
Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 48–56,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Transfer Learning for Neural Semantic Parsing

Xing Fan, Emilio Monti, Lambert Mathias, and Markus Dreyer

Amazon.com

{fanxing, mathias, mddreyer}@amazon.com, monti@amazon.co.uk

Abstract

The goal of semantic parsing is to map nat-

ural language to a machine interpretable

meaning representation language (MRL).

One of the constraints that limits full ex-

ploration of deep learning technologies for

semantic parsing is the lack of sufficient

annotation training data. In this paper,

we propose using sequence-to-sequence

in a multi-task setup for semantic pars-

ing with a focus on transfer learning. We

explore three multi-task architectures for

sequence-to-sequence modeling and com-

pare their performance with an indepen-

dently trained model. Our experiments

show that the multi-task setup aids transfer

learning from an auxiliary task with large

labeled data to a target task with smaller

labeled data. We see absolute accuracy

gains ranging from 1.0% to 4.4% in our in-

house data set, and we also see good gains

ranging from 2.5% to 7.0% on the ATIS

semantic parsing tasks with syntactic and

semantic auxiliary tasks.

1 Introduction

Conversational agents, such as Alexa, Siri and

Cortana, solve complex tasks by interacting and

mediating between the end-user and multiple

backend software applications and services. Natu-

ral language is a simple interface used for com-

munication between these agents. However, to

make natural language machine-readable we need

to map it to a representation that describes the se-

mantics of the task expressed in the language. Se-

mantic parsing is the process of mapping a natural-

language sentence into a formal machine-readable

representation of its meaning. This poses a chal-

lenge in a multi-tenant system that has to inter-

act with multiple backend knowledge sources each

with their own semantic formalisms and custom

schemas for accessing information, where each

formalism has various amount of annotation train-

ing data.

Recent works have proven sequence-to-

sequence to be an effective model architecture (Jia

and Liang, 2016; Dong and Lapata, 2016) for

semantic parsing. However, because of the limit

amount of annotated data, the advantage of neural

networks to capture complex data representation

using deep structure (Johnson et al., 2016) has not

been fully explored. Acquiring data is expensive

and sometimes infeasible for task-oriented sys-

tems, the main reasons being multiple formalisms

(e.g., SPARQL for WikiData (Vrandečić and

Krötzsch, 2014), MQL for Freebase (Flanagan,

2008)), and multiple tasks (question answering,

navigation interactions, transactional interac-

tions). We propose to exploit these multiple

representations in a multi-task framework so

we can minimize the need for a large labeled

corpora across these formalisms. By suitably

modifying the learning process, we capture the

common structures that are implicit across these

formalisms and the tasks they are targeted for.

In this work, we focus on a sequence-to-

sequence based transfer learning for semantic

parsing. In order to tackle the challenge of

multiple formalisms, we apply three multi-task

frameworks with different levels of parameter

sharing. Our hypothesis is that the encoder-

decoder paradigm learns a canonicalized represen-

tation across all tasks. Over a strong single-task

sequence-to-sequence baseline, our proposed ap-

proach shows accuracy improvements across the

target formalism. In addition, we show that even

when the auxiliary task is syntactic parsing we can

achieve good gains in semantic parsing that are

comparable to the published state-of-the-art.

48

2 Related Work

There is a large body of work for semantic pars-

ing. These approaches fall into three broad cat-

egories – completely supervised learning based

on fully annotated logical forms associated with

each sentence (Zelle and Mooney, 1996; Zettle-

moyer and Collins, 2012) using question-answer

pairs and conversation logs as supervision (Artzi

and Zettlemoyer, 2011; Liang et al., 2011; Be-

rant et al., 2013) and distant supervision (Cai and

Yates, 2013; Reddy et al., 2014). All these ap-

proaches make assumptions about the task, fea-

tures and the target semantic formalism.

On the other hand, neural network based

approaches, in particular the use of recurrent

neural networks (RNNs) and encoder-decoder

paradigms (Sutskever et al., 2014), have made fast

progress on achieving state-of-the art performance

on various NLP tasks (Vinyals et al., 2015; Dyer

et al., 2015; Bahdanau et al., 2014). A key advan-

tage of RNNs in the encoder-decoder paradigm is

that very few assumptions are made about the do-

main, language and the semantic formalism. This

implies they can generalize faster with little fea-

ture engineering.

Full semantic graphs can be expensive to an-

notate, and efforts to date have been fragmented

across different formalisms, leading to a limited

amount of annotated data in any single formalism.

Using neural networks to train semantic parsers

on limited data is quite challenging. Multi-task

learning aims at improving the generalization per-

formance of a task using related tasks (Caruana,

1998; Ando and Zhang, 2005; Smith and Smith,

2004). This opens the opportunity to utilize large

amounts of data for a related task to improve the

performance across all tasks. There has been re-

cent work in NLP demonstrating improved perfor-

mance for machine translation (Dong et al., 2015)

and syntactic parsing (Luong et al., 2015).

In this work, we attempt to merge various

strands of research using sequence-to-sequence

modeling for semantic parsing with focusing

on improving semantic formalisms with small

amount of training data using a multi-task model

architecture. The closest work is Herzig and Be-

rant (2017). Similar to this work, the authors use

a neural semantic parsing model in a multi-task

framework to jointly learn over multiple knowl-

edge bases. Our work differs from their work in

that we focus our attention on transfer learning,

where we have access to a large labeled resource

in one task and want another semantic formalism

with access to limited training data to benefit from

a multi-task learning setup. Furthermore, we also

demonstrate that we can improve semantic parsing

tasks by using large data sources from an auxil-

iary task such as syntactic parsing, thereby open-

ing up the opportunity for leveraging much larger

datasets. Finally, we carefully compare multiple

multi-task architectures in our setup and show that

increased sharing of both the encoder and decoder

along with shared attention results in the best per-

formance.

3 Problem Formulation

3.1 Sequence-to-Sequence Formulation

Our semantic parser extends the basic encoder-

decoder approach in Jia and Liang (2016). Given a

sequence of inputs x = x1, . . . , xm, the sequence-

to-sequence model will generate an output se-

quence of y = y1, . . . , yn. We encode the input

tokens x = x1, . . . , xm into a sequence of embed-

dings h = h1, . . . ,hm

hi = fencoder(Ex(xi), hi−1) (1)

First, an input embedding layer Ex maps each

word xi to a fixed-dimensional vector which is

then fed as input to the network f to obtain the

hidden state representation hi. The embedding

layer Ex could contain one single word embed-

ding lookup table or a combination of word and

gazetteer embeddings, where we concatenate the

output from each table. For the encoder and de-

coder, we use a stacked Gated Recurrent Units

(GRU) (Cho et al., 2014).1 The hidden states

are then converted to one fixed-length context vec-

tor per output index, cj = φj(h1, . . . , hm), where

φj summarizes all input hidden states to form the

context for a given output index j.2

The decoder then uses these fixed-length vec-

tors cj to create the target sequence through the

following model. At each time step j in the output

sequence, a state sj is calculated as

sj = fdecoder(Ey(yj−1), sj−1, cj) (2)

1In order to speedup training, we use a right-to-left GRU
instead of a bidirectional GRU.

2In a vanilla decoder, each φj(h1, . . . , hm)
def
= hm, i.e,

the hidden representation from the last state of the encoder is
used as context for every output time step j.

49

Figure 1: An example of how the decoder output y3 is generated.

Here, Ey maps any output symbol to a fixed-

dimensional vector. Finally, we compute the prob-

ability of the output symbol yj given the history

y<j using Equation 3.

p(yj | y<j , x) ∝ exp(O[sj ; cj]) (3)

where the matrix O projects the concatenation

of sj and cj , denoted as [sj ; cj], to the final out-

put space. The matrix O are part of the train-

able model parameters. We use an attention mech-

anism (Bahdanau et al., 2014) to summarize the

context vector cj ,

cj = φj(h1, . . . , hm) =
m∑

i=1

αji hi (4)

where j ∈ [1, . . . , n] is the step index for the

decoder output and αji is the attention weight, cal-

culated using a softmax:

αji =
exp(eji)∑m

i′=1
exp(eji′)

(5)

where eji is the relevance score of each context

vector cj , modeled as:

eji = g(hi, sj) (6)

In this paper, the function g is defined as fol-

lows:

g(hi, sj) = υ⊺ tanh(W 1hi + W 2sj) (7)

where υ, W 1 and W 2 are trainable parameters.

In order to deal with the large vocabularies in

the output layer introduced by the long tail of en-

tities in typical semantic parsing tasks, we use a

copy mechanism (Jia and Liang, 2016). At each

time step j, the decoder chooses to either copy a

token from the encoder’s input stream or to write

a token from the the decoder’s fixed output vocab-

ulary. We define two actions:

1. WRITE[y] for some y ∈ Vdecoder, where

Vdecoder is the output vocabulary of the de-

coder.

2. COPY[i] for some i ∈ 1, . . . ,m, which

copies one symbol from the m input tokens.

We formulate a single softmax to select the ac-

tion to take, rewriting Equation 3 as follows:

p(aj = WRITE[yj] | y<j ,x) ∝ exp(O[sj ; cj])
(8)

p(aj = COPY[i] | y<j ,x) ∝ exp(eji) (9)

The decoder is now a softmax over the actions

aj ; Figure 1 shows how the decoder’s output y at

the third time step y3 is generated. At each time

step, the decoder will make a decision to copy a

particular token from input stream or to write a

token from the fixed output label pool.

50

(a) one-to-many: A multi-task architecture where only the encoder is shared across the
two tasks.

(b) one-to-one: A multi-task architecture where both the encoder and decoder along with
the attention layer are shared across the two tasks.

(c) one-to-shareMany: A multi-task architecture where both the encoder and decoder
along with the attention layer are shared across the two tasks, but the final softmax
output layer is trained differently, one for each task.

Figure 2: Three multi-task architectures.

3.2 Multi-task Setup

We focus on training scenarios where multiple

training sources K are available. Each source K

can be considered a domain or a task, which con-

sists of pairs of utterance x and annotated logi-

cal form y. There are no constraints on the logi-

cal forms having the same formalism across the K

domains. Also, the tasks K can be different, e.g.,

we can mix semantic parsing and syntactic pars-

ing tasks. We also assume that given an utterance,

we already know its associated source K in both

training and testing.

In this work, we explore and compare three

multi-task sequence-to-sequence model architec-

tures: one-to-many, one-to-one and one-to-

shareMany.

3.2.1 One-to-Many Architecture

This is the simplest extension of sequence-to-

sequence models to the multi-task case. The en-

coder is shared across all the K tasks, but the de-

coder and attention parameters are not shared. The

shared encoder captures the English language se-

quence, whereas each decoder is trained to pre-

dict its own formalism. This architecture is shown

in Figure 2a. For each minibatch, we uniformly

sample among all training sources, choosing one

source to select data exclusively from. Therefore,

at each model parameter update, we only update

the encoder, attention module and the decoder for

the selected source, while the parameters for the

51

other K−1 decoder and attention modules remain

the same.

3.2.2 One-to-One Architecture

Figure 2b shows the one-to-one architecture. Here

we have a single sequence-to-sequence model

across all the tasks, i.e., the embedding, encoder,

attention, decoder and the final output layers are

shared across all the K tasks. In this architec-

ture, the number of parameters is independent of

the number of tasks K. Since there is no explicit

representation of the domain/task that is being de-

coded, the input is augmented with an artificial to-

ken at the start to identify the task the same way as

in Johnson et al. (2016).

3.2.3 One-to-ShareMany Architecture

We show the model architecture for one-to-

shareMany in Figure 2c. The model modifies the

one-to-many model by encouraging further shar-

ing of the decoder weights. Compared with the

one-to-one model, the one-to-shareMany differs in

the following aspects:

• Each task has its own output layer. Our hy-

pothesis is that by separating the tasks in the

final layer we can still get the benefit of shar-

ing the parameters, while fine-tuning for spe-

cific tasks in the output, resulting in better ac-

curacy on each individual task.

• The one-to-one requires a concatenation of

all output labels from training sources. Dur-

ing training, every minibatch needs to be for-

warded and projected to this large softmax

layer. While for one-to-ShareMany, each

minibatch just needs to be fed to the softmax

associated with the chosen source. Therefore,

the one-to-shareMany is faster to train espe-

cially in cases where the output label size is

large.

• The one-to-one architecture is susceptible to

data imbalance across the multiple tasks, and

typically requires data upsampling or down-

sampling. While for one-to-shareMany we

can alternate the minibatches amongst the K

sources using uniform selection.

From the perspective of neural network opti-

mization, mixing the small training data with

a large data set from the auxiliary task can be

also seen as adding noise to the training pro-

cess and hence be helpful for generalization

and to avoid overfitting. With the auxiliary

tasks, we are able to train large size modesl

that can handle complex task without worry-

ing about overfitting.

4 Experiments

4.1 Data Setup

We mainly consider two Alexa dependency-based

semantic formalisms in use – an Alexa meaning

representation language (AlexaMRL), which is a

lightweight formalism used for providing built-

in functionality for developers to develop their

own skills.3 The other formalism we consider is

the one used by Evi,4 a question-answering sys-

tem used in Alexa. Evi uses a proprietary for-

malism for semantic understanding; we will call

this the Evi meaning representation language (Evi-

MRL). Both these formalisms aim to represent

natural language. While the EviMRL is aligned

with an internal schema specific to the knowl-

edge base (KB), the AlexaMRL is aligned with

an RDF-based open-source ontology (Guha et al.,

2016). Figure 3 shows two example utterances and

their parses in both EviMRL and AlexaMRL for-

malisms.

Our training set consists of 200K utterances –

a fraction of our production data, annotated us-

ing AlexaMRL – as our main task. For the Evi-

MRL task, we have > 1M utterances data set for

training. We use a test set of 30K utterances for

AlexaMRL testing, and 366K utterances for Evi-

MRL testing. To show the effectiveness of our

proposed method, we also use the ATIS corpora

as the small task for our transfer learning frame-

work, which has 4480 training and 448 test utter-

ances (Zettlemoyer and Collins, 2007). We also

include an auxiliary task such as syntactic pars-

ing in order to demonstrate the flexibility of the

multi-task paradigm. We use 34K WSJ training

data for syntactic constituency parsing as the large

task, similar to the corpus in Vinyals et al. (2015).

We use Tensorflow (Abadi et al., 2016) in all our

experiments, with extensions for the copy mecha-

nism. Unless stated otherwise, we train all models

for 10 epochs, with a fixed learning rate of 0.5 for

the first 6 epochs and halve it subsequently for ev-

ery epoch. The mini-batch size used is 128. The

encoder and decoder use a 3-layer GRU with 512

3For details see https://tinyurl.com/

lnfh9py.
4https://www.evi.com

52

”play	madonna from	the	playlist”

AlexaMRL

“what	is	the	elevation	of	the	san	francisco”

Is_the_elevation_of@now(obj_1(“san		francisco”))

EviMRL

PlaybackAction(object(MusicCreativeWork))	object(byArtist(name(Person(“mandonna”))))	object(

type(MusicCreativeWork(“playlist”)))

ATIS

“flight	from	dallas to	san	francisco”

lambda	$0	e	(and	(flight	$0)	(from	$0	“dallas”)	(to	$0	“san	francisco”))

WSJ

“the	next	province	?”

Top(FRAG(NP(DT	JJ	NN)	.))

Figure 3: Example utterances for the multiple semantic formalisms

hidden units. We apply dropout with probabil-

ity of 0.2 during training. All models are initial-

ized with pre-trained 300-dimension GloVe em-

beddings (Pennington et al., 2014). We also apply

label embeddings with 300 dimension for the out-

put labels that are randomly initialized and learned

during training. The input sequence is reversed

before sending it to the encoder (Vinyals et al.,

2015). We use greedy search during decoding.

The output label size for EviMRL is 2K and for

Alexa is < 100. For the multi-task setup, we use

a vocabulary size of about 50K, and for Alexa-

MRL independent task, we use a vocabulary size

of about 20K. We post-process the output of the

decoder by balancing the brackets and determiniz-

ing the units of production to avoid duplicates.

4.2 AlexaMRL Transfer Learning

Experiments

We first study the effectiveness of the multi-task

architecture in a transfer learning setup. Here

we consider EviMRL as the large source auxil-

iary task and the AlexaMRL as the target task we

want to transfer learn. We consider various data

sizes for the target task – 10K, 50K and 100K

and 200K by downsampling. For each target data

size, we compare a single-task setup, trained on

the target task only, with the the various multi-

task setups from Section 3.2 – independent, one-

to-one, one-to-many, and one-to-manyShare. Fig-

ure 4 summarizes the results. The x-axis lists the

four model architecture, and y-axis is the accu-

racy. The positive number above the mark of one-

to-one, one-to-many and one-to-manyShare rep-

resents the absolute accuracy gain compared with

the independent model. For the 10k independent

model, we reduce the hidden layer size from 512

to 256 to optimize the performance.

In all cases, the multi-task architectures provide

accuracy improvements over the independent ar-

chitecture. By jointly training across the two tasks,

the model is able to leverage the richer syntac-

tic/semantic structure of the larger task (EviMRL),

resulting in an improved encoding of the input ut-

terance that is then fed to the decoder resulting in

improved accuracy over the smaller task (Alexa-

MRL).

We take this sharing further in the one-to-one

and one-to-shareMany architecture by introduc-

ing shared decoder parameters, which forces the

model to learn a common canonical representation

for solving the semantic parsing task. Doing so,

we see further gains across all data sizes in 4. For

instance, in the 200k case, the absolute gain im-

proves from +2.0 to +2.7 . As the training data

size for the target task increases, we tend to see rel-

atively less gain from model sharing. For instance,

in 10k training cases, the absolute gain from the

one-to-one and one-to-manyshared is 1.6, this gain

reduces to 0.7 when we have 200k training data.

When we have a small amount of training data,

the one-to-shareMany provides better accuracy

compared with one-to-one. For instance, we see

1.0 and 0.6 absolute gain from one-to-one to one-

to-shareMany for 10k and 50k cases respectively.

However, no gain is observed for 100k and 200k

training cases. This confirms the hypothesis that

for small amounts of data, having a dedicated out-

put layer is helpful to guide the training.

Transfer learning works best when the source

data is large, thereby allowing the smaller task to

leverage the rich representation of the larger task.

53

90

85

80

75

70

independent One-to-many One-to-one One-to-shareMany

+2.8
+3.4

+4.4

+1.0
+1.3 +1.9

+1.2
+2.0 +1.7

+2.0
+2.7 +2.7

Accuracy (%)

Figure 4: Accuracy for AlexaMRL.

However, as the training data size increases, the

accuracy gains from the shared architectures be-

come smaller – the largest gain of 4.4% absolute

is observed in the 10K setting, but as the data

increases to 200K the improvements are almost

halved to about 2.7%.

In Table 1, we summarize the numbers of pa-

rameters in each of the four model architectures

and their step time.5 As expected, we see com-

parable training time for one-to-many and one-to-

shareMany, but 10% step time increase for one-

to-one. We also see that one-to-one and one-

to-shareMany have similar number of parameter,

which is about 15% smaller than one-to-many due

to the sharing of weights. The one-to-shareMany

architecture is able to get the increased sharing

while still maintaining reasonable training speed

per step-size.

We also test the accuracy of EviMRL with the

transfer learning framework. To our surprise, the

EviMRL task also benefits from the AlexMRL

task. We observe an absolute increase of accu-

5In our experiment, it is the training time for a 128 size
minibatches update on Nvidia Tesla K80 GPU

Model architecture param. size step time

independent 15 million 0.51

one-to-many 33 million 0.66

one-to-one 28 million 0.71

one-to-shareMany 28 million 0.65

Table 1: parameter size and training time compar-

ision for independent and multi-task models

racy of 1.3% over the EviMRL baseline.6 This ob-

servation reinforces the hypothesis that combining

data from different semantic formalisms helps the

generalization of the model by capturing common

sub-structures involved in solving semantic pars-

ing tasks across multiple formalisms.

4.3 Transfer Learning Experiments on ATIS

Here, we apply the described transfer learning se-

tups to the ATIS semantic parsing task (Zettle-

moyer and Collins, 2007). We use a single GRU

layer of 128 hidden states to train the independent

model. During transfer learning, we increase the

model size to two hidden layers each with 512 hid-

6The baseline is at 90.9% accuracy for the single task
sequence-to-sequence model

54

den states. We adjust the minibatch size to 20 and

dropout rate to 0.2 for independent model and 0.7

for multi-task model. We post-process the model

output, balancing the braces and removing dupli-

cates in the output. The initial learning rate has

been adjusted to 0.8 using the dev set. Here, we

only report accuracy numbers for the independent

and one-to-shareMany frameworks. Correctness is

based on denotation match at utterance level. We

summarize all the results in Table 2.

System Test accuracy

Previous work

Zettlemoyer and Collins (2007) 84.6

Kwiatkowski et al. (2011) 82.8

Poon (2013) 83.5

Zhao and Huang (2014) 84.2

Jia and Liang (2016) 83.3

Dong and Lapata (2016) 84.2

Our work

Independent model 77.2

+ WSJ constituency parsing 79.7

+ EviMRL semantic parsing 84.2

Table 2: Accuracy on ATIS

Our independent model has an accuracy of

77.2%, which is comparable to the published base-

line of 76.3% reported in Jia and Liang (2016) be-

fore their data recombination. To start with, we

first consider using a related but complementary

task – syntactic constituency parsing, to help im-

prove the semantic parsing task. By adding WSJ

constituency parsing as an auxiliary task for ATIS,

we see a 3% relative improvement in accuracy

over the independent task baseline. This demon-

strates that the multi-task architecture is quite gen-

eral and is not constrained to using semantic pars-

ing as the auxiliary task. This is important as

it opens up the possibility of using significantly

larger training data on tasks where acquiring la-

bels is relatively easy.

We then add the EviMRL data of > 1M in-

stances to the multi-task setup as a third task,

and we see further relative improvement of 5%,

which is comparable to the published state of the

art (Zettlemoyer and Collins, 2007) and matches

the neural network setup in Dong and Lapata

(2016).

5 Conclusion

We presented sequence-to-sequence architectures

for transfer learning applied to semantic parsing.

We explored multiple architectures for multi-task

decoding and found that increased parameter shar-

ing results in improved performance especially

when the target task data has limited amounts of

training data. We observed a 1.0-4.4% absolute

accuracy improvement on our internal test set with

10k-200k training data. On ATIS, we observed a

> 6% accuracy gain.

The results demonstrate the capabilities of

sequence-to-sequence modeling to capture a

canonicalized representation between tasks, par-

ticularly when the architecture uses shared param-

eters across all its components. Furthermore, by

utilizing an auxiliary task like syntactic parsing,

we can improve the performance on the target se-

mantic parsing task, showing that the sequence-

to-sequence architecture effectively leverages the

common structures of syntax and semantics. In

future work, we want to use this architecture to

build models in an incremental manner where the

number of sub-tasks K continually grows. We

also want to explore auxiliary tasks across multi-

ple languages so we can train multilingual seman-

tic parsers simultaneously, and use transfer learn-

ing to combat labeled data sparsity.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning
Research 6(Nov):1817–1853.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrap-
ping semantic parsers from conversations. In Pro-
ceedings of the conference on empirical methods in
natural language processing. Association for Com-
putational Linguistics, pages 421–432.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Freebase

55

from question-answer pairs. In EMNLP. volume 2,
page 6.

Qingqing Cai and Alexander Yates. 2013. Semantic
parsing Freebase: Towards open-domain semantic
parsing. In Second Joint Conference on Lexical and
Computational Semantics (* SEM). volume 1, pages
328–338.

Rich Caruana. 1998. Multitask learning. In Learning
to learn, Springer, pages 95–133.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL (1). pages 1723–
1732.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280 .

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. arXiv preprint arXiv:1505.08075 .

David Flanagan. 2008. Mql reference guide. Metaweb
Technologies, Inc page 2.

Ramanathan V Guha, Dan Brickley, and Steve Mac-
beth. 2016. Schema. org: Evolution of structured
data on the web. Communications of the ACM
59(2):44–51.

Jonathan Herzig and Jonathan Berant. 2017. Neu-
ral semantic parsing over multiple knowledge-bases.
https://arxiv.org/abs/1702.01569 .

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622 .

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
arXiv preprint arXiv:1611.04558 .

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in ccg grammar induction for semantic pars-
ing. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1512–
1523.

Percy Liang, Michael I Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Association
for Computational Linguistics, pages 590–599.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114 .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Hoifung Poon. 2013. Grounded unsupervised semantic
parsing. In ACL (1). Citeseer, pages 933–943.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics 2:377–392.

David A. Smith and Noah A. Smith. 2004. Bilingual
parsing with factored estimation: Using english to
parse korean. In EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems. pages 2773–2781.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM 57(10):78–85.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence. pages 1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In EMNLP. pages 678–687.

Luke S. Zettlemoyer and Michael Collins. 2012.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. arXiv preprint arXiv:1207.1420 .

Kai Zhao and Liang Huang. 2014. Type-driven incre-
mental semantic parsing with polymorphism. arXiv
preprint arXiv:1411.5379 .

56

