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Abstract—The automatic recognition of a crowd movement
captured by a CCTV camera can be of considerable help to
security forces whose mission is to ensure the safety of people
on the public area. In this context, we propose to fine-tune a
model from the TwoStream Inflated 3D architecture, pre-trained
on the ImageNet and the Kinetics source datasets, to classify
video sequences of crowd movements from the Crowd-11 target
dataset. The evaluation of our model demonstrates its superiority
over the state-of-the-art in terms of classification accuracy.

Index Terms—Video-surveillance, Crowd Behavior Analysis,
Convolutional Neural Networks, Transfer Learning.

I. INTRODUCTION

Either a culmination of a social protest or a cultural event, or

an inevitable consequence of densely populated cities, crowd

movements occur more and more in the public area [1]. The

high frequency of these movements pushes the security forces

to gain more control on them [1], [2]. Recent events have

demonstrated the dangers of an uncontrolled crowd movement:

a mismanaged crowd event can lead to heavy casualties [1].

In order to manage crowd movements, security forces can

rely on the use of video-surveillance cameras [2]–[4]. The

disposal of these cameras should cover a large part of the

public area [5]. Although one of their most common uses is

the acquisition of images that demonstrate criminal activity

and their subsequent use for forensic purposes, the use that

is beginning to be made of them is crowd analysis to predict

abnormal situations [4]. However, despite the abundance of

raw data from video-surveillance cameras, there is no unified

model which can be used in all case-scenarios of crowd

movements. This is due to the paucity of publicly available

annotated datasets [6].

Today, due to its multiple successes, deep learning is trend-

ing in computer vision [7]. Although these methods appeared

more than two decades ago, they are more and more used since

the multiplication of their successes in image classification.

One of the first and most notable success was realized by

AlexNet [8], which achieved considerable performance in

image classification when trained on the ImageNet dataset [9].

Although a part of computer vision, crowd behavior analysis

did not benefit from the popularity of deep learning methods in

computer vision. The scarcity of data and the lawful difficulty

of obtaining them are one of the causes of this delay.

Recently, a team from the CEA (The French Alternative

Energies and Atomic Energy Commission) has created a

dataset called Crowd-11 [10]. This dataset, of over 6,000

video clips, is a major contribution to crowd behavior analysis,

because it describes ten observable crowd movements in the

public area or in large enclosed spaces such as airports

or supermarkets. Successfully developing a statistical model

capable of classifying these movements can be of great help

for the security forces.

In this paper, we applied transfer learning to classify video

sequences of crowd movements. We fine-tuned a model from

the TwoStream Inflated 3D ConvNet (I3D) architecture [6]

that had already been pre-trained on the ImageNet [9] dataset

and the Kinetics [11] action recognition dataset, on what has

been recovered from the Crowd-11 dataset. The fine-tuned

TwoStream-I3D model is compared to a model from the 3D

Convolutional Networks (C3D) architecture [12], which was

pre-trained on the Sports-1m dataset and then fine-tuned on the

same dataset. The rest of this paper is organized as follows:

in Section II-A, we discuss the related work topics covered in

crowd analysis. Afterthat, we present the Crowd-11 dataset in

Section II-B, and then show the difference between the original

dataset and what we could retrieve from it. We introduce

transfer learning for video classification, in Section III, and we

present the architectures for which we applied it. In Section IV,

we explain the different experiments we undertook on Crowd-

11 through k-fold cross validation and discuss the evaluation

results.

II. BACKGROUND

A. Related work

Crowd analysis has been part of computer vision research

for more than two decades. Work in this area is divided into

two broad categories: crowd statistics and crowd behavior

analysis [13]–[15]

Crowd statistics:

• Crowd counting: This subtopic of crowd statistics con-

sists of counting the number of individuals contained

within a crowd in a scene [16].

• Crowd density estimation: Estimating crowd density in a

scene can be of considerable help for crowd management

[17].

Crowd behavior analysis:

• Trajectories analysis: This theme is part of what is

mostly done in crowd behavior analysis [18]. Trajectories
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Fig. 1. Figure obtained from Dupont et al.’s paper illustrating the behavior
of each crowd constituting a class in the Crowd-11 dataset [10].

analysis can be used for group detection [19], anomalous

trajectories detection [20], and future trajectories predic-

tion [21].

• Group detection and behavior analysis: After detecting

groups, some works focus on the recognition of group

actions [22]. Group detection and group behavior analysis

are part of the mesoscopic approaches of crowd analysis,

because a group is halfway between an individual and a

crowd [23].

• Anomaly Detection: Anomaly detection can be done for

any task of crowd analysis [24]. However, as Thida et

al. specify, researchers did not agree on a unanimous

definition of normality [25], because an anomaly in crowd

analysis can range from recognizing abnormal events

such as fights, traffic accidents, forgetting a luggage when

leaving a train station, or witnessing a unusual event such

as a pedestrian walking in the middle of a street.

Crowd analysis can rely on the manual extraction of visual

cues. Most of this extraction is discussed in several reviews

[13]–[15], [26]. The extraction of visual cues can refer to

the computation of optical flow in a video clip, or contours

detection, the detection of points/regions of interest in a single

frame that can lead to pedestrian detection. Following this,

an extraction of the different trajectories in a scene. More

recently, this task, often subject to a number of omissions,

has started being delegated to deep neural networks, because

they are often able to spot significant visual cues better than

hand-crafted methods [27].

B. The Crowd-11 dataset

Created by the CEA-LIST team [10], this fully annotated

dataset contains more than 6,000 video clips. Video clips have

variable resolutions ranging from 220×400 to 700×1250, and

are based on a multitude of pre-existing sources. The videos

are classified in 11 categories illustrated in the figure 1.

In what follows, we describe the behaviors corresponding

to the 11 classes contained in the Crowd-11 dataset:

0) Gas Free : Individuals walking in all directions without

encountering obstacles.

1) Gas Jammed: Congested Crowd.

2) Laminar Flow: Crowd walking in one direction.

3) Turbulent Flow: Crowd walking in a single direction

and disturbed by an individual crossing the crowd in the

opposed direction.

4) Crossing Flows: Two crowds crossing each other.

5) Merging Flows: Two converging crowds.

6) Diverging Flow: A crowd that splits into two crowds.

7) Static Calm: A crowd of static and calm individuals.

8) Static Agitated: A crowd of static, but agitated individ-

uals.

9) Interacting Crowd: Two opposed crowds. This class

contains violent scenes.

10) No Crowd: No human presence in the scene.

The videos originate mainly from three video hosting web-

sites which are Youtube, Pond51, and GettyImages2. The rest

comes from the following datasets: UMN SocialForce, Ago-

raSet, PETS-2009, Violent-Flows, Hockey Fights and Movies,

WWW Crowd, CUHK Crowd, and Shanghai WorldExpo’10

Crowd. Most of these datasets are publicly available and easily

accessible. However, we could not get videos from WWW

Crowd, CUHK Crowd, and Shanghai WorldExpo’10 Crowd.

Because of this, we were unable to retrieve the Crowd-11

dataset in its entirety. We could obtain approximately 90% of

the original dataset. The distribution of the retrieved clips for

each class, displayed in the comparative table I, shows that

we did not endure a major loss of videos from the original

dataset.

Label Class name #clips (original) #clips obtained

0 Gas Free 529 477

1 Gas Jammed 520 508

2 Laminar Flow 1304 1189

3 Turbulent Flow 892 862

4 Crossing Flows 763 717

5 Merging Flow 295 267

6 Diverging Flow 184 189

7 Static Calm 737 686

8 Static Agitated 410 351

9 Interacting Crowd 248 153

10 No Crowd 390 370

TABLE I
COMPARISON BETWEEN THE NUMBER OF CLIPS PER-CLASS OF ORIGINAL

CROWD-11 AND OURS.

III. TRANSFER LEARNING

Most of the time, transfer learning for the classification

of video clips has been applied for action recognition in

individual scenes [6], [12]. In this situation, the purpose is

to transfer the knowledge learned from a source dataset to a

target dataset belonging to the same topic. Dupont et al. [10]

applied this operation by transferring the features that a model

learned from an action recognition source dataset to a target

dataset of crowd movements. The purpose of transfer learning

is to transmit the features learned by a model from a source

dataset to a target dataset [28].

1Pond5: https://www.pond5.com/
2GettyImages: https://www.gettyimages.com/
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A. Implemented architectures

We selected three models to fine-tune from two ar-

chitectures: C3D and TwoStream-I3D. The choice of the

TwoStream-I3D architecture is mainly motivated by the good

results that its models obtain compared to the C3D models

when they perform action recognition in individual scenes on

the UCF-101 and HMDB-51 datasets [6]. As the CEA team

obtained their best results with the C3D architecture, its choice

in our experiments is natural since we were not able to retrieve

the Crowd-11 data set in its entirety. A pre-trained C3D model

on Sports-1m got its best results when classifying Crowd-

11 videos [10]. Therefore, this model represents for us the

baseline result to improve during our experiments.

1) 3D Convolutional Neural Network: We decided to re-

implement a version of the 3D Convolutional Neural Networks

that correspond to the architecture described in [12]. The C3D

architecture consists of 5 3D Convolutional layers. Each these

layers is followed by a three-dimensional max pooling layer.

These 5 first layers are then followed by 3 fully connected

layers. The last layer has a softmax classification output made

up of 11 classes.

As we have already mentioned, the CEA team gets their best

performance with C3D after pre-training the model on Sports-

1m [29]. The Sports-1m dataset is a dataset that contains 1

million videos from Youtube classified in 487 categories. Each

category contains approximately 1,000 to 3,000 videos per

class.

2) Two-Stream Inflated 3D Neural Network: Carreira and

Zisserman propose the Two-Stream Inflated 3D ConvNets

architecture [6]. This architecture was used to learn action

recognition in individual scenes, where it obtained very good

results compared to C3D. We use it to learn crowd movements

recognition.

Carreira and Zisserman pre-trained a TwoStream-I3D model

on Kinetics [11] and ImageNet [9]. By testing this model

on the UCF-101 and HMDB-51 datasets, they significantly

outperformed the performance of the pre-trained C3D models

on Sports-1m [6]. In our situation, we decided to transfer the

learned features of an RGB stream of the I3D architecture on

the Kinetics and ImageNet source datasets to the Crowd-11

target dataset. We did the same for the TwoStream-I3D model

by transferring the learned features of the RGB stream and the

optical flow stream of the architecture to the target dataset.

We extracted the optical flow of each video clip using the

TV-L1 algorithm [30]. The architecture from which we derive

I3D and TwoStream-I3D models is illustrated in Figure 2. It

consists of two layers of three-dimensional (3D) convolutional

layers supplemented by batch normalization layers, each of

which is followed by a 3D max pooling layer. This bedrock is

followed by a series of nine Inception modules whose internal

characteristics vary slightly from one module to another. At the

end, the output of the last Inception module is passed through

a 3D average pooling layer, before going through a softmax

output layer for the classification into 11 classes.

IV. EXPERIMENTS ON CROWD-11

In the experiments that we undertook, we decided for each

architecture to fine-tune a pre-trained model and to train a

model from scratch on Crowd-11. In the case of the C3D

pretrained model, the pretraining was performed on the Sports-

1m dataset. In the case of the I3D streams, the pretraining

was performed on ImageNet and then on respectively the

RGB version of Kinetics for the RGB stream and the optical

flow version of Kinetics for the optical flow stream. Inspired

by the training setting found on Tran et al. and Carreira et

al. for respectively the C3D and the TwoStream-I3D models

[6], [12], we chose the Stochastic Gradient Descent (SGD)

as an optimization function, and fixed the learning rate (LR)

to 0.003. The chosen loss function for these experiments is

the categorical cross-entropy. In order to be very close to the

training setup of C3D when trained from scratch or fine-tuned

on Crowd-11 by Dupont et al. [10], we reproduced the LR

gradual decrease by dividing it by 10 each 4 epochs. However,

we did not follow this same policy for I3D and TwoStream-

I3D. We chose to decrease the LR by 10 when the loss on the

validation set did not improve. During the training phase, the

number of epochs was fixed to 40 for C3D models, and 30 for

the others, so as to maximize the opportunity of C3D models

to get better scores. A model is produced at the end of each

epoch. At the end of the training phase, we chose to keep the

model that minimizes the loss function at the validation phase.

When we applied fine-tuning, we did not freeze any layer of

our models. We decided to avoid doing so, because the source

datasets on which our models were pre-trained on differ a lot

from the target dataset we intended to learn. Consequently, we

were moved by the idea to backpropagate the training updates

on all the weights of the networks we train. Contrary to Dupont

et al. we did not apply data augmentation to train any of these

models. Knowing that data augmentation is a regularization

method, we wanted to observe to what extent our models could

overfit the dataset [31]. Furthermore, we wanted to determine

which classes could undermine the learning ability of our

models, without reducing this issue using data augmentation.

As we intend to use all the possible ways to augment our

video data, we leave this question to a future work.

A. 5-fold cross validation :

Our version of Crowd-11 is made up of 1641 scenes.

These scenes are split into 5769 video clips. To avoid scenes

overlapping between folds, we kept all the clips from the same

scene in the same fold. When we select a scene to add to any

fold, our selection maintains a quantity of clips per class that

is proportionately similar between all the folds with respect to

the original quantities displayed in Table I. To train or fine-tune

our models, we applied the 5-fold stratified cross validation.

We divided the dataset into 5 proportionate similar folds in

terms of the contained classes. For each iteration of cross

validation, we chose 3 folds to form the training set, one for the

validation set and a last one for the test set. At each iteration

of cross validation, the test set changes. The validation set is

chosen randomly among the 4 remaining folds. As we applied
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Fig. 2. Illustration of the Inflated 3D architecture. Conv3D BN refers to the 3D convolutional layer followed by a batch normalization layer. Inception refers
to an Inception module. AvgPool3D is a 3D average pooling layer.

Model Training condition Accuracy

C3D ours Scratch 31.9%

C3D Dupont et al. Scratch 46.9%

C3D ours Pretrained 58.4%

C3D Dupont et al. Pretrained 61.6%

TABLE II
COMPARISON BETWEEN OUR C3D AND DUPONT ET AL. [10]

Architecture Training Mean Min Max

I3D Scratch 47.4% 40.1% 54.5%

C3D Scratch 31.9% 28.9% 36.2%

TwoStream I3D Scratch 47.8% 44% 52.5%

I3D Pretrained 59% 56.7% 60.1%

C3D Pretrained 58.4% 57.6% 60.1%

TwoStream I3D Pretrained 68% 66.2% 70.6%

TABLE III
ACCURACY FOR 5-FOLD CROSS VALIDATION.

5-fold cross validation for each of our three models during

the two prior training conditions : training from scratch, fine-

tuning on top of a pre-trained model; we went through 30

training phases3.

B. Discussion of the obtained results

From the boxplots illustrated in Figure 4, the variability

of the models trained from scratch on Crowd-11 are less

stable than those which were fine-tuned on the same dataset.

According to the results displayed on Table II, we observe

that C3D trained from scratch on Crowd-11 does not perform

as well as Dupont et al.’s trained model. This may be due to

the lack of information we have on the training setup they

used to train their model, the slight difference between our

two datasets, and the fact that we do not use video data

augmentation. According to the results displayed on Table III,

we find that the C3D and I3D models obtain almost the same

results when classifying the video clips of the test set. C3D is

3The source code of this project is available here : https://github.com/MounirB/
Crowd-movements-classification

exceeded with a margin of 0.6% by the I3D model. This slight

difference in performance can be explained by the fact that

the C3D architecture has 78 million parameters to train while

the I3D architecture has 12 million parameters as well as a

deep architecture. Moreover, we observe that the TwoStream-

I3D model leverages favorably the use of optical flow in the

fine-tuning phase. This is not totally demonstrated when it is

trained from scratch. Compared to other models, TwoStream-

I3D obtains the best results. From the confusion matrices

displayed on Figure 3, we observe that the overall accuracy

of each model suffers from almost the same categories where

their score is at its lowest. Those categories whose id labels

range from 3 to 6, are respectively the Turbulent Flow, the

Crossing Flows, the Merging Flow, and the Diverging Flow.

We observe that the clips belonging to those classes, including

the Laminar Flow class, are frequently mixed up with each

other. While the Laminar Flow class does not suffer a lot from

this confusion because the crowd follows a unique direction,

the multiple key transitions that are illustrated in the four other

classes can confuse the classification function. For instance,

we observe that the Merging Flow class is not confused with

the Diverging Flow class which demonstrates that the classifi-

cation function learns well how to differentiate between these

two behaviors. However, both of these classes are frequently

confused with the Crossing Flows. When a crowd crosses with

an other one, both of merging and diverging behaviors are

observed. Furthermore, while the Crossing Flows is illustrated

by ≈ 850 clips, the Merging Flow and the Diverging Flow

classes are illustrated by ≈ 200 video clips each (as illustrated

in Table I). This situation can lead to two classes being

encompassed by a more global one like the Crossing Flows

class.

V. CONCLUSION AND PERSPECTIVES

In this work, we investigated the ability of the TwoStream-

Inflated 3D to benefit from its pretraining on the Kinetics

and the ImageNet datasets to classify crowd behaviors on the

https://github.com/MounirB/Crowd-movements-classification
https://github.com/MounirB/Crowd-movements-classification
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Fig. 3. Confusion matrices of the pretrained models computed following the 5-fold cross-validation.

Fig. 4. Results obtained following the 5-fold cross validation step applied on
Crowd-11 for each model.

Crowd-11 dataset. After transferring the weights learnt from

its source datasets to the target dataset, the yielded model

outperforms the state-of-the-art on Crowd-11 by a consequent

margin of ≈ 10% accuracy. However, the obtained score

cannot be considered as a precise decision tool for crowd

management. On the basis of the results we have obtained, we

intend to see to what extent we can improve them by testing

the following methods:

• Applying video data augmentation;

• Augmenting the defective classes of the Crowd-11 dataset

by adding video clips to them;

• Testing the models resulting from the Temporal 3D Con-

vNets (T3D) [32] and ActionVLAD [33] architectures,

because the models from these architectures obtain scores

exceeding 90% accuracy on the UCF-101 and HMDB-51

datasets;

• Modification of the Inflated 3D architecture via:

– The addition of new Inception modules;

– The hybridization of the I3D architecture with one

of the two T3D or ActionVLAD architectures.

• Taking into account inputs from a preprocessing step,

like the improved Dense Trajectories (iDT) [34], before

proceeding to the training of models.
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