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Transfer learning for ECG 
classification
Kuba Weimann1* & Tim O. F. Conrad1,2

Remote monitoring devices, which can be worn or implanted, have enabled a more effective 
healthcare for patients with periodic heart arrhythmia due to their ability to constantly monitor 
heart activity. However, these devices record considerable amounts of electrocardiogram (ECG) data 
that needs to be interpreted by physicians. Therefore, there is a growing need to develop reliable 
methods for automatic ECG interpretation to assist the physicians. Here, we use deep convolutional 
neural networks (CNN) to classify raw ECG recordings. However, training CNNs for ECG classification 
often requires a large number of annotated samples, which are expensive to acquire. In this work, we 
tackle this problem by using transfer learning. First, we pretrain CNNs on the largest public data set 
of continuous raw ECG signals. Next, we finetune the networks on a small data set for classification of 
Atrial Fibrillation, which is the most common heart arrhythmia. We show that pretraining improves 
the performance of CNNs on the target task by up to 6.57% , effectively reducing the number 
of annotations required to achieve the same performance as CNNs that are not pretrained. We 
investigate both supervised as well as unsupervised pretraining approaches, which we believe will 
increase in relevance, since they do not rely on the expensive ECG annotations. The code is available 
on GitHub at https ://githu b.com/kweim ann/ecg-trans fer-learn ing.

Remote monitoring devices, which can be worn or implanted, have enabled a more e�ective healthcare for 
patients with periodic heart arrhythmia due to their ability to constantly monitor heart activity. At the same 
time, these devices record large amounts of electrocardiogram (ECG) data that needs to be interpreted. �is task 
falls on physicians, nurses and other medical workers. �e additional workload further contributes to the fatigue 
regularly experienced by the medical sta� at work, which increases the chances of medical  errors1,2. Additionally, 
a signi�cant portion of the received ECG recordings are o�en false alarms, since the remote monitoring devices 
are very sensitive to abnormalities in the ECG, which prevents them from missing major cardiovascular events. 
�erefore, there is a growing need to assist the physicians with the interpretation of ECG recordings.

Worldwide, millions of ECG recordings are collected annually, majority of them automatically analyzed and 
interpreted by  computers3. �is imposes the requirement on the ECG interpretation methods to not only be fast 
and accurate but also patient and device independent. �e widespread digitization of ECG data coupled with the 
development of deep learning methods, which can process large amounts of raw data, has introduced new pos-
sibilities for improving the automated ECG interpretation. Indeed, deep neural networks (DNN) have recently 
achieved cardiologist-level classi�cation  performance4 when trained on a large (n = 91,232) data set of raw ECG 
recordings. However, available ECG data sets are o�en much smaller, which makes it di�cult to achieve a desir-
able performance level. In this work, we focus on the case where the data set used for training a classi�er is small.

�e properties of ECG data captured by remote monitoring devices pose several challenges for training 
DNNs to classify ECG data. In particular, the main challenges are: (1) a drastic class imbalance caused by the 
rare occurrence of some cardiovascular events; (2) a low signal quality, e.g. re�ected by a low sampling frequency, 
single ECG lead and noisiness; and (3) a small number of annotations owing to the substantial costs of employ-
ing experts to manually label the ECG recordings. In this work, we focus on the third challenge. In supervised 
learning, the performance of a classi�er depends on the size of data set. �us, we investigate whether including 
ECG data from other sources into the training process improves the classi�cation performance, despite the dif-
ferences in the properties of ECG signals (e.g. due to di�erent recording devices) and labels (e.g. due to a di�erent 
purpose of data collection). To that end, we include new ECG data with and without labels. Although in both 
cases the size of training data grows larger, a greater increase is expected from using unlabeled data sets because 
they are collected without manual intervention.

�ere are di�erent approaches to improving classi�ers when manual labeling becomes too expensive. For 
instance, active learning aims to guide the labeling process by ranking the unlabeled examples according to some 
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criterion that selects the most useful examples for improving the model. �ese examples are given to the experts 
for labeling and a�er that the model is retrained. �us, the number of training samples necessary to maintain 
high discriminative capabilities is minimized. Nevertheless, the need for manual labeling persists, albeit to a 
lesser extent. At the same time, semi-supervised learning combines small amounts of labeled data with a large 
amount of unlabeled data to improve the learning accuracy, e.g. by learning unsupervised representations of 
the  data5 or feature extractors that improve the downstream (target) task. Finally, transfer learning focuses on 
gathering knowledge by solving one problem and applying it to a related problem in the same domain. In com-
puter vision, most state-of-the-art classi�cation algorithms rely on supervised pretraining that roughly follows 
the same procedure: �rst pretrain a convolutional neural network on a large labeled data set (e.g.  ImageNet6), 
then �netune the network on a smaller target data set.

In this work, we use transfer learning to improve ECG classi�ers (Fig. 1). First, we pretrain deep convolutional 
neural networks (CNN) on the  Icentia11K5 data set. To that end, we de�ne several pretraining tasks that utilize 
either labeled or unlabeled data. Next, we �netune the pretrained CNNs on the PhysioNet/CinC 2017 data  set7,8 
to classify Atrial Fibrillation (AF). AF is the most common heart  arrhythmia7 characterized by an irregular 
heart rhythm that is caused by a chaotic propagation of electrical impulses in the atria. AF can lead to serious 
complications such as heart disease, heart failure, or blood clots that can travel to the brain and cause a stroke.

Our main contribution is a successful large-scale pretraining of CNNs on the largest public ECG data set to 
date. By pretraining CNNs, we improve their performance on the target task and e�ectively reduce the number 
of expensive annotations required to achieve the same performance level as CNNs that are not pretrained. Our 
pretraining methods are robust to changes in the properties of ECG signals and can be applied to di�erent models 
and data sets. Notably, we show how a CNN, which was pretrained on single lead ECG data, can be �netuned 
on 12 lead ECG data. Further, we show how contrastive pretraining, which is an unsupervised representation 
learning technique, can improve the performance of CNNs on the target task. Contrastive learning has been 
extensively researched in computer vision, leading to many state-of-the-art results in transfer  learning9,10. How-
ever, applications to ECG data are not common. Finally, our pretraining tasks include heart rate classi�cation, 
whose labels require no manual intervention to create. To the best of our knowledge, this task has not been 
previously used for pretraining.

Related work
Automatic ECG interpretation using deep learning has attracted a lot of attention in the recent years. A good 
overview of the current state of deep learning methods for processing ECG data can be found in Faust et al.11 
and Hong et al.12 Here, we only discuss the publications that are most relevant to our work. Furthermore, we 
brie�y compare these publications with our work.

Figure 1.  Visualization of transfer learning in this work. �e process is divided into 3 steps: (1) deep 
convolutional neural network (CNN) is pretrained on the  Icentia11K5 data set for a selected pretraining 
objective, e.g. classi�cation of heart rate; (2) the pretrained weights are used as initial weights of a new CNN; (3) 
this CNN is �netuned on the PhysioNet/CinC Challenge  20177, 8 data set to classify Atrial Fibrillation (AF).
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ECG classification. Most ECG classi�cation methods for disease detection can be categorized as either 
 heartbeat13–15 or heart arrhythmia  classi�cation4,16–18 based on some form of ECG signal as the input to a neural 
network. �e input is usually a 1-dimensional raw ECG  signal4,16–18 and less commonly a 2d image of the  signal14 
(e.g. by plotting a grayscale image of the signal), or a spectrogram of the  signal19,20. Here, we follow the trend 
of training 1d convolutional neural networks (CNN), in particular residual  networks21,22, on raw ECG signals 
for heart arrhythmia classi�cation. In addition to that, we employ an attention model based on the Transformer 
 architecture23 for summarizing features from short ECG frames in one of the pretraining tasks. Although atten-
tion models were originally used in natural language  processing24,25, they also found application in the domain of 
ECG  interpretation19. Furthermore, in this work we focus on ECG data collected by remote monitoring devices 
that are typically less informative than clinical devices, e.g. due to a smaller number of leads. Nonetheless, 
remote monitoring devices, such as wristbands, are becoming increasingly common, facilitating collection of 
large ECG databases. As a consequence, a lot of work has been devoted to automatic interpretation of this kind 
of data. However, existing large ECG databases remain mostly inaccessible to the general public, thus a lot of 
research is done using relatively small public data sets, for instance PhysioNet/CinC Challenge  20177,8 data set, 
which is used for AF  classi�cation4,20,26. In this work, we measure the performance of our pretraining methods 
on the PhysioNet/CinC Challenge 2017 data set.

Transfer learning. Although most studies focus on classi�cation of arrhythmia on a data set annotated 
for that purpose, there are some publications that use transfer learning to share knowledge between related 
tasks, e�ectively utilizing the commonalities between di�erent ECG conditions. For instance, Kachuee et al.27 
presented a method for ECG heartbeat classi�cation based on transferable representations using 1-dimensional 
residual networks. Here, we deal with ECG frames much longer than a heartbeat, which we use to classify heart 
arrhythmia. More recently, Strodtho� et al.28 used transfer learning on public ECG data sets to classify heart 
arrhythmia. Similar to their work, we �netune the pretrained networks to classify heart arrhythmia, however, 
we use a much larger upstream data set for pretraining and investigate several pretraining tasks. �ere are also 
 studies29,30 of transfer learning from 2-dimensional deep CNN features trained on  ImageNet6, a data set o�en 
used for pretraining computer vision models. In contrast to these studies, we focus exclusively on transferable 
ECG representations, not transferable image representations.

Representation learning. Machine learning research in healthcare is o�en limited by the lack of large 
annotated data sets. �e performance of existing solutions for supervised tasks can be improved by learning 
unsupervised representations as part of a multi-stage training process. Using such representations may also help 
discriminative models to generalize better to unseen data, which o�en proves to be a serious issue. To that end, 
there are several studies which explore encoder-decoder architectures in order to learn unsupervised represen-
tations. In particular, Rahhal et al.31 and Xia et al.32 train stacked denoising autoencoders to reconstruct ECG 
heartbeats. Tan et al.5 reconstruct slightly longer ECG frames using a simple autoencoder, and Rajan et al.33 train 
an encoder-decoder network composed of RNNs (also referred to as Seq2Seq model) to reconstruct missing 
channels from a short ECG frame. In all of the above examples, the latent space learned by the generative model 
is exploited by training a classi�er on top of it. However, generative models taught to reconstruct the input o�en 
fail to extract context information which may be useful for the downstream (target)  task34. �erefore, in our 
work, we utilize the Contrastive Predictive Coding  approach34 that learns to infer global structure in the signal, 
rather than only model complex local relationships.

Method: transfer learning for ECG classification
Transfer learning applies knowledge obtained by solving one problem to a di�erent but related problem. �e 
general procedure for transfer learning is to �rst pretrain a deep neural network (DNN) on a large data set (i.e. 
upstream data set), then �netune the DNN on a much smaller target data set (i.e. downstream data set). Pretrain-
ing provides us with a way to �nd good initial weights that improve the learning of the target task thanks to some 
already acquired knowledge in the task domain. In particular, we hope that the pretrained DNNs will generalize 
better to unseen data a�er encountering a wide variety of ECG signals during pretraining.

In this work, we �rst pretrain deep convolutional neural networks (CNN) on the  Icentia11K5 data set, which 
is the largest public ECG data set to date. To that end, we have de�ned several pretraining tasks that we will 
investigate. Next, we �netune the pretrained CNNs for classi�cation of Atrial Fibrillation on a data set released 
as part of the PhysioNet Computing in Cardiology Challenge  20177,8, which we refer to as the PhysioNet/CinC 
Challenge 2017 data set. In the following subsections, we describe in detail our approach to transfer learning for 
ECG data and introduce the data sets that the CNNs are trained on.

Pretraining. We pretrain CNNs on Icentia11K, which contains ECG data from 11,000 patients. �e aver-
age patient is about 60 years old and exhibits some form of heart arrhythmia. As a consequence, the data set is 
not a representative sample of the population. Each patient wore a CardioSTAT device for a period of up to two 
weeks. �e recorded data is a raw ECG signal sampled at 250 Hz in a modi�ed lead I position. Beside recording 
the ECG signal, the device performs automatic beat detection. �e beat labels are veri�ed by a specialist who 
also labels the heart rhythm in a full disclosure analysis, i.e. whole recording is examined. Both beat and rhythm 
labels are assigned to positions in the signal at irregular intervals. �e data set is a collection of up to 50 segments 
of continuous ECG signal sampled from every patient. We reserve segments from 5% of patients for validation, 
and use the remaining segments for training. To put things into perspective, the data set contains over 630,000 h 
of ECG signal with over 2,700,000,000 labeled beats.
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During pretraining, we collect mini-batches by sampling short ECG frames from randomly chosen patients. 
We consider an ECG frame to be a fragment of the continuous ECG signal that is less than a minute long. We 
standardize each frame using mean and standard deviation computed over the entire data set. On average, we 
sample 4096 ECG frames per patient, which amounts to 42.8 million training samples over the course of pretrain-
ing. Every couple thousand training steps, we save the weights of the CNN in a checkpoint. Once the pretraining 
is �nished, we revert the model to the checkpoint, at which the model had the highest validation accuracy. Below, 
we describe how we design the tasks for pretraining a CNN on the Icentia11K data set.

Beat classification. CNN predicts the presence of an abnormal beat in a short ECG frame. For each frame, 
we look for the occurrence of either premature atrial contractions (PAC), premature ventricular contractions 
(PVC), or aberration. If no abnormality is found, the frame is labeled as normal beat. In rare cases of multiple 
abnormal beats within a single frame, we select the most frequent beat type for the label.

Rhythm classification. CNN predicts the heart rhythm from a short ECG frame. For each frame, we look 
at the duration of every rhythm to determine the label. Speci�cally, we pick the longest of the rhythms, while 
prioritizing Atrial Fibrillation (AFib) and Atrial Flutter (AFlut). �is means that we �rst select the longer among 
AFib and AFlut if they are present, otherwise the longest of the remaining rhythms, i.e. normal sinus rhythm or 
noise.

Heart rate classification. CNN predicts the heart rate from a short ECG frame. In contrast to beat and 
rhythm classi�cation, where labels are in part created by specialists, the labels for this task are generated auto-
matically, i.e. without human intervention. For each frame, we �rst �nd the indices of heartbeats (this can be 
done using a QRS detection  algorithm35) and estimate the number of beats per minute (BPM) based on the 
interbeat intervals. Next, we assign a class based on BPM: Bradycardia (< 60 BPM), Tachycardia (>100 BPM), 
Normal (60–100 BPM) and Noise in case of a failure to detect any heartbeats. Additionally, when generating the 
label, we always temporarily extend the size of the frame by 1 s at both ends. We consider this as a way to improve 
the quality of labels, especially when the frames are very short, which can make the labeling process more sus-
ceptible to variations in the heart rate. Note that since the labels are generated based on an ECG frame that is 
longer than the actual input seen by the model, it is likely that some examples cannot be correctly classi�ed due 
to missing information in the input.

Future prediction. �e model predicts the future ECG signal based on a present ECG signal. �is is a type 
of unsupervised representation learning, which is our adaptation of Contrastive Predictive  Coding34 to ECG 
data. For each ECG frame, we collect a number of consecutive frames, which together are referred to as the con-
text (present). �e future is an ECG frame collected at some distance from the context. �e distance is measured 
in the number of frames that lie between the context and the future and we refer to it as the o�set. Instead of 
predicting the future frame directly using a generative model, the context and the future are encoded into vector 
representations in a way that maximally preserves the mutual information between them. By maximizing the 
mutual information, the model learns to extract the underlying latent variables, which are shared by the context 
and the future. �is is achieved by optimizing a loss based on Noise Contrastive  Estimation36. Given an encoding 
of the context and encodings of many potential future frames, the model predicts which future frame is correct, 
i.e. it picks the positive sample among many negative samples, which are sampled from the data set. Intuitively, 
when predicting further into the future, the model learns to infer more global structure shared by the context 
and the future frame. At the same time, the model discards low-level information and noise that is more local.

Finetuning. We �netune the pretrained CNNs on the PhysioNet/CinC Challenge 2017 data set, which was 
collected to encourage the development of methods to classify heart arrhythmia from short ECG recordings. �e 
data set consists of 8528 labeled episodes which were recorded by AliveCor devices. Each recording contains a 
short (9–60 s) single ECG lead sampled at 300 Hz that belongs to one of the following classes: AF, Normal, Other 
or Noise (too noisy to classify).

We preprocess each recording by �rst standardizing the signal using mean and standard deviation computed 
over the entire data set, then downsampling the signal from 300 to 250 Hz to match the sampling frequency of 
Icentia11K. Additionally, we pad some recordings with zeros in order to have an uniform signal length of 60 s. 
Before training, we randomly split the data set into train, test and validation sets at 75%, 20% and 5% of record-
ings respectively, while maintaining the class ratio in each set. Note that we do not use the hidden test set from 
the challenge as it remains inaccessible to the public.

Before �netuning a CNN, we replace its output layer (i.e. classi�cation layer) with a fully connected layer whose 
weights are randomly initialized and whose outputs match the classes of the PhysioNet/CinC Challenge 2017 
data set. �e CNNs are trained end-to-end (we do not freeze any pretrained weights) for up to 200 epochs. If the 
training accuracy does not improve for 50 epochs, the training is interrupted. Usually, the network achieves near 
100% accuracy on the train set in a short time. As a consequence, the actual number of epochs is less than 200.

During �netuning, we record the macro F1 score, which is used as a metric in the PhysioNet/CinC Challenge 
2017, on the validation set a�er each epoch. A�er the training is �nished, we revert the weights of the network 
to the checkpoint at which the model had the highest macro F1 score on the validation set. Finally, we record the 
macro F1 score achieved by the �netuned CNN on the test set.

In order to evaluate a pretraining method, we repeat the described �netuning procedure 10 times. Each time, 
we draw new train and validation sets from the pool of 80% recordings, adjust the output layer, �netune the 
model and �nally record the macro F1 score on the test set. We measure the performance of a pretraining method 
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based on the statistics gathered from these 10 runs. Speci�cally, we report the average of macro F1 scores on the 
test set a�er 10 runs as well as the standard deviation.

The model architecture. �roughout this work, we use residual  networks21 for ECG classi�cation. In the 
following paragraphs, we describe the architecture of residual networks and the architecture of our future pre-
diction framework.

Convolutional neural network. We use ResNet-18v222 as the baseline CNN. Architecturally, our net-
works follow the design of the improved residual networks proposed by He et al.22 with some small adjustments. 
Due to the dimensionality of the input (i.e. ECG data is 1-dimensional), we replace the 2-dimensional convolu-
tional layers with their 1-dimensional counterparts. Furthermore, we use larger �lter sizes, i.e. 7, 5, 5, and 3 at 
each stage respectively, which we have observed to outperform the suggested smaller 3 × 3 �lters. �e remaining 
architectural decisions and hyperparameters, including the weight initialization scheme, are the same as in He 
et al.22.

Future prediction framework. �e framework for Contrastive Predictive  Coding34 consists of two 
models that are trained jointly: an encoder model that encodes the ECG frames and an autoregressive model 
that summarizes the encoded context frames into a single vector representation of the context (Fig. 2). For the 
encoder E, we use the ResNet-18v2 described above. Since we are interested in extracting features from the ECG 
frames, rather than classifying them, we remove the output (classi�cation) layer from the model, leaving global 
average pooling as the �nal layer. We denote the encoded future frames as feature vectors hi . �e encoded con-
text frames are passed to an attention  pooling37 module, which represents the autoregressive model. Attention 
pooling consists of  Transformer23 layers with the self-attention mechanism. �e module receives the encoded 
context frames preceded by a learnable vector c0 that represents the token embedding of the pooled context. We 
use the output corresponding to the input c0 as the pooled context vector c and discard the remaining outputs. 
By using the Transformer as a pooling operation, we allow the model to learn the type of pooling that is best 
suited for the task, as opposed to using a prede�ned operation, e.g. max pooling or average pooling. �e result-
ing context vector c is used in a dot product to compute the similarity with each encoded future frame hi . Finally, 
the similarity scores are passed to a so�max layer that allows the outputs of the framework to be interpreted as 
the probability of a future frame being the positive sample.

�e entire framework is trained end-to-end with gradients backpropagated from the cross-entropy loss of clas-
sifying the positive sample correctly. Architecturally, the Transformer layers in the attention pooling module are 
consistent with the Encoder layers proposed by Vaswani et al.23 Similar to the attention pooling in Trinh et al.37, 
we decrease the size of the original Transformer by using the following hyperparameters: N = 3 Transformer 
layers, dmodel = 512 model dimensionality, h = 8 attention heads, dff = 2 · dmodel = 1024 inner dimensionality 

Figure 2.  Architecture of the future prediction framework. �e model predicts the correct future frame among 
negative samples (right) based on the present frames (le�). Encoder E extracts features from ECG frames, 
producing a feature vector for each frame. Attention pooling summarizes feature vectors into a single context 
vector c describing the present. A dot product between c and frame encodings hi gives the similarity between 
the context and future frames. �e entire model is trained end-to-end with gradients backpropagated from the 
cross-entropy loss of classifying the future frame correctly.
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and no dropout (refer to Vaswani et al.23 for more information on the hyperparameters). Compared to other 
pretraining methods, the future prediction framework requires more parameters to be trained. Furthermore, 
due to the way this task is structured, the residual network learns from more ECG frames in a single pass. Con-
sequently, we observe longer training times for this type of pretraining.

Training. Since we are able to represent every task as a classi�cation problem, in each task we minimize the 
categorical cross-entropy loss. All models are trained with  Adam38 optimizer that is initialized with the default 
hyperparameters. Furthermore, we use di�erent batch sizes depending on the number of trainable parameters 
and the available memory on the GPU cards. As a rule of thumb, we try to pick a batch size that allows us to use 
as much of the GPU memory as possible. All models are trained on Nvidia Tesla P100 GPUs.

Experiments and results
We now analyze the e�ectiveness of pretraining with respect to the performance on the downstream task. In other 
words, we measure how much does the pretraining improve the macro F1 score on our test set for the PhysioNet/
CinC Challenge 2017. To that end, we conduct a series of experiments that test the e�cacy of pretraining in dif-
ferent settings. We compare the pretraining methods with random weight initialization, which we consider as the 
baseline method. First, we investigate several con�gurations (i.e. a set of hyperparameters) of each pretraining 
method to determine which con�guration is best suited for the downstream task. Further, we explore how the 
size of the downstream data set a�ects the performance of pretraining methods. Next, we change the sampling 
frequency of the downstream data set to evaluate how well the pretrained networks generalize to ECG data with 
di�erent properties. In a further experiment, we investigate how changing the depth of the residual network 
a�ects the performance of pretraining methods. Finally, we explore how well the pretrained networks perform 
on other downstream data sets.

Hyperparameters of pretraining methods. �e hyperparameters of pretraining methods are param-
eters that control the pretraining process. �ey determine the shape of the input (e.g. the size of ECG frame) and 
the properties of the task (e.g. the o�set or the number of negative samples control the di�culty of the future 
prediction task), thus they have an indirect impact on what features the network will learn to extract. We �rst 
investigate di�erent sets of hyperparameters of each pretraining task, which we refer to as con�gurations, in 
order to discover which con�gurations perform well on the downstream task, i.e. AF classi�cation.

Table 1 compares di�erent con�gurations of the pretraining methods. In the classi�cation tasks, we explore 
3 di�erent sizes of ECG frames. In the future prediction task, we examine di�erent combinations of the context 
size, number of negative samples and o�set. We compare the con�gurations based on the average macro F1 
score (abbreviated as F1 ) on the downstream test set. Additionally, we report the average of F1 scores for each 
class (abbreviated as F1x where x is a class identi�er). �e results show that all pretraining methods outperform 
random weight initialization in predicting every class. Looking at the best con�guration of each pretraining 
method in terms of F1 , the improvement over the baseline (i.e. random weight initialization) is 6.57% for beat 
classi�cation, 4.92% for rhythm classi�cation, 4.79% for heart rate classi�cation and 3.69% for future prediction. 
When it comes to the size of ECG frame, the preferred frame is about 8 s long for beat and rhythm classi�cation, 

Table 1.  Comparison of di�erent con�gurations of the pretraining methods. For each method, we report the 
average macro F1 score (and the standard deviation) on our test set for the PhysioNet/CinC Challenge  20177,8. 
Additionally, we report the average F1 score for each class: normal ( F1n ), AF ( F1a ), other ( F1o ) and noisy ( F1p ). 
Frame refers to the length of an ECG frame, context to the number of frames in the context, ns to the number 
of negative samples and o�set to the distance between the context and the future frame measured in frames. All 
pretraining methods outperform random weight initialization in predicting every class.

Pretraining method Frame F1 F1n F1a F1o F1p

None (random weight initialization) .731 (± .019) .898 (± .005) .711 (± .027) .701 (± .017) .613 (± .062)

Beat classi�cation

512 .769 (± .011) .911 (± .010) .760 (± .018) .758 (± .016) .647 (± .022)

2048 .779 (± .014) .915 (± .007) .777 (± .014) .763 (± .014) .661 (± .040)

4096 .768 (± .010) .908 (± .009) .764 (± .021) .754 (± .015) .646 (± .025)

Rhythm classi�cation

512 .742 (± .017) .896 (± .007) .721 (± .026) .716 (± .032) .636 (± .045)

2048 .767 (± .012) .908 (± .004) .753 (± .020) .745 (± .018) .660 (± .026)

4096 .755 (± .005) .903 (± .008) .745 (± .022) .735 (± .012) .635 (± .017)

Heart rate classi�cation

512 .766 (± .011) .915 (± .004) .759 (± .019) .756 (± .015) .635 (± .029)

2048 .753 (± .013) .910 (± .005) .743 (± .037) .738 (± .011) .619 (± .039)

4096 .751 (± .010) .909 (± .006) .744 (± .019) .739 (± .016) .611 (± .025)

Context ns O�set Frame

Future prediction

8 4 2 512 .756 (± .008) .903 (± .007) .742 (± .011) .730 (± .017) .649 (± .021)

16 8 2 512 .744 (± .016) .905 (± .005) .730 (± .027) .730 (± .009) .612 (± .041)

16 8 8 512 .758 (± .013) .908 (± .005) .753 (± .021) .745 (± .012) .627 (± .026)

16 16 8 512 .745 (± .013) .897 (± .006) .724 (± .024) .722 (± .009) .639 (± .034)
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and about 2 s for the heart rate classi�cation. We suspect that during �netuning, the network focuses more on 
local patterns over long-term dependencies in the data. �e small frame size is especially interesting in case of 
the heart rate pretraining due to the way how the labels are generated. Recall that for a frame size of about 2 s 
we generate the label from a 4 s window centered on that frame. �erefore, the network must cope with a lot of 
missing information when classifying the frames. Regarding future prediction, increasing the di�culty of the task 
by setting a larger o�set and adding more negative samples seems to produce inconclusive results with respect 
to any improvement of performance. For the remainder of the paper, when discussing a particular pretraining 
method, we will be referring to its best con�guration.  

We now take a closer look at the validation performance in terms of F1 of each pretraining method during 
�netuning (Fig. 3). Pretrained networks achieve a high validation F1 within just several epochs, whereas their 
randomly initialized counterparts take longer to converge to a stable validation F1 . Furthermore, pretrained 
networks consistently show better validation performance than randomly initialized networks over the course 
of �netuning. Evidently, pretraining not only improves the performance, but also accelerates the training.

Size of the downstream data set. So far we evaluated our pretraining methods on a medium sized 
(n = 8528) ECG data set. Now, we investigate the extent of pretraining’s e�ectiveness when �netuning on data 
sets of di�erent sizes. To that end, we �netune the networks only on a subset of the PhysioNet/CinC Challenge 
2017 data set. Recall that the original data split was: 75% train, 5% validation and 20% test. In the following 
experiment, we maintain the test and validation sets, and only reduce the size of the train set to 50% and 25% of 
the entire data set.

Table 2 reports the average macro F1 score of each pretraining method on the downstream test set, depending 
on the size of the downstream train set. For beat and heart rate classi�cation, the performance improvement over 

Figure 3.  Average macro F1 on the validation set during �netuning. At each epoch, the average validation score 
of a selected pretraining method (blue) and random weight initialization (red) is reported. Pretraining improves 
validation performance on the downstream task and accelerates the training.
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the baseline (i.e. random weight initialization) grows when the data set size decreases. For rhythm classi�cation 
and future prediction, the performance improvement remains similar across various data set sizes. �e narrow-
ing of the performance gap could suggest that once the data set is big enough, pretraining becomes redundant. 
Notably, if a residual network pretrained for beat classi�cation is �netuned on only 25% of train data, it still 
performs better than its randomly initialized counterpart trained on 75% of data. �is shows that pretraining 
allows models to be trained on less data and still achieve the same degree of performance as the same models 
that are not pretrained.

Sampling frequency of ECG signal. ECG databases vary in the characteristics of the ECG signal such 
as length, number of leads, sampling frequency, or processing artefacts. �ese di�erences arise mostly from the 
properties of the device that records the ECG. �erefore, transfer learning approaches for ECG data should ide-
ally be una�ected by the variations between signals. In this section, we investigate how well the pretrained net-
works perform on ECG data sampled at a frequency di�erent than during pretraining. �is is of particular inter-
est to us, because we reduce the sampling frequency of the downstream data set to match that of the upstream 
data set. �is results in a data loss that could lead to a degradation of performance. For this reason, by trying 
di�erent sampling frequencies, we want to eliminate the possibility that downsampling causes the performance 
to decrease more than the pretraining does to increase it. Note that we maintain the same relative input length, 
i.e. about 60 s, across di�erent sampling frequencies, zero-padding the input where necessary.

Table 3 reports the average macro F1 score of each pretraining method on the downstream test set, depend-
ing on the sampling frequency of ECG data. Besides �netuning the models on the train set using the original 
sampling frequency (other preprocessing methods are still applied), we also measure the performance of our 
methods when the sampling frequency of the downstream data set is almost 2 times smaller than the frequency 
the networks were pretrained on (128 Hz vs 250 Hz). As expected, we observe a performance decline when the 
sampling frequency changes. However, all pretraining methods outpeform random weight initialization no matter 
the sampling frequency. Pretraining is bene�cial even if networks are not speci�cally trained to deal with ECG 
signals sampled at di�erent frequencies. Interestingly, randomly initialized networks actually perform worse 
( − 2.19% F1 ) on the original data set, which could be connected to the increased input dimensionality.

Architecture of the residual network. Due to the ever-increasing amounts of data and computing 
power that are available for training, deep learning models have grown in size to accommodate more knowledge 
and improve the performance. In light of this trend, ResNet-18v2, which is our baseline model, can be consid-
ered a “shallow” network. Compared to other residual networks, ResNet-18v2 has a small number of layers and 
parameters. �erefore, we now increase the size of the model. Speci�cally, we employ two new architectures: 
ResNet-34v222 and ResNet-50v222, which replaces standard residual blocks with bottleneck blocks. Other hyper-
parameters of the network remain the same. Notably, in the future prediction task, we pretrain only the �rst 3 
stages of the deeper ResNet-50v2 due to a high model complexity. Since the bottleneck architecture increases the 

Table 2.  Comparison of the pretraining methods depending on the size of the downstream train set. For each 
method, we report the average macro F1 score (and the standard deviation) on our test set for the PhysioNet/
CinC Challenge  20177,8. We examine 3 sizes of the train set as a proportion of the entire data set: 25%, 50% and 
75% (original split). Pretraining allows models to be trained on less data and still achieve the same degree of 
performance as the same models that are not pretrained.

Pretraining method 25% train 50% train 75% train

None (random weight initialization) .670 (± .013) .712 (± .010) .731 (± .019)

Beat classi�cation .739 (± .014) .763 (± .011) .779 (± .014)

Rhythm classi�cation .707 (± .018) .727 (± .028) .767 (± .012)

Heart rate classi�cation .722 (± .010) .749 (± .018) .766 (± .011)

Future prediction .694 (± .014) .734 (± .011) .758 (± .013)

Table 3.  Comparison of the pretraining methods depending on the sampling frequency (Hz) of the 
downstream data set. For each method, we report the average macro F1 score (and the standard deviation) 
on our test set for the PhysioNet/CinC Challenge  20177,8. Note that all networks are pretrained on ECG data 
sampled at 250 Hz, regardless of the sampling frequency during �netuning. Pretraining is bene�cial even if 
networks are not speci�cally trained to deal with ECG data sampled at di�erent frequencies.

Pretraining method 128 Hz 250 Hz (Icentia11K) 300 Hz (PhysioNet)

None (random weight initialization) .701 (± .017) .731 (± .019) .715 (± .023)

Beat classi�cation .779 (± .012) .779 (± .014) .770 (± .011)

Rhythm classi�cation .748 (± .012) .767 (± .012) .747 (± .017)

Heart rate classi�cation .761 (± .011) .766 (± .011) .767 (± .010)

Future prediction .747 (± .008) .758 (± .013) .734 (± .016)
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number of output channels by 4 times, the dimensionality of the attention pooling module (i.e. dmodel ) increases 
by the same amount, which leads to a signi�cant increase in the number of trainable parameters.

Table 4 reports the average macro F1 score of each pretraining method on the downstream test set, depend-
ing on the architecture of the model. Employing ResNet-34v2 improves the performance of every pretraining 
method: 4.51% increase for random weight initialization, 1.93% for beat classi�cation, 1.04% for rhythm clas-
si�cation, 0.65% for heart rate classi�cation and 0.40% for future prediction. However, further increase in the 
complexity from using ResNet-50v2 leads to a decline in performance. �e decline is much more steep in case of 
no pretraining: − 7.33% for random weight initialization versus − 2.39% for beat classi�cation. We suspect that 
ResNet-34v2 lies in a sweet spot between model complexity and performance, whereas ResNet-18v2 under�ts 
and ResNet-50v2 over�ts to the training data. It should be noted that while the number of trainable parameters 
increased, the number of pretraining steps remained the same. During pretraining, we recorded lower validation 
performance for the deeper models, which leads us to believe that we may have �nished pretraining too soon. �is 
was particularly noticeable in case of future prediction, whose model complexity is higher than any other method.

Downstream data set. A desirable property of pretrained networks is that they can be �netuned to not 
one but a number of related tasks. �erefore, we now investigate how well our pretraining methods apply to 
di�erent downstream (target) data sets, i.e. how generalizable the pretrained feature extractors are. To that end, 
we choose two new downstream data sets: the PTB-XL  database8,28 and a data set released for the 1st China 
Physiological Signal Challenge 2018 held during the 7th International Conference on Biomedical Engineering 
and Biotechnology (ICBEB 2018)39. �e ICBEB2018 data set is also a part of the training data in the PhysioNet/
CinC Challenge  20208,40.

�e PTB-XL database contains 21,837 12-lead ECG recordings that were sampled at 500 Hz and last exactly 
10 s. Further, there are 71 di�erent statements, which are used as annotations. �ey are assigned to three catego-
ries: diagnostic, rhythm and form. Here, we only use the rhythm annotations. Consequently, we select only the 
recordings that have at least one rhythm label, e�ectively shrinking the size of the data set to 21,066 recordings. 
Further, we use the recommended 10-fold train-test split, i.e. we use folds 1–8 as the train set, fold 9 as the vali-
dation set and fold 10 as the test set. Finally, we standardize the recordings using mean and standard deviation 
computed over the entire database, and downsample the recordings to 250 Hz.

�e ICBEB2018 data set contains 6877 12-lead ECG recordings that were sampled at 500 Hz and last 6–60 s. 
Each recording has up to three annotations that describe a normal sinus rhythm or a heart condition. Since the 
original test set is kept private, we reserve 20% of recordings for testing and split the remaining 80% in train 
(75%) and validation (5%) sets, maintaining the original class ratio in each set. Similarly to the PTB-XL database, 
we standardize the recordings, downsample them to 250 Hz and pad with zeros to maintain an uniform signal 
length of 60 s.

In contrast to the PhysioNet/CinC Challenge 2017 data set used so far, which contains 1-lead ECG recordings, 
the aforementioned new data sets comprise 12-lead ECG recordings. As a consequence, the pretrained models, 
which also expect a single lead ECG recording, must be adjusted to accommodate this new data format. Recall 
that residual networks begin with a convolutional layer that expects a variable-length input signal with a �xed 
number of input channels, in our case one channel. In order to increase the number of input channels, while 
maintaining the same output dimensions, we simply duplicate the learned �lters for each additional channel and 
scale all weights in the layer by multiplying them by the ratio of the original to adjusted input channels, in our 
case 1

12
 . In doing so, we hope that the learned feature extractors will generalize to other ECG channels.

We use the pretrained ResNet-34v2, and similarly to the previous experiments, we �rst �netune each model 
10 times, then average the performance on the test set. In case of the ICBEB2018 data set, we additionally resa-
mple the train and validation set from the pool of 80% recordings before �netuning a model. Since we deal with 
multi-label classi�cation tasks (i.e. multiple labels can be assigned to a single instance), we change the activation 
function of the output of residual network to sigmoid and train the model with binary cross-entropy loss. When 
testing, we use model weights from the epoch where the model achieved best validation loss.

We evaluate the performance of our pretrained methods on the respective test sets using 4 new metrics. Fol-
lowing Strodtho� et al.28, we compute the averaged class-wise AUC  (abbreviated as AUC ) and a sample-centric 
Fmax that summarizes a threshold dependent F1 score by single number, which is the maximum F1 score found 

Table 4.  Comparison of the pretraining methods depending on the architecture of the model (i.e. residual 
network). For each method, we report the average macro F1 score (and the standard deviation) on our test 
set for the PhysioNet/CinC Challenge  20177,8. Employing the ResNet-34v2 improves the performance of 
every pretraining method. We suspect that ResNet-34v2 lies in a sweet spot between model complexity and 
performance, whereas ResNet-18v2 under�ts and ResNet-50v2 over�ts to the training data. *Due to a spike in 
the model complexity, we only pretrain the �rst 3 stages of the ResNet-50v2.

Pretraining method ResNet-18v2 ResNet-34v2 ResNet-50v2

None (random weight initialization) .731 (±  .019) .764 (± .012) .708 (± .023)

Beat classi�cation .779 (± .014) .794 (± .018) .775 (± .015)

Rhythm classi�cation .767 (± .012) .775 (± .020) .760 (± .008)

Heart rate classi�cation .766 (± .011) .771 (± .008) .761 (± .019)

Future prediction .758 (± .013) .761 (± .014) .743* (± .010)
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by varying the decision threshold. Further, we employ two metrics used in the PhysioNet/CinC Challenge 2020: 
a general class-weighted F-score Fβ=2 and a generalization of the Jaccard measure Gβ=2 . We convert the output 
probabilities to binary decision using a threshold found independently for each metric on the train set.

Table 5 reports the average performance of each pretraining method on the two new downstream test sets. 
Since the ranking of methods is the same independent of the performance metric, we focus on AUC  when 
presenting the results. We note performance improvements on both data sets from the pretraining. For PTB-
XL, the relative increase in AUC  compared to the baseline (i.e. random weight initialization) is 2.12% for beat 
classi�cation, 1.70% for rhythm classi�cation, 2.44% for heart rate classi�cation and 1.38% for future prediction. 
For ICBEB2018, we observe a smaller performance improvement and even a decline in case of heart rate clas-
si�cation: 0.73% for beat classi�cation, 0.21% for rhythm classi�cation, − 0.31% for heart rate classi�cation and 
0.10% for future prediction.

Discussion
Transfer learning proves to be a valuable technique to deal with an inadequate amount of annotated data that 
plagues models trained to classify ECG recordings. In this work, we showed that pretraining convolutional 
neural networks (CNN) on a large ECG database and subsequently �netuning them on a much smaller ECG 
data set considerably improves the performance on the target task, e�ectively reducing the number of expensive 
annotations required to achieve the same performance level as CNNs that are not pretrained. We suspect that 
the additional data diversity experienced during the pretraining stage contributes to networks’ ability to gener-
alize to unseen data a�er the �netuning stage. Furthermore, we conducted a series of experiments that test the 
robustness of pretraining. Speci�cally, we used the pretraining methods on: di�erent models (various residual 
network architectures), di�erent qualities of ECG data (simulated by changing the sampling frequency), di�erent 
data set sizes and �nally di�erent downstream data sets. In all experiments, the pretrained networks performed 
better on the target task than the randomly initialized networks, as shown by several performance metrics. We 
believe that collecting a massive ECG database that re�ects the heterogeneity of ECG data would facilitate the 
pretraining of large networks that can be �netuned to a variety of ECG related tasks, much like CNNs pretrained 
on ImageNet are o�en used in various computer vision tasks.

ECG annotations are o�en expensive to acquire, which limits the size of many ECG data sets. For this reason, 
we also explored unsupervised and self-supervised (i.e. labels are generated automatically) pretraining in the 
ECG domain. Similar to the more common supervised pretraining, CNNs pretrained in an unsupervised and 
self-supervised manner perform better than CNNs that were not pretrained and sometimes they even match 
the performance of supervised pretraining. Nonetheless, supervised pretraining remains a better choice if the 
labels are available.

�e performance of pretraining methods depends on how the pretraining task is modelled as evidenced by the 
small hyperparameter study. Intuitively, the way a pretraining task is de�ned and modelled has a direct impact 
on what the model learns, such that if the upstream and downstream tasks do not share many commonalities, 
then the pretrained feature extractors may turn out to not be of much use for the downstream task. Notably, this 
also applies to the way we choose the labels in the classi�cation tasks, which is a part of the task de�nition that 
we have not investigated in this work.

Lastly, we want to brie�y address some di�culties that we have encountered and insights related to the 
pretraining. We have pretrained the CNNs on just a small fraction of the upstream data set, i.e. less than 20%. 
Furthermore, we did not observe plateauing loss, which leads us to believe that we could have pretrained longer. 
Further, we noticed that certain con�gurations of the future prediction framework fail to converge. �is occurred 
when the task became too di�cult due to a large o�set or a large number of negative samples. We think that future 
research should be directed towards studying di�erent techniques for unsupervised or self-supervised pretrain-
ing, because these methods do not rely on human annotations that can be very expensive to acquire for ECG data.

Table 5.  Comparison of the pretraining methods on two new downstream data sets. For each method, 
we report the average performance (and the standard deviation) on the respective test sets. We observe 
performance improvements from pretraining on both data sets. Bold numbers in ICBEB2018 dataset re�ect 
the best overall performance (i.e. that of Strodtho� et al.28), instead of the best pretraining performance (i.e. 
Beat classi�cation).

PTB-XL8,28 ICBEB201839

AUC Fmax AUC Fmax Fβ=2 Gβ=2

Pretraining method

None (random weight initialization) .942 (± .016) .918 (± .004) .954 (± .008) .833 (± .017) .787 (± .025) .553 (± .028)

Beat classi�cation .962 (± .006) .926 (± .004) .961 (± .004) .854 (± .005) .814 (± .008) .591 (± .012)

Rhythm classi�cation .958 (± .013) .922 (± .006) .956 (± .006) .848 (± .012) .807 (± .016) .575 (± .023)

Heart rate classi�cation .965 (± .003) .923 (± .003) .951 (± .006) .833 (± .012) .790 (± .013) .558 (± .018)

Future prediction .955 (± .004) .920 (± .003) .955 (± .005) .844 (± .011) .802 (± .017) .572 (± .021)

Related work

Strodtho� et al.28 .957 (± .015) .917 (± .008) .974 (± .005) .855 (± .020) .819 (± .028) .602 (± .044)
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Conclusion
In this work, we used transfer learning to improve convolutional neural networks (CNN) trained to classify 
heart rhythm from a short ECG recording. First, we pretrained CNNs on a large data set of continuous raw 
ECG signals. Next, we �netuned the networks on a small data set for classi�cation of Atrial Fibrillation (AF). 
We showed that pretraining CNNs improves the performance on the target task, i.e. AF classi�cation, by up to 
6.57% , e�ectively reducing the number of annotations required to achieve the same performance as CNNs that 
are not pretrained. Furthermore, we showed that unsupervised pretraining on ECG data is a viable method for 
improving the performance on the target task, albeit to a lesser extent than supervised pretraining. Nonetheless, 
we believe that unsupervised pretraining will become more relevant since it does not rely on annotations, which 
are expensive to acquire for ECG data.
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