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Deep learning has witnessed a significant improvement in recent years to

recognize plant diseases by observing their corresponding images. To have a

decent performance, current deep learning models tend to require a large-

scale dataset. However, collecting a dataset is expensive and time-consuming.

Hence, the limited data is one of the main challenges to getting the desired

recognition accuracy. Although transfer learning is heavily discussed and

verified as an effective and efficient method to mitigate the challenge, most

proposed methods focus on one or two specific datasets. In this paper, we

propose a novel transfer learning strategy to have a high performance for

versatile plant disease recognition, on multiple plant disease datasets. Our

transfer learning strategy differs from the current popular one due to the

following factors. First, PlantCLEF2022, a large-scale dataset related to plants

with 2,885,052 images and 80,000 classes, is utilized to pre-train a model.

Second, we adopt a vision transformer (ViT) model, instead of a convolution

neural network. Third, the ViT model undergoes transfer learning twice to save

computations. Fourth, the model is first pre-trained in ImageNet with a self-

supervised loss function and with a supervised loss function in PlantCLEF2022.

We apply our method to 12 plant disease datasets and the experimental results

suggest that our method surpasses the popular one by a clear margin for

different dataset settings. Specifically, our proposed method achieves a mean

testing accuracy of 86.29over the 12 datasets in a 20-shot case, 12.76 higher

than the current state-of-the-art method’s accuracy of 73.53. Furthermore, our

method outperforms other methods in one plant growth stage prediction and

the one weed recognition dataset. To encourage the community and related

applications, we have made public our codes and pre-trained model
1.
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1 https://github.com/xml94/MAE_plant_disease
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1 Introduction

Keeping plants healthy is one of the essential challenges to

having an expected and high yield. Traditionally, experts have to

go to farms to check if plants are infected with diseases but deep

learning enables the check to take place automatically based on

their images. Because of the decent performance of deep

learning, plant disease recognition has witnessed a significant

improvement in recent years (Abade et al., 2021; Liu et al., 2021;

Ngugi et al., 2021). To obtain a comparable recognition

performance, a large-scale dataset is entailed to train a deep

learning-based model. However, collecting images for plant

disease is expensive and time-consuming. Besides, few images

are normally available at the beginning of a plant disease

recognition project when sanity checking should be executed

before devoting more resources. Therefore, limited dataset, a

situation where a few labeled images are accessible for some

classes in the training process is one of the main issues in the

literature (Fan et al., 2022). To facilitate this issue, many

algorithms and strategies are proposed, such as data

augmentation (Mohanty et al., 2016; Xu et al., 2022b; Olaniyi

et al., 2022), transfer learning (Mohanty et al., 2016; Too et al.,

2019; Chen J. et al., 2020; Xing and Lee, 2022; Zhao et al., 2022),

few-shot learning (Afifi et al., 2020; Egusquiza et al., 2022), and

semi-supervised learning (Li and Chao, 2021).

Although the challenge of a limited dataset is considered in

many works, most of them merely focus on one or few specific

datasets, such as the PlantVillage dataset (Mohanty et al., 2016;

Too et al., 2019; Li and Chao, 2021), AI Challenger dataset (Zhao

et al., 2022), tomato dataset (Xu et al., 2022b), wheat and rice

dataset (Sethy et al., 2020; Rahman et al., 2020), cucumber

(Wang et al., 2022), and apple leaf disease dataset (Fan et al.,

2022). A basic question in this situation is whether a useful

method for one dataset is helpful for other datasets. Further,

there is a fundamental desire to find a robust method for most

plant disease recognition applications. On the other hand,

improving the application performance with a limited dataset

is desired. For example, can we get a comparable result with only

20 training images for each class (20-shot)? To address these two

issues, we propose a novel transfer learning strategy to achieve

high performance for different limited datasets and various types

of plants and diseases.

Via obtaining a good feature space, transfer learning aims

to learn something beneficial for a target task with a target

dataset from a source task with a source dataset (Pan and

Yang, 2009). In plant disease recognition, a deep learning-

based model is generally pre-trained in the source dataset and

then fine-tuned in the labeled target dataset. As shown in

Figure 1, it is understood that three key factors essentially lead

to a positive transfer learning performance, a desired source

dataset, powerful model, and suitable loss function to pre-train

the model (Wu et al., 2018; Kornblith et al., 2019; Kolesnikov

et al., 2020; Tripuraneni et al., 2020; He et al., 2022). However,
Frontiers in Plant Science 02
the three factors have been undeveloped in plant

disease recognition.

First, it is beneficial to have a plant-related dataset with a

high number of images and classes (large scale), as well as wide

image variation. For example, a plant-related source dataset

could be better than the widely used ImageNet (Deng et al.,

2009) for plant disease recognition, which has been verified (Kim

et al., 2021; Zhao et al., 2022). Hence, finding a suitable source

dataset is essential for plant disease recognition. Following this

idea, PlantCLEF2022, a plant-related dataset with 2,885,052

images and 80,000 classes, was adopted for our paper.

Second, a model with higher performance in ImageNet or a

source dataset may have a better performance in the target

dataset with a transfer learning strategy (Kornblith et al., 2019).

Convolution neural networks (CNN) (Krizhevsky et al., 2012;

He et al., 2016) achieved the best accuracy for the ImageNet

validation dataset. Simultaneously, the attention mechanism has

been leveraged to boost the performance of plant disease

recognition (Yang et al., 2020; Qian et al., 2022; Zhao et al.,

2022). In recent years, Vision Transformer (ViT) (Dosovitskiy

et al., 2020), a general model of attention mechanism, has

become a hot topic in the computer vision community and

outperforms CNN-based models. For example, MAE (He et al.,

2022) scores 85.9 inaccuracy for the ViT-L model which is

higher than Resnet50 and ResNet152 with scores of 79.26 and

80.62, respectively. Therefore, for plant recognition, ViT-based

models with a transfer learning strategy are promising but still

underdeveloped (Wang et al., 2022).

Third, the supervised loss function inevitably pushes the

model to learn source task-related features that may not be

helpful for the target task (Wu et al., 2018). In contrast, the self-
A

B

FIGURE 1

Training from scratch (A) and transfer learning (B). Three key
factors in transfer learning are the source dataset, the model,
and the loss function to pre-train the model. These have all been
undeveloped in plant disease recognition.
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supervised loss function eases the issue by introducing a pretext

task, such as contrast loss (Wu et al., 2018) and reconstruction

loss (He et al., 2022). Thus, a ViT mode pre-trained in the

PlantCLEF2022 dataset with a self-supervised loss function is

assumed to be better than the current popular transfer learning

strategy that is pre-trained on a CNN-based model in the

ImageNet dataset with a supervised loss function (Mohanty

et al., 2016; Yang et al., 2020; Abbas et al., 2021; Fan et al.,

2022; Yadav et al., 2022).

Besides, the transfer learning strategy is slightly problematic

when considering computing devices and the large-scale

PlantCLEF2022 dataset. To be more specific, training a ViT

model 800 epochs in PlantCLEF2022 as MAE (He et al., 2022)

requires more than five months with four RTX 3090 GPUs. To

reduce the computing cost, we utilize a dual transfer learning

strategy, where a public ViT model pre-trained in ImageNet with

a self-supervised loss function is trained in the PlantCLEF2022

dataset with a supervised loss function. In this way, we only

spend about 15 days training the model in PlantCLEF2022. We

emphasize that our dual transfer learning is different from (Azizi

et al., 2021; Zhao et al., 2022) due to the following facts, aiming

to reduce the cost of pre-training a model, large-scale

PlantCLEF2022 dataset, and employing a ViT-based model.

To summarize, our paper will make the following

contributions:
Fron
• We propose a novel transfer learning to achieve versatile

plant disease recognition with a plant-related source

dataset PlantCLEF2022, ViT model, and self-

supervised learning to pre-train the model.

• We utilize dual transfer learning to save computation

costs, considering the large-scale PlantCLEF2022

dataset.

• We validate our method in 12 plant disease datasets and

our method surpasses the current widely used strategy

by a large margin. Specifically, we score an average

testing accuracy of 86.29 in a 20-shot case, 12.76

higher than the widely used strategy.

• Our transfer learning strategy also outperforms other

methods in one plant growth stage prediction and one

plant weed recognition, which suggests that our strategy

contributes beyond plant disease recognition.
2 https://data.mendeley.com/datasets/ngdgg79rzb/1

3 https://github.com/IVADL/tomato-disease-detector

4 https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-

vision-for-crop-disease?resource=download

5 https://github.com/xml94/MAE_plant_disease/blob/main/visualize_

dataset/dataset.md
2 Material and method

2.1 Plant disease datasets

To validate the generalization of transfer learning and deep

learning, we executed our method in fourteen public datasets,

thirteen related to plant disease recognition. To be more specific,

we used PlantVillage (Hughes et al., 2015), PlantDocCls (Singh
tiers in Plant Science 03
et al., 2020), Cassava (Ramcharan et al., 2017), Apple2020

(Thapa et al., 2020), Apple2021 (Thapa et al., 2021), Rice1426

(Rahman et al., 2020), Rice5932 (Sethy et al., 2020),

TaiwanTomato2, IVADLTomato and IVADLRose3, CitrusLeaf

(Rauf et al., 2019), CGIARWheat4, and PDD271* (Liu et al.,

2021). More details of the datasets are shown in Table 1 while

three random images for each class are displayed here
5.

The datasets are considered from several viewpoints.

Figure 2 gives a glance at some images in the datasets. First is

the number of images and the number of classes. Generally, the

more classes and fewer images, the more difficult the recognition

task. PDD271 covers 271 classes, including fruit trees, vegetables,

and field crops, but unfortunately, it is not public. Only ten

samples for each class are available and therefore, we adopted it

as a few-shot learning task. In contrast, most of the public

datasets only involved one type of plant, such as rice (Rahman

et al., 2020; Sethy et al., 2020) or apple (Thapa et al., 2020; Thapa

et al., 2021). Besides, the number distribution of classes may

cause class-imbalance trouble, in which the trained model may

have higher performance for the class with a dominant number

of images in the training stage. Second, the conditions the images

were taken in matters since controlling the conditions reduces

the variation in the collected images, such as background and

illuminations. A previous work (Barbedo, 2019) proves that

controlling the conditions or masking the background out can

improve recognition performance. Third, the organs of plants in

images are also important. The main organs in the datasets are

leaves, but also include some fruits, stems, and whole plants.

Interestingly, different leaves of plants have heterogeneous

shapes that may result in various performances with the same

model. For example, the leaves of cassava are far different from

their counterparts in apple and tomato plants. Especially, some

images in PDD271 are captured with part of a leaf, not the whole

leaf as in PlantVillage. Fourth, the scale of the images is also

essential to the performance. The scale is related to the distance

between the camera and the plant when taking pictures. For

example, the leaves in PlantVillage and Apple2020 have a similar

scale while the images in Rice1426 are on different scales. Fifth,

image size,i.e. height and width, may incur challenges for

recognition tasks as the disease phenomenon may not be clear

enough in small-size images. To summarize, we emphasize that

image variations (Xu et al., 2022a) in the dataset have an

influence on training models and their corresponding
frontiersin.org
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performance, and thus, recognizing the image variations is

significant to understanding the dataset.
2.2 PlantCLEF2022 dataset

PlantCLEF20226 was originally a challenge to identify the

plant species based on their images. The trusted training dataset,

PlantCLEF2022, annotated by human experts with 2,885,052

images and 80,000 classes, is leveraged and used as the default

PlantCLEF2022 dataset in this paper. Each class in the dataset is

limited to no more than 100 images and has 36.1 images on

average. As shown in Figure 3, the images cover plant habitat

(environment or background) and organs such as the leaf, fruit,

bark, or stem. Essentially, plants can be recognized based on

multiple pieces of visual evidence, instead of only one piece of

evidence (Xu et al., 2022c). Besides, the images belonging to one

class embrace huge variations. As displayed in Figure 4, the

variations include background, illumination, color, scale, and

image size.

Why PlantCLEF2022? We recognize that three

characteristics make PlantCLEF2022 beneficial to plant disease

recognition with transfer learning strategy, i.e., plant-related,

large-scale, and wide variations. First, it is accepted that a large-
6 https://www.aicrowd.com/challenges/lifeclef-2022-plant
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scale related source dataset contributes to the target task. As the

PlantCLEF2022 dataset is plant-related and on a large scale, even

when compared to ImageNet (Deng et al., 2009), it can be

beneficial to plant disease recognition and related tasks, such as

growth stage prediction. Second, the PlantCLEF2022 dataset has

wide variations as mentioned before, by which we can learn a

better feature space when using it to pre-train a model. Arguably,

the variations in PlantCLEF2022 are much stronger than all of

the plant disease datasets introduced in Section 2.1. We have

noticed that finding this kind of dataset for plant disease

cognition tasks is one of the main interests in recent years. In

the beginning, ImageNet made a significant contribution as a

source dataset. Recently, the AI Challenger dataset, a little bit

bigger than PlantVillage but with small variations as most of the

images are taken in controlled conditions, is considered as a

source dataset (Zhao et al., 2022). Although it is plant-related,

the AI Challenger dataset is far behind when compared to

PlantCLEF2022 because of its number of images and classes

and poor image variations.
2.3 Dual transfer learning

To achieve versatile plant disease recognition with a limited

dataset, we believe that, under the transfer learning paradigm, a

large-scale related dataset, PlantCLEF2022, and a powerful

model are beneficial. Hence, we designed a dual transfer

learning model, taking the computation load and device into
TABLE 1 Information of the used plant disease recognition datasets.

Dataset Images Classes Highlights

PlantVillage 54,305 38 Covers 14 types of plants. Each image is taken in controlled conditions and only includes one leaf in the center. Some diseases
are spilt into two cases according to their severities, early and late. Each class has more than 273 images. All images are the same
height and width, 256*256.

PlantDocCls 2,576 27 Includes 13 plants. The images are collected from the Internet with diverse heights and widths and most of the images are taken
in real field conditions. The original training and testing dataset include 2,340 and 236 images, respectively.

Cassava 21,397 5 The images are taken in real field conditions and thus have wide variations, such as background, illumination, and leaf scales. All
images have the same height and width, 800*600.

Apple2020 3,642 4 Taken in real field conditions. One leaf may include more than one type of disease and those images are labeled as one class. All
images are the same size, 2048*1365.

Apple2021 18,632 6 An updated version of Apple2020 but with 2 more classes. All images are the same size, 4000*2672.

Rice1426 1,426 9 Images are taken in both real filed and controlled conditions. The images are not just related to leaves, but also other organs,
stems, and grains. Images are in 224*224 resolution.

Rice5932 5,932 4 Only includes rice leaf images with different scales. All images are resized to 300*300.

TaiwanTomato 622 5 One image may include one or multiple leaves taken in either controlled conditions or real field conditions. There are 495 and
127 images in the original training and testing dataset, respectively. All images are resized to 227*227.

IVADLTomato 3,021 9 The original dataset includes more images in an unbalanced way. We limited the number for each class to less than 520. The
original images have a large height and width, and we resized the images to 520*520 to save disk space.

IVADLRose 3,132 6 Similar to IVADLTomato, we limited the number for each class and resized the images.

CitrusLeaf 609 5 Images are taken in controlled conditions and resized to 256*256. We only used the leaf parts from the original Citrus dataset.

CGIARWheat 876 3 Includes leaves, stems, and whole plants. Images are taken from different viewpoints with diverse distances and different image
sizes.

PDD271* 2,710 271 Covers fruit trees, vegetables, and field crops, with huge image variations. Ten images for each class are available as samples.
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consideration. As shown in Figures 5A, C, our transfer learning

consists of three steps with transfer learning occurring twice.

In the first step, a vision transformer (ViT) model is pre-

trained with the ImageNet (Deng et al., 2009) in a self-supervised

manner, reconstruction loss. We emphasize here that we directly

adopted the pre-trained model from masked autoencoder

(MAE) (He et al., 2022), instead of training the model

ourselves. Simultaneously, we argue that superior pre-trained

models are essential for better plant disease recognition, even if

the models have the same architecture. The experiments in the

following section prove that the original pre-trained ViT model

(Dosovitskiy et al., 2020) performs worse than MAE (He et al.,
Frontiers in Plant Science 05
2022). As shown in Figure 6, MAE is a composite of an encoder

and a decoder that are optimized by a reconstruction loss,

Lrecon=||input, target||2 where input is the original image and

target denotes the reconstructed image. During the training

process, the original image input is split into several patches

that are randomly blocked. The encoder aims to extract

necessary information from the blocked image and the

decoder is required to fill the blocked patches. As the

optimization does not require labels, it falls under self-

supervised learning.

The decoder in MAE is discarded and the encoder is

utilized in the second step, followed by a linear layer and a
FIGURE 2

Image examples from different datasets. We recognize that there are image variations [40], such as background, the shape of leaves,
illumination, and scale.
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softmax operation to do classification. The encoder and the

added linear layer are fine-tuned in the PlantCLEF2022 dataset,

optimized by the cross entropy loss, Lce=−log(p(yj)) where j is

the ground truth index and p(y) is the output of softmax

operation. Different from the first step, the input is not split

into patches and blocked. The main characteristic of the second

step is the PlantCLEF2022 dataset, related to the plant disease
Frontiers in Plant Science 06
recognition dataset. We highlight that the second step is

outlined and trained in our previous paper (Xu et al., 2022c)

for the PlantCLEF2022 challenge and thus is not outlined and

trained in this paper.

In the third step, the added linear layer in the second

step is replaced by a new linear layer. To be clear, the

encoder and the new linear layer in this step are fine-
FIGURE 3

Different interests or organs in PlantCLEF2022 testing dataset.
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tuned in a specific plant disease recognition dataset. The

cross-entropy loss is again utilized to optimize the whole

network. As mentioned before, the first and second steps are

executed in other papers and thus only the third step is

required for this paper. We have termed our strategy dual

transfer learning since the model is trained with two other

datasets and transferred twice.

We believe that the first step is not mandatory for better

performance in versatile plant disease recognition but

contributes to the reduction of the training time for the

whole system. As shown in Figure 5B, we can pre-train a

model in the PlantCLEF2022 dataset and then fine-tune it for

the plant disease dataset. Unfortunately, this setting may entail

a long training epoch in PlantCLEF2022 to have a better

performance, such as 800 epochs in MAE (He et al., 2022).

In contrast, we only train 100 epochs for the second step and

hence can save time. Besides, by training an MAE model in a

self-supervised way, one decoder is trained at the same time
Frontiers in Plant Science 07
which needs more time for one epoch. Therefore, our dual

transfer learning reduces training time via utilizing the public

model from MAE (He et al., 2022).
3 Experiment

3.1 Experimental settings

Dataset. For each original dataset in Table 1, we split them

into training, validation, and testing datasets. The training

dataset is leveraged to train the models while the validation

one is only used to choose the best-trained model from different

epochs. Then, the best model is evaluated in the testing dataset.

If there is a testing dataset with annotations in the original

dataset, we directly used the original testing dataset. Otherwise,

the whole original dataset is split into training, testing, and

validation datasets in different percentages or an exact number
FIGURE 4

Images of Aralia Nudicaulis L. species from PlantCLEF2022 dataset. The images from the same plant species are heterogeneous in the
background, illumination, color, scale, etc.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1010981
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2022.1010981
of images. To be more specific, the original testing datasets in

PlantDocCls and TaiwanTomato are directly used while a new

testing dataset is made for other datasets.

For each plant disease dataset, we consider two training cases,

generic and few-shot cases. Different percentages of the training

dataset are utilized in the generic case, such as 20% and 40%, while

only several images for each class are taken to train the model in the

few-shot case. To summarize, we set eight dataset modes, as shown

in Table 2, four percentages as training in generic cases and 4 types

of few-shot cases. Except for ratio80, 20% is taken for the validation

and testing datasets for all experiments. The validation and testing

datasets are the same for the generic and few-shot cases.

Furthermore, the dataset splitting was randomly executed once

only, by which the images of each dataset mode are fixed for all

compared models or strategies. Although the percentage of

validation and testing datasets is the same for most of the dataset

modes, the images are different because of a different

random process.

Comparison methods. To validate our method, we designed

several comparisons with different strategies or models. To

choose the compared methods, we held to the following

features: with transfer learning or without transfer learning,

CNN-based or ViT-based, supervised or self-supervised, and

trained with PlantCLEF2022 or not. Simultaneously, we do not

want to pre-train the models because of our lack of GPUs and

the almost 3 million images in PlantCLEF2022. Based on these

two ideas, the compared methods are described below and

more interesting methods are listed in Table 3 with their

corresponding characteristics.
Frontiers in Plant Science 08
• RN50. A ResNet50 model is trained from scratch with

the target datasets shown in Table 1.

• RN50-IN. A ResNet50 model is pre-trained with the

ImageNet (IN) dataset in a supervised way and then

fine-tuned in the target datasets.

• MoCo-v2. A MoCo-v2 model is pre-trained with the

ImageNet dataset in a self-supervised way and then fine-

tuned in the target datasets.

• ViT. A ViT-large (Dosovitskiy et al., 2020) model is

trained from scratch with the target datasets.

• ViT-IN. A ViT-large model is pre-trained with the

Imagenet dataset in a supervised way and then fine-

tuned in the target datasets.

• MAE. A ViT-large model is pre-trained with the

ImageNet dataset in a self-supervised way. Specifically,

MAE (He et al., 2022) uses reconstruction loss to learn

better performance with a high occlusion.

• Our model. We fine-tuned a ViT model from MAE with

the PlantCLEF2022 dataset and then fine-tuned it again

with the target datasets.
We noticed that there were several other possible strategies.

For instance, it is interesting to directly pre-train a ViT model

with only the PlantCLEF2022 dataset in a self-supervised

manner, no ImageNet, shown as Case 8 in Table 3. Further,

pre-training an RN50 model with the PlantCLEF2022 dataset

in a self-supervised manner is also encouraged to distinguish

the impact of convolution neural networks (CNNs) and

vision transformers (ViTs), shown as Case 3 in Table 3.
A

B C

FIGURE 5

Transfer learning strategies for plant disease recognition. Our strategy differs from the current popular transfer learning strategy (A) in the source
dataset, model, and loss function. Furthermore, we adopt dual transfer learning (C) to save computation time by utilizing the public pre-trained
model, compared to (B).
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Simultaneously, fine-tuning a MoCo-v2 model in the

PlantCLEF2022 dataset is also inspired to see the difference

between CNN and ViT, shown as Case 5 in Table 3, even if we

expect a lower performance because MoCo-v2 has a lower

accuracy in ImageNet than MAE. However, training these

models is too expensive. It is estimated that pre-training a

ViT-large model as MAE costs more than five months with

our current computation devices, four RTX 3090 GPUs.

Therefore, these possible strategies are left for future studies.

Implementation details. As mentioned in Section 2.3, we

have used the pre-trained ViT-L model from our previous paper

(Xu et al., 2022c). Hence, we only focus on the last fine-tuning

process in this paper, i.e. fine-tuning the ViT-L model in the plant

disease recognition dataset. The ViT-L model has 24 transformer

blocks with a hidden size of 1024, an MLP size of 4096, and 16

heads for each multi-head attention layer. The ViT-L model has

approximately 307 million trainable parameters in total.

For a fair comparison, all models or transfer learning strategies

were executed with the same settings with most of them following

the fine-tuning schemes in MAE (He et al., 2022). In detail, the

basic learning rate lrb was 0.001, and the actual learning lra = lrb *

batch/256 where batch was the batch size for different training

dataset modes. The model was warmed up in 5 epochs with the

learning rate increasing linearly from the first epoch to the set

learning rate. Furthermore, 0.05 weight decay and 0.65 layer decay

were utilized. Mixup (Zhang et al., 2017) and CutMix (Yun et al.,

2019) were adopted as data augmentation methods.

The main change from MAE experimental setting was the

batch size. Considering the number of images in each dataset, in
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the generic case, the batch size was 64 for CGIARWheat,

Strawberry2021, CitrusLeaf, and TaiwanTomato, while it was

128 for other datasets. In terms of the few-shot case, the number

of classes was one factor to set as the batch size should not be

larger than the number of classes in the 1-shot case. Specifically,

the batch size was 4 for most of the datasets, except for

CGIARWheat with 2, IVADLTomato with 8, PlantDocCls

with 16, PlantVillage with 32, and Rice1426 with 8. Besides,

the generic case was trained with four GPUs while the few-shot

cases were trained with only one GPU. To evaluate during

thetraining process, the models were trained for 50 epochs

and validated after every 5 epochs in the validation dataset,

including the first epoch. The best models were tested in the

testing datasets.

Evaluation metric. Accuracy, a common evaluation metric

for image classification (Dosovitskiy et al., 2020; Xu et al., 2022b;

He et al., 2022) was leveraged to assess different methods in a

specific dataset. Since we aim to achieve versatile plant disease

recognition performance, the mean accuracy, mAcc, over all

datasets was utilized and computed as follows:

mAcc =
1
Mo

M

i=1
Acci, (1)

where Acci is the testing accuracy in the i-th dataset and N is

the total number of datasets. To assess the generality, testing

accuracy and mean testing accuracy was employed, instead of

validation accuracy and mean validation accuracy as used in

MAE (He et al., 2022). In general, high testing accuracy and

mean testing accuracy were desired.
FIGURE 6

The high-level architecture of MAE [13]. With MAE, an image is split into patches that are then randomly blocked. The unblocked patches are fed
to an encoder, followed by a decoder to reconstruct the whole input image. After the unsupervised pre-training, the decoder is discarded and
only the encoder is utilized in the downstream task. The input is not blocked and a specific classifier is added after the encoder when fine-
tuning the model in a target task.
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3.2 Experimental results

3.2.1 Main result
As our main objective was achieving versatile plant disease

recognition with a limited dataset, we first compared our method

to other strategies. Table 4 displays the mean testing accuracy of

different methods over the 12 plant disease datasets mentioned

in Table 1 and Figure 7 illustrates the tendency of mean testing

accuracy of various methods in few-shot case and generic case

respectively. The testing accuracy, the curve of validation loss,
Frontiers in Plant Science 10
and the accuracy for each dataset can be found in the

Supplementary Material. As shown in Table 4, the

experimental results suggested that our method surpasses

other methods by a clear margin across all dataset modes.

Specifically, our method achieves 86.29 mAcc in a 20-shot case

where only 20 images per class are utilized to train the models,

compared to the second-best method, RN50-IN. We observed

that the gap between our method and other methods becomes

less when the number of training images increases. For example,

the gap between our method and the second-best method,
frontiersin.org
TABLE 2 The settings in different dataset modes for the original dataset without labeled testing dataset.

Dataset case Dataset mode Training Validation Testing

Generic case Ratio20
Ratio40
Ratio60
Ratio80

20%
40%
60%
80%

20%
20%
20%
10%

20%
20%
20%
10%

Few-shot case 1-shot
5-shot
10-shot
20-shot

1
5
10
20

20%
20%
20%
20%

20%
20%
20%
20%
The splitting was random once only, by which the images of each dataset mode are fixed for all compared models or transfer learning strategies. Although the percentage of validation and
testing dataset was the same for most of the dataset modes, the images are different because of a different random process.
TABLE 3 The characteristics of the compared methods.

Case Name Model ImageNet PlantCLEF2022

1
2
3
4
5
6
7
8
9
10

RN50
RN50-IN

-
MoCo-v2

-
ViT

ViT-IN
-

MAE
Ours

CNN
CNN
CNN
CNN
CNN
ViT
ViT
ViT
ViT
ViT

N/A
Supervised

N/A
Self-supervised
Self-supervised

N/A
Supervised

N/A
Self-supervised
Self-supervised

N/A
N/A

Self-supervised
N/A

Supervised
N/A
N/A

Self-supervised
N/A

Supervised
N/A denotes not available or not used. We evaluated the compared methods from these viewpoints: no pre-training process because of our lack of GPUs, and showing the impacts of the
basic model (CNN orViT), supervised or self-supervised, plant-related dataset (ImageNet or PlantCLEF2022), and dual transfer learning strategy. The named methods are compared in our
paper while the other methods are encouraged and left for future studies considering the availability of GPUs.
FIGURE 7

Curves of average testing accuracy mAcc of different methods in various training dataset modes over the 12 plant disease datasets.
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RN50-IN, in Ratio20 is 14.02 and becomes 2.37 in Ratio80,

which suggests that a limited training dataset is one main

obstacle for current methods.

In terms of the impact of transfer learning, the CNN-based

method, RN50-IN, has the second-best mean testing accuracy,

much higher than its counterpart, RN50 training from scratch,

in the target dataset. However, ViT-IN shows its inferiority for a

limited training dataset while more training images lead to a

minor increase. We postulate that ViT is harder to train than the

original ViT-IN, as suggested in the original paper (Dosovitskiy

et al., 2020). In contrast, CNN has been regularly developed in

the last decade, and thus the optimizing problem has been

largely mitigated. A similar phenomenon exists in the loss

function to train the models. For example, MoCo-v2 (Chen X.

et al., 2020) scores 71.1 top-1 in accuracy in ImageNet while

RN50 (He et al., 2016) obtains 77.15. On the contrary, MAE (He

et al., 2022) achieves a 85.9 top-1 accuracy score. A comparison

between ViT, ViT-IN, andMAE suggests that the self-supervised

loss function contributes to the improvement of the ViT-based

model in all training dataset modes.

Our method is based on MAE and is pre-trained one more

time in the PlantCLEF2022 dataset. Excitingly, our method

obtained 35.42, 36.65, and 37.03 higher accuracy scores than

MAE in 5-shot, 10-shot, and 20-shot, respectively. The soar of

the mean testing accuracy of our method compared to MAE

proves that PlantCLEF2022 is essentially beneficial for achieving

versatile plant disease recognition with a limited dataset. Our

method not only achieved the best performance but also

converged faster than other methods. For example, the

validation loss was minimized to a low value within 5 epochs

for the Ratio40 case. Please refer to Figures S1 and S2 in the

Supplementary Material.

Finally, 10 images for each class are available in PDD271*

(Liu et al., 2021) and we used them as a few-shot learning task.

Our method achieved a testing accuracy of 81.9 with only 1,355

images for both training and testing, compared to the original

accuracy of 85.4 with 154,701 and 21,889 images for training and

testing (Liu et al., 2021).
7 https://aistudio.baidu.com/aistudio/datasetdetail/98233
3.2.2 Beyond plant disease
Beyondachievingversatile plantdisease recognition,we believe

that our transfer learning strategy is alsobeneficial for other types of
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plant-related work. We performed two types of experiments over

two datasets. The Strawberry20217 dataset, designed to predict

plant growth stages, such as the young leaves and flowering stages,

includes 557 images and 4 classes. The CottonWeedID15 (Chen

et al., 2022) dataset requires the model to distinguish 15 types of

weed in a cotton field, with 5,187 images in total.

The mean testing accuracy is displayed in Table 5 while

the details can be found in the Supplementary Material.

It is interesting that our method scored a mean testing accuracy

of 97.60 in a 5-shot case where only 5 images of each label were

utilized to train the network. The current popular strategy obtains

similar results but in the Ratio40 case, with approximately 121

images per class. The experimental results suggest that ourmethod

can also contribute to plant-related applications beyond plant

disease recognition with few training samples.

3.2.3 Discussion
Limited data is one main challenge in achieving high

performance in the computer vision field (Xu et al., 2022a) and

plant disease recognition (Lu et al., 2022; Xu et al., 2022b). Through

our experimental results, we argue that the required amount of

training dataset is partly dependent on the model or pre-trained

model. As shown inTable 4, themean testing accuracy of RN50-IN

was 83.23 in theRatio40 case and gains 12.76 from theRatio20 case,

while our method only had a 1.76 increase. Through this analysis,

we believe that our method mitigates the requirement of a large

dataset for plant disease recognition.

Furthermore, we emphasized that more training data

tends to contribute to high performance but the gains

become lower when a decent performance is obtained. For

example, 20 percent more data only resulted in an increase of

0.11 in mean testing accuracy score in the Ratio60 case with

our strategy. Therefore, recognizing the limitation of

increasing data is also essential for practical applications.

Sometimes, we may have to resort to alternative ways to

have higher performance, instead of just increasing the

training dataset.

Future work. First, we emphasize here that we are not

aiming to achieve the best performance with our method in
TABLE 4 The mean testing accuracy mAcc of different training methods over the 12 datasets for plant disease recognition detailed in Table 1. .

1-shot 5-shot 10-shot 20-shot Ratio20 Ratio40 Ratio60 Ratio80

RN50
RN50-IN
MoCo-v2
ViT
ViT-IN
MAE
Ours

26.33
23.46
23.28
27.56
23.02
27.81
44.28

27.38
52.03
47.27
36.96
30.87
34.11
69.83

31.75
64.28
60.93
40.01
35.94
44.08
80.73

38.13
73.53
72.38
45.14
40.83
49.26
86.29

53.71
76.77
66.58
51.93
51.64
64.90
90.79

65.19
88.78
81.68
59.40
59.42
83.23
92.55

67.91
89.58
83.84
60.71
62.67
86.65
93.23

71.07
90.97
85.28
64.46
65.53
88.76
93.34
frontie
The best average accuracy for each dataset mode is in boldface.
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TABLE 5 The mean testing accuracy of different training methods over Strawberry2021 and CottonWeedID15.

1-shot 5-shot 10-shot 20-shot Ratio20 Ratio40 Ratio60 Ratio80

RN50 20.50 21.75 26.45 35.95 39.90 68.90 66.90 78.25

RN50-IN 45.55 75.95 87.90 87.15 60.85 98.00 98.35 98.55

MoCo-v2 45.65 70.25 84.65 86.05 66.90 96.45 96.20 97.50

ViT 32.70 39.90 44.30 51.45 56.25 65.65 75.40 80.90

ViT-IN 27.20 33.35 43.10 45.25 55.05 68.30 75.50 82.35

MAE 17.45 41.45 59.50 59.20 85.20 97.80 98.35 98.75

Ours 73.90 97.60 97.55 97.85 99.80 99.35 98.80 99.70

The best average accuracy for each dataset mode shows in boldface.
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this paper. Instead, we propose a versatile plant disease

recognition method with a limited training dataset. Therefore,

we encourage our method to be used as a baseline for future

works, although we did obtain superior performance in plant

disease recognition. For example, is the PlantCLEF2022 dataset

beneficial for a CNN-based network? In this way, we can pre-

train the RN50 model and then fine-tune it in the target dataset.

Moreover, it is interesting to analyze the reason why the same

model and strategy behave differently in different datasets. For

example, our method achieved a score of 97.4 in testing accuracy

in the 20-shot case in the PlantVillage dataset as shown in Table

S1 while scoring only 63.8 in the IVADLTomato dataset as

shown in Table S9. Furthermore, we only validated our method

in plant disease recognition, and encourage deploying our

method to perform object detection and segmentation (Xu

et al., 2022b). We also highlight combining our transfer

learning with other unsupervised or self-supervised learning in

the future. For instance, using a few labeled images to train a

model and then leveraging the trained model to generate pseudo

labels for unlabeled images (Li and Chao, 2021) and reduce

annotation cost. Our preliminary results in Strawberry2021 and

CottonWeedID15 suggest that our transfer learning strategy is

not just promising for plant disease but also plant stage

recognition and weed identification. We encourage more

plant-related applications to deploy our method as a baseline.
4 Conclusion

We proposed a simple but nontrivial transfer learning strategy

to achieve versatile plant disease recognitionwith limited data. Our

method strikingly outperforms current strategies, not only on 12

plant disease recognition datasets but also in oneplant growth stage

prediction andoneweed detectiondataset.Onemain characteristic

of our method is the use of PlantCLEF2022, a plant-related dataset

including 2,885,052 images and 80,000 classes with huge image

variations, which enables our transfer learning to be beneficial for

versatile plantdisease recognition tasks.Considering the large-scale

dataset, our method employs a vision transformer (ViT) model

because of its higher performance than thewidely used convolution
Frontiers in Plant Science 12
neural network. To reduce the computation cost, dual transfer

learning is leveraged as the ViT model is first pre-trained with

ImageNet in a self-supervised manner because the ImageNet

dataset is different to the plant disease dataset. The model is then

fine-tuned with PlantCLEF2022 in a supervised manner. We

believe that our transfer learning strategy contributes to the field

and to fuel the community, our codes and the pre-trainedmodel are

publicly available.
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Hughes, D., and Salathé, M. (2015). An open access repository of images on
plant health to enable the development of mobile disease diagnostics. arXiv.
preprint. arXiv:1511.08060.

Kim, B., Han, Y.-K., Park, J.-H., and Lee, J. (2021). Improved vision-based
detection of strawberry diseases using a deep neural network. Front. Plant Sci. 11,
559172. doi: 10.3389/fpls.2020.559172

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., et al. (2020).
“Big transfer (bit): General visual representation learning,” in European Conference
on computer vision (Springer), 491–507.

Kornblith, S., Shlens, J., and Le, Q. V. (2019). “Do better imagenet models
transfer better?,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, Long Beach: IEEE. 2661–2671.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification
with deep convolutional neural networks,” in Advances in neural information
processing systems, Lake Tahoe vol. 25. Eds. F. Pereira, C. Burges, L. Bottou and K.
Weinberger (Curran Associates, Inc).

Li, Y., and Chao, X. (2021). Semi-supervised few-shot learning approach for
plant diseases recognition. Plant Methods 17, 1–10. doi: 10.1186/s13007-021-
00770-1

Liu, X., Min, W., Mei, S., Wang, L., and Jiang, S. (2021). Plant disease
recognition: A large-scale benchmark dataset and a visual region and loss
reweighting approach. IEEE Trans. Image. Process. 30, 2003–2015. doi: 10.1109/
TIP.2021.3049334

Lu, Y., Chen, D., Olaniyi, E., andHuang, Y. (2022). Generative adversarial networks
(gans) for image augmentation in agriculture: A systematic review. Comput. Electron.
Agric. 200, 107208. doi: 10.1016/j.compag.2022.107208

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for
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