine the optimum hyper-parameters: (a) the

Fig. 3 Box plot of F1 score of transfer learning approaches and baselines on three main tasks
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Fig. 4 Performance comparison of accuracy on unknown network attacks detection, sample size = 1000

Fig. 5 Performance comparison of F1 score on unknown network attacks detection, sample size = 1000

(a) (b) (c)

Fig. 6 Performance comparison of ROC curves on the three transfer learning datasets. a ROC curve on DoS→Probe. b ROC curve on DoS→R2L

c. ROC curve on Probe→R2L



Zhao et al. EURASIP Journal on Information Security          (2019) 2019:1 Page 9 of 13

Fig. 7 Performance comparison of feature-based transfer learning approaches on DoS→ R2L

similarity confidence β can be determined by computing

the similarity or distance between the source and target

data, (b) the optimal number of both parameters can be

found by enumerating the number of parameters, or (c)

the parameters can be set empirically. However, the first

and second approaches need a few labeled data from the

target domain, which is not a truly “unknown” situation.
We studied the impact of different parameter settings on
the performance of detecting attacks. Figure 9 demon-

strates the effect on accuracy by using different parameter
combinations of β and k (where β ∈[ 0, 1] and k ranges

from 1 to 6). Figures 10 and 11 demonstrate the average
accuracy achieved on parameters β and k.
Compared with HeMap, both HeTL and CeHTL

improve the highest accuracy achieved with different

parameter settings, shown in Fig. 9. However, HeTL is

sensitive to parameter tuning, showing lower accuracy in

some specific parameter combinations. CeHTL performs

more stably. For example, in DoS→Probe, after several

fluctuation, CeHTL canmaintain around 0.8 accuracy. For

the similarity confidence parameter β , as shown in Fig. 10,

CeHTL shows a significant improvement and stays stable

from β ≥ 0, because the correspondence has been auto-

matically computed and involved in the transfer learning,

so β should be set larger than 0. For the parameter k,

in general, CeHTL shows an outstanding and stable per-

formance than other approaches. The results show that

CeHTL is more suitable for unknown network detection

since we can empirically set the parameters and do not

reply heavily on information about the labeled data in the

target domain.

6.4.2 The imbalanced data effects

In many real cases, the size of normal and attack data

would be not equal. Thus, we investigated the perfor-

mance of the HeTL and CeHTL on imbalanced data.

Figure 12 shows the F1 score of the transfer learn-

ing approaches and baselines in different percentage

of the attack data. We observed the baseline method

performed poorly on the imbalanced data, especially

Fig. 8 Performance comparison on heterogeneous spaces on DoS→R2L
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(a) (b) (c)

Fig. 9 Accuracy comparison with different combinations of k and β , sample = 1000. a DoS→Probe. b DoS→R2L. c Probe→R2L

(a) (b) (c)

Fig. 10 Study of parameter β sensitivity on three main detection tasks, sample = 1000. a DoS→Probe. b DoS→R2L. c Probe→R2L

(a) (b) (c)

Fig. 11 Study of parameter k sensitivity on the three main detection tasks, sample = 1000. a DoS→Probe. b DoS→R2L. c Probe→R2L
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(a) (b) (c)

Fig. 12 The performance on imbalanced data by varying the portion of attack data, sample = 1000. a DoS→Probe. b DoS→R2L. c Probe→R2L

in DoS→R2L and Probe→R2L. The transfer learning

approaches improved F1 scores in most cases. Although

all the methods had a lower F1 score in 10% attack data,

HeTL and CeHTL boosted the F1 by 50% when adding

another 10% of attack data, and themetric kept rising with

increasing the attack data.

6.4.3 The training size

We studied how much training data was needed for

unknown attack detection. We plot the learning curves in

Fig. 13. From the results, we observed that CeHTL gained

the best accuracy at a 500 sample size in DoS→Probe and

DoS→R2L, and the second best accuracy in Probe→R2L.

CeHTL needs the smallest training sample size, which

makes it the best option given a limited amount of training

data.

7 Conclusion
Machine learning have been employed in detecting the

occurrence of malicious attacks. Most machine learning

techniques for attack detection are effective only given the

assumptions that the training and testing data are from

the same distribution. However, inmost real cases, contin-

uously evolving attacks and the lack of sufficient labeled

datasets hinder the ability of supervised learning tech-

niques to detect new attacks. In this paper, we introduced

a feature-based transfer learning framework and transfer

learning approaches. We presented a feature-based trans-

fer learning approach using a linear transformation, called

HeTL. We also proposed a cluster enhanced transfer

learning approach, called CeHTL, to make it more robust

in detecting unknown attacks. We evaluated the transfer

learning approaches on common classifiers. The results

showed the transfer learning approaches improve the per-

formance of detecting unknown network attacks com-

pared to baselines. Spectacularly, CeHTL exhibited higher

performance and the ability to be more robust in detect-

ing unknown attacks with no labeled data. The results also

demonstrated that the proposed transfer learning tech-

niques can support different feature spaces. In the future,

we aim to apply the model to various attack domains, such

as malware detection. We also plan to combine transfer

learning with deep learning to pre-train the models for

practical use.

(a) (b) (c)

Fig. 13 Learning curves on different training size. a DoS→Probe. b DoS→R2L. c Probe→R2L
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Appendix

Table 5 Top features for detecting DoS, used in the second

experiment

Rank index Features Score

1 srv_serror_rate 0.504

2 serror_rate 0.500

3 flag 0.475

4 dst_host_srv_serror_rate 0.441

5 src_bytes 0.426

6 logged_in 0.417

7 dst_host_serror_rate 0.392

8 diff_srv_rate 0.383

9 dst_bytes 0.334

10 same_srv_rate 0.279

11 service 0.181

12 dst_host_diff_srv_rate 0.173

13 dst_host_same_srv_rate 0.162

14 wrong_fragment 0.161

15 dst_host_srv_diff_host_rate 0.150

16 dst_host_srv_count 0.150

17 count 0.138

18 dst_host_count 0.136

19 srv_diff_host_rate 0.135

20 duration 0.115

Table 6 Top features for detecting R2L, used in the second

experiment

Rank index Features Score

1 srv_count 0.399

2 count 0.326

3 dst_host_srv_count 0.307

4 service 0.283

5 dst_bytes 0.243

6 src_bytes 0.231

7 hot 0.225

8 is_guest_login 0.215

9 protocol_type 0.208

10 srv_diff_host_rate 0.176

11 dst_host_srv_diff_host_rate 0.175

12 dst_host_same_src_port_rate 0.162

13 num_failed_logins 0.154

14 dst_host_count 0.127

15 flag 0.104
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