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Abstract

Classification of ultrasound (US) kidney images for diagnosis of congenital abnormalities of the 

kidney and urinary tract (CAKUT) in children is a challenging task. It is desirable to improve 

existing pattern classification models that are built upon conventional image features. In this study, 

we propose a transfer learning-based method to extract imaging features from US kidney images 

in order to improve the CAKUT diagnosis in children. Particularly, a pre-trained deep learning 

model (imagenet-caffe-alex) is adopted for transfer learning-based feature extraction from 3-

channel feature maps computed from US images, including original images, gradient features, and 

distanced transform features. Support vector machine classifiers are then built upon different sets 

of features, including the transfer learning features, conventional imaging features, and their 

combination. Experimental results have demonstrated that the combination of transfer learning 

features and conventional imaging features yielded the best classification performance for 

distinguishing CAKUT patients from normal controls based on their US kidney images.

Index Terms

Chronic kidney disease; Ultrasound imaging; Transfer learning

1. INTRODUCTION

Children with congenital abnormalities of the kidney and urinary tract (CAKUT) face many 

challenges and early detection of CAKUT can help prevent the progression of kidney 

disease to kidney failure [1]. Ultrasound (US) imaging plays a key role in CAKUT diagnosis 

because anatomic measures derived from US imaging data, such as renal elasticity, renal 

parenchymal area, maximum renal length, and cortical thickness, are correlated with kidney 

function [2, 3]. More recently, texture analysis of imaging data has demonstrated improved 

performance for predicting change in kidney function [4].
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Pattern recognition methods have been used to aid kidney disease diagnosis based on US 

imaging data. Particularly, a decision support system has been developed to classify US 

images of normal controls and renal disease patients based on second order grey level co-

occurrence matrix statistical features [5]; neural networks in conjunction with principal 

component analysis have been used to classify US kidney images [6], and support vector 

machine (SVM) classifiers have been built upon texture features extracted from regions of 

interest of US images to classify kidney images [7, 8]. These studies have demonstrated that 

pattern classifiers built upon imaging features could obtain promising performance for 

classifying US imaging data.

The success of deep learning techniques in recent years have witnessed promising 

performance in learning imaging features for a variety of pattern recognition tasks [9–11]. In 

these studies, convolutional neural networks (CNNs) are widely adopted to learn informative 

imaging features by optimizing pattern recognition cost functions. Therefore, it is expected 

that incorporating the deep learning techniques into US imaging data analysis would 

improve US image classification and subsequently improve diagnosis of CAKUT in children 

based on US imaging data.

Since a large dataset is typically needed to build a generalizable deep learning based 

classification model [12], for applications with small datasets the deep learning tools are 

often adopted in a transform learning setting, i.e., applying deep learning models trained 

based on a large dataset for one problem to a different but related problem with a relatively 

small training dataset [13]. The transfer learning strategy has achieved promising 

performance in pattern recognition studies of medical image data [14–19]. Furthermore, it 

has been demonstrated that classifiers built upon combination of transfer learning features 

and handcrafted features typically achieve better pattern recognition performance than those 

built upon transfer learning features and hand-crafted features alone [17–19].

Building upon the successful deep learning and transfer learning techniques, we develop a 

pattern recognition method for distinguishing children with CAKUT from healthy kids 

based on their US kidney imaging data. Particularly, we adopt a pre-trained model of CNNs, 

namely imagenet-caffe-alex [20], for extracting imaging features from 2D US kidney 

images. Since the US kidney images have only one channel of intensity values while the 

imagenet-caffe-alex model requires color images with 3 channels, two more feature maps 

are computed from each original US image, including a gradient feature map and a distanced 

transformation feature map, and they are integrated with the original US image to be used as 

a 3-channel input to the imagenet-caffe-alex model. Moreover, hand-crafted texture features 

are also extracted from each US image. Finally, SVM classifiers are built upon the transfer 

learning features and hand-crafted texture features to distinguish US kidney images of 

children with CAKUT from those of healthy kids. We have validated our method based on 

an US imaging dataset obtained from 50 children with CAKUT and 50 healthy kids at the 

Children’s Hospital of Philadelphia (CHOP). Experiment results have demonstrated that our 

method could achieve promising pattern classification performance for aiding diagnosis of 

CAKUT.
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2. METHODS

Our method consists of 3 components, including kidney segmentation, feature extraction, 

and SVM based classification, as illustrated in Fig. 1.

2.1 Kidney Segmentation and image normalization

We adopted a graph-cuts method to segment kidneys in US images [21]. Particularly, the 

graph-cuts method segments kidneys in US images based on both image intensity 

information and texture features extracted using Gabor filters. This method has achieved 

promising segmentation performance for segmenting bilateral kidneys in US images. The 

average Dice index of the segmentation results compared with manual segmentation results 

was 0.96.

To make US kidney images of different subjects directly comparable, we normalized US 

kidney images of different subjects. First, the orientation of kidneys in US images is 

estimated based on ellipse fitting, including the ellipse’s major axis, minor axis, and the 

orientation θ between the major axis and X-axis, as illustrated in Fig. 2. Second, based on 

the estimated ellipse information, each US kidney image is reoriented along the major axis 

and resized to have the same size as the images used in the deep learning model to be 

described. Particularly, the reoriented image is centered to the ellipse’s center and rescaled 

according to the ellipse’s major axis and minor axis to have the same size. Finally, image 

intensity values outside of the kidney are set to zero.

2.2 Feature Extraction

Two different methods are used to extract image features from the normalized kidney 

images, including the transfer learning based on a deep CNN model and conventional 

texture features.

2.2.1 Feature Extraction by Transfer Learning—A pre-trained CNN model 

(imagenet-caffe-alex) is adopted from MatConvNet to extract features from the kidney 

images [20]. The imagenet-caffe-alex model was trained on 1.2 million 3-channle images of 

the ImageNet LSVRC-2010 for classifying images into 1000 different classes. Since the 

kidney US images only have one channel of intensity values, we propose to adopt original 

kidney image, gradient image, and distanced transform image to build a 3-channel image, as 

illustrated in Fig. 3.

In particular, 3 feature maps are computed from each normalized US kidney image, 

including original kidney US image fI(x,y), gradient feature map fG(x,y), and distanced 

transform feature map fD(x,y). First, the original US kidney image intensity values are 

normalized to [0, 255]. Second, a gradient feature map fG(x,y) is computed as:

f G(x, y) =
g(x, y)
f I(x, y)

=
gx

2(x, y) + gy
2(x, y)

f I(x, y)
, (1)
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where gx(x,y) = (fI(x+1,y) − fI(x−1,y))/2, gy(x,y) = (fI(x,y+1) − fI(x,y−1))/2, x and y are 

coordination of pixels. Third, a distance transform feature map is computed using the VLfeat 

toolbox [22] by

f D(x, y) = minx′, y′ f I(x′, y′) + ((x − x′)2 + (y − y′)2) . (2)

Particularly, the distance transform map characterizes the distance of each pixel to its nearest 

element in an edge map obtained by applying Canny edge detector to the original image 

[23]. Both the gradient and distance transformation feature maps are normalized to [0, 255].

Finally, each kidney image’s original kidney US image fI(x,y), gradient feature map fG(x,y), 

and distanced transform feature map fD(x,y) are used as R-channel, G-channel, and B-

channel respectively to form a 3-channel image so that the imagenet-caffe-alex model could 

be adopted to extract features. Two randomly selected kidney US images, their RGB 

channels, and their pseudo color images are shown in Fig. 4.

2.2.2 Conventional Image Features—Conventional image features are also extracted 

from the US kidney images, including histogram of oriented gradients (HOG) features and 

geometrical features of the kidneys.

(1) HOG Features: The HOG decomposes an image into small squared cells, computes the 

histogram of oriented gradients in each cell, normalizes the result using a block-wise pattern, 

and returns a descriptor for each cell. Same as the distanced transform, we utilize the 

VLFeat toolbox [22] to compute the HOG features with default parameters except that the 

cell size is set to N0/10, where N0 is the size of the input images to the deep learning model.

(2) Geometrical Features: The geometrical features include shape-related measures and 

block-related measures of the kidneys. Particularly, the shape-related features are defined as 

V
shape

= [L1, L2, L1/L2, L1 × L2, L1 + L2, L1
2 + L2

2, L1 − L2, L1
2 − L2

2], where L1 and L2 are lengths 

of the major and minor axes of the kidney as defined by the ellipse estimation of the kidney. 

The block-related features are ratios of areas of black holes inside kidney to the whole 

kidney region. Because no suitable threshold is available for segmenting holes from all 

kidney images, we uniformly set 10 thresholds of [3:3:30] to segment black holes, and the 

resulting ratios constitute the block-related features Vblock = [ratio1, ⋯, ratio10]. Finally, 

from each kidney image, we obtain a set of geometric features Vgeometric = [Vshape, Vblock].

2.3 Diagnosis of CAKUT

The diagnosis of CAKUT based on US kidney images is modeled as a pattern classification 

problem based on US image features. Particularly, a L2-regularized L1-loss SVM is utilized 

to build classifiers based on the extracted image features by optimizing
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minw

1
2

w
T

w + C∑
i = 1

l
max (0, 1 − yiw

T
f i) (5)

where f→i is the feature vector of the ith US kidney image, w⃗ is the weighting vector to be 

learned from training data.

The L2-regularized L1-loss SVM optimization problem can be solved using a dual 

coordinate descent method. Particularly, a publicly available software package LIBLINEAR 

with its default parameters is utilized to build the SVM classifiers [24]. Once we get the 

weighting vector w⃗, the category of the ith kidney image can be estimated by

Li = sgn w
T

f i . (6)

3. EXPERIMENTAL RESULTS

We have validated our method based on kidney images collected at the Children’s Hospital 

of Philadelphia. The dataset contains kidney images obtained from 50 normal subjects and 

50 patients. Particularly, all the 50 normal subjects had both left and right kidney images, 35 

patients had abnormal kidneys in both sides, 39 patients had abnormal kidneys in the left 

side, and 46 patients had abnormal kidneys in the right side. We built SVM classifiers based 

on all the available data for the left, right, and bilateral kidney images separately, and 10-

fold cross-validation was adopted to evaluate the classification performance. The 10-fold 

cross-validation was repeated for 100 times to estimate the classification performance.

In order to investigate if the transfer learning features and the conventional image features 

provide complementary information for distinguishing abnormal and normal kidney images, 

we compared classifiers built upon different sets of features, including the transfer learning 

features alone, the conventional features alone, and their combination.

As shown in Fig. 5, the classifiers built upon the combination of the transfer learning 

features and the conventional features had the largest area under the receiver operating 

characteristic (ROC) curve (AUC), indicating that integrating the transfer learning features 

and the conventional imaging features could improve the classification of US kidney images. 

Table 1 summarizes mean classification accuracy and AUC values of 100 runs of the 10-fold 

cross-validation experiments. These results further demonstrated the advantages of 

combination (CNN+HOG+Geometrical features) over others.

4. CONCLUSIONS

In this paper, we proposed a transfer learning-based method for CAKUT diagnosis based on 

US kidney images. The classification experiments for distinguishing CAKUT patients from 

normal controls based on their kidney US images have demonstrated that integrating the 
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transfer learning features and conventional image features could improve the classification 

of US kidney images.
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Fig. 1. 

Flowchart for CAKUT diagnosis based on US images.
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Fig. 2. 

Ellipse estimation (a) and image rotation (b).
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Fig. 3. 

Feature extraction by transfer learning. ➀ original US kidney image; ➁ gradient image; ➂ 
distanced transform image.
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Fig. 4. 

US kidney images and feature maps. (a) US images with kidney contours in red; (b) original 

image feature fI(x,y); (c) gradient feature fG(x,y); (d) distanced transform feature fD(x,y), 

and (e) pseudo color images.

Zheng et al. Page 11

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 August 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 5. 

ROC curves of different classifiers, estimated based one run of 10-fold cross-validation. 

GEOME: geometrical features.
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