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Transfer Learning from Simulations on a Reference

Anatomy for ECGI in Personalised Cardiac

Resynchronization Therapy
Sophie Giffard-Roisin*, Hervé Delingette, Thomas Jackson, Jessica Webb, Lauren Fovargue, Jack Lee,

Christopher A. Rinaldi, Reza Razavi, Nicholas Ayache, Maxime Sermesant*

Abstract—Goal: Non-invasive cardiac electrophysiology (EP)
model personalisation has raised interest for instance in the
scope of predicting EP cardiac resynchronization therapy (CRT)
response. However, the restricted clinical applicability of current
methods is due in particular to the limitation to simple situations
and the important computational cost. Methods: We propose in
this manuscript an approach to tackle these two issues. First,
we analyse more complex propagation patterns (multiple onsets
and scar tissue) using relevance vector regression and shape
dimensionality reduction on a large simulated database. Second,
this learning is performed offline on a reference anatomy and
transferred onto patient-specific anatomies in order to achieve
fast personalised predictions online. Results: We evaluated our
method on a dataset composed of 20 dyssynchrony patients with
a total of 120 different cardiac cycles. The comparison with
a commercially available electrocardiographic imaging (ECGI)
method shows a good identification of the cardiac activation
pattern. From the cardiac parameters estimated in sinus rhythm,
we predicted 5 different paced patterns for each patient. The
comparison with the body surface potential mappings (BSPM)
measured during pacing and the ECGI method indicates a good
predictive power. Conclusion: We showed that learning offline
from a large simulated database on a reference anatomy was able
to capture the main cardiac EP characteristics from non-invasive
measurements for fast patient-specific predictions. Significance:
The fast CRT pacing predictions are a step forward to a non-
invasive CRT patient selection and therapy optimisation, to help
clinicians in these difficult tasks.

Index Terms—Cardiac Electrophysiology, ECG Imaging, In-
verse Problem of ECG, Personalisation.

I. INTRODUCTION

HEART failure is a major health issue in Europe affecting

6 million patients and growing substantially because

of the ageing population and improving survival following

myocardial infarction. The poor short to medium term prog-

nosis of these patients means that treatments such as cardiac

resynchronisation therapy (CRT) can have substantial impact

[1], [2]. However, these therapies are ineffective in 30% of

the treated patients and involve significant morbidity and

substantial cost. To this end, the precise understanding of the

patient-specific cardiac function can help predict the response

to therapy and therefore select the potential candidates and

optimise the therapy.

S. Giffard-Roisin (sophiegif.github.io), H. Delingette, N. Ayache and M.
Sermesant (maxime.sermesant@inria.fr) are with Asclepios Research Group,
Université Côte d'Azur, Inria, France.

T. Jackson, L. Fovargue, J. Lee, J. Webb, C. Rinaldi and R. Razavi are with
Division of Imaging Sciences and Biomedical Engineering, King's College
London, London, UK.

Estimating accurately electrophysiological (EP) patient-

specific model parameters is then crucial, and it often involves

invasive measurements [3]. In order to replace these invasive

measurements -at risk for the patient-, some studies proposed

to personalise the cardiac EP model from body surface po-

tential mappings (BSPM) [4]–[6]. In one of them [5], the

onset activation location and the global conduction velocity

were estimated in different pacing locations for several patients

using a patient-specific simulated training set. However, per-

sonalisation may often be needed in more complex situations,

such as multiple activation onsets or heterogeneous myocardial

tissue (scar). Besides, such patient-specific methods are time

consuming because a large number of model simulations are

needed: the total computational time of one model personali-

sation [5] was more than 5 hours on our cluster using parallel

computing.

The aim of this article is to develop a reference anatomy

model allowing us to perform a common and offline learning.

While reducing considerably the computational time of online

inference, it also allows to multiply the pathological configura-

tions in the simulated training set as it is built only once. We

have thus extended the cardiac EP model personalisation to

infarct situations and applied it to a 20 patient database where

the BSPM were recorded using the CardioInsight1 jacket now

commercially available. The personalised model was then used

to predict the activation under different pacing configurations

typically used for CRT.

A. EP Model-based Inverse Problem of Electrocardiography

BSPM data has been widely used in the last decades to

directly compute the cardiac action potentials by solving an

ill-posed inverse problem: finding the transfer matrix linking

the torso potentials to the cardiac sources in terms of action

potentials or impressed currents [7]. For example, the 3DCEI

approach minimizes the use of physiological constraints and

was thus applied to various clinical conditions [8]–[11]. Some

electrocardiographic imaging (ECGI) methods are integrating

physiological and model-based priors in a Bayesian framework

[12], [13]. The work by Li and He [4] solves the inverse

problem by means of heart-model parameters (onset activation

location) and was validated with in vivo studies [14]. It was

further developed for localizing PVC origins from convolu-

tional neural networks [15]. With a known onset activation

1ECVUE, CardioInsight Technologies Inc., Cleveland, Ohio
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location, the estimation of heterogeneous myocardial conduc-

tion using a Bayesian framework has been recently studied

by Dhamala et al. [6]. The use of non-invasive personalised

cardiac parameters for the prediction of new situations (such

as pacing procedures) has been tackled on a few cases only

and with a global conduction velocity parameter [5].

B. Reference Anatomy in ECGI

These personalisations of EP cardiac model parameters from

BSPM data rely on time-consuming patient-specific compu-

tations. Because of the natural similarity of the anatomical

structures between patients, a reference anatomy can be used.

One study showed the importance of the interindividual

variability (averaged standard deviation) of electrocardiograms

(ECG) on 25 healthy subjects [16]. A large part of this

variability is due to the heart position and orientation relative

to electrodes. In terms of geometry, the larger variations

are found for the heart long axis angle. Swenson et al.

[17] also revealed the importance of cardiac angulation in

the ECG forward problem. Another study showed that ECG

imaging is sensitive to global anatomical parameters such as

the heart orientation and location with regard to the lead

positions [18]. The use of a reference anatomy model, able

to represent every patient, is thus a difficult task. Hoekema

et al. [16] showed that by only moving the electrodes in

a frontal plane to a common reference, the interindividual

variability is not reduced because the heart orientation is not

preserved. Another study created a patient-specific adapted

torso model by stretching and squeezing a standard torso

model according to the measures [19]. They concluded that

it was crucial to adapt both the outer shape of the torso model

and the position of electrodes according to reality. Yet, it has

been also shown that some adapted ventricle-torso standard

model were able to get good ECGI results while excluding

local geometrical details [20], [21]. Lastly, a recent study

uses a generic ventricle-torso model in order to build an EP

model training set [15], however the training phase had to be

patient-specific as the generic geometry was first registered

to every patient geometry. To the best of our knowledge, the

goals of these geometrical models were only to simplify the

anatomical modelling process. However, a study has recently

tackled the interindividual variability by separating the factors

of variation throughout a deep network using a denoising

autoencoder on a large ECG dataset [22] for learning the

ventricular tachycardia origin. Inter-subject variations coming

from cardiac EP differences and geometry differences are

however not separable, so a personalised EP model could not

be estimated with this approach.

C. Contributions

The different contributions of this manuscript are:

• A novel reference anatomy approach able to easily rep-

resent every patient with preserved heart orientation and

position with respect to the lead positions. It reduces con-

siderably the computational cost of the personalisation.

• A simulated common database composed of 5 000 heart-

torso EP simulations having random parameter values in

terms of onsets, global conduction velocity value and scar

localisation.

• An EP model-based ECGI technique able to personalise

an EP cardiac model from a sinus rhythm BSPM se-

quence. It is based on a dimensionality reduction of the

myocardial shape and a sparse relevance vector regres-

sion.

• An evaluation on an important database of clinical data

composed of 20 patients with a CRT device, and with a

comparison to a commercially available ECGI method.

• The simulated predictions of 100 different QRS under

pacing compared with the measured BSPM (unseen data)

and the commercially available ECGI mapping.

D. Outline of the Manuscript

In the following section II we will present our prediction

framework (Figure 1): the clinical data, our reference anatomy

model, the simulated EP database and the personalisation of

the sinus rhythm sequence. Section III is dedicated to the

results and the pacing predictions. Finally, section IV discusses

the different aspects of the method.

II. MATERIALS AND METHODS

A. Clinical Data

Our 20 patients dataset is composed of BSPM signals,

ventricular myocardial geometry, torso leads and pacing leads

locations. All patients have dyssynchrony (either left or right

bundle branch block) and were implanted with a biventricular

pacemaker (see Table I). The BSPM potentials (from a Car-

dioInsight jacket) were acquired at a sampling rate of 1kHz

during one QRS complex by 200 to 250 torso sensors. The

protocol of this study was approved by the local research ethics

committee. The approximated myocardial surface, the location

of the torso sensors and the pacing leads were extracted from

the 3D CT scanner image. In the stimulation optimisation

procedure, cardiologists performed several recordings corre-

sponding to different pacing combinations and delays between

a right ventricular (RV) endocardial and a left ventricular (LV)

epicardial pacing leads. For almost all patients, a LV pacing

alone and a RV pacing alone were performed, together with

the 3 following biventricular pacings: simultaneous, LV 40ms

(LV lead ahead by 40ms) and RV 40ms (RV lead ahead by

40ms). An atrial pacing was active 200ms to 100ms before

the ventricular pacings. A sinus rhythm sequence was also

recorded on patients that do not have complete heart blocks.

In total, 120 different settings were studied.

B. BSPM Reference Anatomy

1) Transformation to the Reference Anatomy: In this work,

every patient p has a geometry data composed of the 3D

biventricular cardiac geometry noted cp and sp = {sjp}j=1:N

the locations of the N torso sensors. We define a cardiac

and BSPM reference anatomy template {cT ; sT } with sT =
{siT }i=1:M onto which every patient data will be transformed.

The current dipole approach formulated in the volume

conductor theory [23] has proven its efficiency in BSPM
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Fig. 1. Fast model-based prediction pipeline: the database composed of 5000 EP simulations and the activation map regression training are common for the
20 patients.

TABLE I
CRT PATIENTS. BASELINE INFORMATION OF THE 20 PATIENTS TREATED.

Id Age Gen. Block type Etiology SR

1 67 M LBBB ICM X
2 72 M LBBB HCM

2 6M* 72 M LBBB HCM X
3 82 M LBBB NA X
4 49 F LBBB NICM X
5 79 M RBBB ICM X
6 87 M LBBB NICM
7 62 M LBBB ICM X
8 87 M LBBB ICM X
9 77 M LBBB NA X
10 69 F LBBB NICM
11 49 M LBBB NICM X
12 62 F LBBB NA X
13 59 M LBBB ICM X
14 82 F LBBB NA

15 76 M RBBB NICM X
16 55 M LBBB NA X
18 49 M LBBB NA X
19 78 M LBBB NA X
20 73 M LBBB NA X
22 71 M LBBB NA X

NA = information not available; SR = sinus rhythm se-
quence available; LBBB/RBBB = Left/Right bundle branch
block; ICM/NICM/HCM = ischemic/non-ischemic/hypertrophic
cardiomyopathy; *: patient #2 was acquired 2 times with a 6-
months follow-up.

calculation [5]. The electric potential Ψv(sjp) generated by the

volume element v and measured at the torso electrode sjp is

driven by the scalar product (jveq, vs
j
p) between the equivalent

current density jveq of every cardiac volume element v and

the vector directed from v to the torso electrode sjp (further

divided by the cubic norm of the distance). Consequently, the

shape of the jth BSPM signal Ψv(sjp) is closely linked to the

direction of vsjp. This result is echoing the conclusions of the

ECGI sensitivity studies (see section I-B) showing how the

ECG signal is sensitive to the heart orientation and location

with respect to the lead positions [18].

(a) Schematic simple minimal distance matching

(b) Proposed matching by best preserving the directional potential

Fig. 2. Reference anatomy: matching between one template torso electrode
si
T

and the patient electrodes sP . (a) By using a minimal distance between

electrodes, the matched electrode would be s3
P

. (b) With the proposed method,

the minimal distance to the ray Hsi
T

indicates a matching to the electrode

s1
P

. The directional potential is thus best preserved.

First, we propose to rigidly register the cardiac geometry

cp to the template cT (it is done interactively, as cp is only

a coarse epicardial surface and cT a complete biventricular

tetrahedral mesh), and we apply the same transformation to

the electrodes sP . We define H as the center of mass of

the template cardiac geometry, and HsiT as the ray from

H towards the template torso sensor siT . We propose the

following matching between the template electrodes and the
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electrodes of a new patient p:

∀i ≤ M, Ψ(siT ) = Ψ(sjp)

with j = argmin
k

(

dist
(

skp, HsiT
))

This matching between electrodes is not bijective. Neverthe-

less, the advantages of this approach are that measured BSPM

signals are not modified and the directional potential is best

approximated by identifying the sensor that is the closest to

the direction wanted (see Figure 2). This projection, allowing

the use of a reference simulated database, can also be seen as

a transfer learning method between the reference domain and

the patient-specific domain. The final distance dist(skp, HsiT )
of the matched electrode to the ray can be a measure of

uncertainty: the larger the distance, the larger the uncertainty

that may be introduced. The mean distance among the 20

patients was less than 2 cm.

2) Choice of the template: The choice of the template

reference anatomy {cT ; sT } is important as cT has to represent

the general shape of the myocardium, and the torso sensors

sT should be located in relevant positions so that every patient

would not be too far from it. In this study, we used a healthy

cardiac mesh of 4K vertices and the 251 torso sensors sT from

one of our patients having standard torso width and rotation

(patient #22, selected manually). One could estimate a mean

shape, but for simplicity and consistency reasons we used real

geometries. In Figure 3 is shown an example of the matching

between an original BSPM signal and its translation to the

torso geometry.

C. Offline Simulated Common Database

1) Simulated Database: As we do not have ground-truth

intra-cardiac measurements on the 20 patients, it is difficult

to learn inter-patient information in order to personalise the

EP cardiac model. In order to generate a common large

database with detailed cardiac data, we used EP simulations

on the reference anatomy to generate 5 000 virtual cases with

different parameter values. One simulation runs in approxi-

mately 2 minutes on our cluster (CPU core Xeon 2.6GHz).

This offline database was used as the training set for all the

personalisations of the cardiac EP model, reducing its online

computational cost.

2) Forward Electrophysiological Model: On the reference

myocardial mesh, the cardiac fiber orientations were estimated

with a rule-based method (elevation angle between −70◦ to

70◦). We simulated the anisotropic electrical activation of the

heart using the monodomain version of the Mitchell-Schaeffer

EP model [24]. One of the main parameter of the model

is the local myocardial conduction velocity c (linked to the

diffusion d by cf ∝
√
d. Our forward method is based on

a simplified framework composed of sources and sensors in

an infinite and homogeneous domain. We modelled every

myocardium volume element (tetrahedron) as a spatially fixed

but time varying current dipole. We computed simultaneously

the cardiac electrical sources and body surface potentials. As

shown a related study [5], the modelled BSPM signals are

similar to the result of a standard boundary elements method,

(a) BSPM on Patient #1

(b) Projection of the BSPM on the template torso

Fig. 3. Example of measured BSPM signal matching between the torso of
patient #1 and the template, the color represents the voltage at one time point
from blue (minimal) to red (maximal). (a) original BSPM signal on the torso
of patient #1. (b) projected signal using the proposed matching method on
the template, in wireframe are the original torso contours.

so the unbounded conductor is a valid approximation in this

case.

3) Variety of Simulations and Parameter Ranges: In order

to simulate a large variability of activation maps and their

related BSPM signals, 3 groups of cardiac EP parameters were

randomly modified. First, the activation onset location was

randomly selected among the endo- and epi- surface vertices

of the cardiac mesh. In order to simulate some more complex

and realistic situations, an additional second onset location

was selected for every simulation [25]. Secondly, the global

myocardial conduction velocity c was randomly picked in a

clinically acceptable range [0.3, 0.7]m/s. Third, in order to

capture the conductivity heterogeneity we modelled scar tissue

as having no reaction term in the Mitchell-Schaeffer model and

a diffusivity reduction of 80%. A varying scar location on the

LV with a random and realistic shape [26] was added in 50%
of the simulations.

D. Relevance Vector Regression for Sinus Rhythm Personali-

sation

1) Sinus Rhythm Activation Map Estimation: Using the

reference simulated database, we wanted to personalise each

patient’s EP behaviour from the cardiac at-rest recordings, i.e.

the sinus rhythm sequence. For the patients where the sinus

rhythm was not available because of complete heart blocks
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(see Table I), we used the RV pacing sequence. The different

parameters (activation onset locations, conductivity, presence

of scar tissue) are linked together and their contributions in

the resulting BSPM signals are hardly separable. We there-

fore estimated them at the same time. Because of the large

variety of parameters, we chose to regress the whole cardiac

activation map (the myocardial depolarisation times) from the

BSPM signals. We first described the BSPM signals as a

feature vector and we used a dimensionality reduction of the

representation of the spatial domain given by the myocardial

shape. A relevance vector regression was performed between

the BSPM features and the reduced activation maps. The first

part of the regression (the training, taking 6 hours to compute

on average on our cluster) is common to every patient and

was performed offline, while only the second step is patient-

specific (the testing, taking 2 minutes to compute on average).

2) BSPM Feature Description: For every patient, the torso

sensors were matched with the transformation described in

Section II-B1 to the 251 leads of the template torso. Because

the reference electrode was not localized, the mean BSPM

signal was first subtracted to each signal. Then each signal

was normalized and smoothed with a local Gaussian filter.

We defined specific features from the QRS sequence of every

torso leads. Specifically, 7 features were extracted from each

of the 251 QRS signals (figure 4). One BSPM sequence was

then represented as the feature vector xi of size L=7x251.

ms0 100 200

mV

1

2 3 4

5

67

Extracted features:
(1: red arrow) position of the global extremum,
(2: red bar) abs. potential of the global extremum, 
(3: red sign) sign of the global extremum, 
(4: blue lines)number of zero crossings, 
(5: green dots) number of local extrema, 
(6: blue) algebraic area, 
(7: green sign) sign of the first extremum. 

Fig. 4. Example of BSPM for one torso sensor with the extracted features.

3) Dimensionality Reduction of the Myocardial Shape:

The myocardial tetrahedral mesh can have a large number of

elements or vertices. At the same time, the signal to be recon-

structed, the activation map, is strongly correlated spatially

due to the propagation of the electric potential throughout

the myocardium. Therefore, it is meaningful to reduce the

dimension of the regression variable, the activation times. A

simple way would be to use a coarser mesh but this would be

at the expense of reducing the accuracy of the onset locations.

Instead, we proposed to use a hierarchical decomposition of

the mesh, naturally provided by the eigenmodes of a structural

matrix. To this end we chose the eigen-decomposition of the

stiffness matrix associated with the Laplacian operator of the

tetrahedral shape.

This decomposition has been widely used in various spectral

shape analysis [27], [28] and is closely related to the modes

of vibration of the myocardium. The extracted eigenvectors

are naturally sorted by ascending order of spatial frequency.

By selecting the first eigenmodes, we only kept the modes

with the lowest frequencies corresponding to the largest spatial

variations. If we call t the vector of N activation times at each

vertex of the myocardial mesh, we get the following reduction

and reconstruction formulas:

tred = VMt ; trec = VM
T tred

with tred the coordinates of t in the reduced space, VM the

N × M matrix of the first M eigenvectors of the stiffness

matrix, and trec the reconstructed activation times. The matrix

VM is independent of t and is thus computed only once. An

example of reconstructed activation map (on 4K vertices) using

M = 400 modes is shown in Figure 5c. From Figure 5a, we

can see that the mean reconstruction error was less than 1.5

ms (max: 8 ms) for 400 modes.

(a) Reconstruction error

(b) Original (c) Reconstruction

Fig. 5. Example of reconstruction of an activation map (on 4312 vertices)
from the eigenvectors of the stiffness matrix: (a) Reconstruction error wrt. the
number of modes (b) original activation map (c) reconstructed activation map
from 400 modes.

4) Relevance Vector Regression: In order to regress the

myocardial activation times from the BSPM features, we

used the relevance vector regression (RVR) method [29]. This

approach will perform a non-linear combination of the training

set in order to give a personalised EP estimation. The sparse

kernel regression is based on a sparsity inducing prior on the

weight parameters within a Bayesian framework. Unlike the

commonly used Elastic-Net or Lasso approaches (based on L1

Norm a.k.a Laplacian prior), the RVR method does not require

to set any regularization parameters through cross-validation.

Instead, it automatically estimates the noise level in the input

data and performs a trade-off between the number of basis

(complexity of the representation) and the ability to represent

the signal. Furthermore, unlike SVM regression or Elastic-Net,

it provides a posterior probability of the estimated quantity

which is reasonably meaningful if that quantity lies inside the

training set cloud of solutions.

The RVR estimates the weights w so that we can predict

y ∈ RM (here an activation map in the reduced space) from
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an input x ∈ RL (here a BSPM feature vector) with a non-

linear relationship between x and y as y = wTΦ(x) where Φ
is the non-linear mapping. We consider our dataset of input-

target pairs {xi, ti}Ki=1
where we assume that each target ti

represents the true model yi with an addition of a Gaussian

noise ǫi = N (0, σ2):

ti = wTΦ(xi) + ǫi (1)

The complexity of the learned relationship between x and y
is constrained by limiting the growth of the weights w. This

is done by imposing a zero-mean Gaussian prior on wi:

P (wi) = N (0, α−1

i ) (2)

where the αi are hyperparameters modifying the strength

of each weight’s prior. α = {αi}Ki=1
and σ are estimated

from a marginal likelihood maximisation [30] via an efficient

sequential addition and deletion of candidate basis functions

(or relevant vectors). Because the optimal values of many αi

are infinite, the RVR only selects the BSPM input set that

can best explain the activation map in the training set, thus

limiting the risk of overfitting.

0 1000 2000 3000 4000 5000 6000
0.0

0.5

1.0

1.5

2.0

Log-likelihood

(a) Log-likelihood evolution

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

Number of relevant vectors

(b) Nb of relevant vectors evolution

Fig. 6. Iterations of the relevance vector regression training on the first mode.

RVR is a multivariate but single-valued approach and there-

fore the regression was directly performed on the reduced

space of section II-D3: only 400 regressions are needed to

perform an estimation of more than 4K activation times.

In our setting, a training input-target pair corresponds to

a BSPM feature vector xi and its related activation map

projected on one mode of the reduced space tmred,i. We used

Gaussian kernels for the non-linear mapping Φ with a kernel

bandwidth of 1e4. The algorithm2 evolution on the first shape

mode (Figure 6) shows a rapid convergence even if small

changes in the number of relevant vectors are still visible

after 3000 iterations. The mean number of retained relevant

vectors during the training phase was 178 (over 5000 training

vectors). The testing phase was then performed independently

on every patient: from the measured BSPM feature vector x

we regressed the activation map estimation t.

5) Local Conduction Velocity Parameter Estimation: the

estimated cardiac activation maps obtained from the sinus

rhythm sequence were used to retrieve patient-specific con-

duction velocity (CV) parameters. Because the regression was

performed on simulated activation maps, the resulting solution

2we used a python implementation available at
https://github.com/AmazaspShumik/sklearn-bayes

is smooth and physiologically relevant. If we consider that a

normal heart QRS is less than 120ms, we make the following

hypothesis : regions that are late activated during sinus rhythm

correspond to regions of slow conduction velocity. This was

motivated by the fact that cardiologists are looking at very

late activated zones during sinus rhythm for locating scar from

CardioInsight inverse solutions. Specifically, we threshold the

estimated activation times ta and defined 3 zones: healthy

tissue (ta < 120ms, CV = 0.5m/s), damaged tissue (120 <
ta < 170ms, CV = 0.3m/s), and scar tissue (170 < ta, no

reaction term and diffusion reduced by 80%). We used a single

value for the healthy tissue based on a previous study where

the personalised global CV were all found close to 0.5m/s
[5].

6) Pacing Prediction and AV node Activation: We will now

predict the activation maps under pacing ’as if’ the patient

was not implanted yet, using the measured pacing locations

from CT imaging and our personalised CV parameters - before

comparing with the measured pacing signals. For every patient,

the measured ventricular pacing locations were segmented

from the CT scanner image, however the image artifacts due

to the device only allow an approximate lead location. The

personalised parameters from sinus rhythm BSPMs were used

to predict the activation maps of different pacing situations. On

some patients we found on the CardioInsight inverse solution

that the RV was activated without ventricular pacing, probably

from the atrial pacing (100 to 200ms before) via the AV node.

For these patients (#1, #2 6M, #4, #7, #9, #12, #13) we had to

include in our model an AV node activation to the ventricular

pacings. For that, we triggered the earliest activated zones

estimated in the sinus rhythm result. Because no recording of

atrial stimulation and AV delay were available, the triggering

time was arbitrarily set to 40ms.

E. Reference Anatomy Evaluation

Fig. 7. Patient #3: Localization error between the previous RVR method and
the presented method using the reference anatomy.

We aim at evaluating the regression using a reference

anatomy by comparing it with the regression using simulations

on the patient-specific torso anatomy, that already showed its

efficiency [25]. The goal of this previous study was localizing

two onset activation locations at the same time from a simu-

lateous pacing using a 1000 patient-specific training set. We

show (Figure 7) the lead localization errors of patient #3 from

the previous method [25] and from the current method (using

the reference anatomy, enabling also more training samples:
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Fig. 8. RVR results on the reduced shape space from measured BSPM sequences of the 20 patients. Grey dots: projection of the 5000 simulated activation
maps used for training.

5000). The new method shows slightly better results. The

uncertainty introduced by the reference anatomy may have

been alleviated by the larger database.

III. PERSONALISATION RESULTS AND PACING

PREDICTIONS

(a) (b)

0.2 0.3 0.5

(c) (d)

Fig. 9. Sinus rhythm of patient #9 (a) estimated activation map from RVR
method. up: flattening view of the epicardial surface. (b) CardioInsight epicar-
dial inverse solution. (c) Personalised conduction velocity from thresholding
the estimated activation map. (d) estimated standard deviation.

A. Projections on the Reduced Shape Space

In Figure 8 we showed the RVR results of each measured

BSPM sequence on the reduced shape space. Because the

modes of this space are related to modes of vibration, the

results projected on the larger modes allow us to easily

compare the BSPM sequences. Each grey point represents

one simulated activation map used for training. The measured

BSPMs sequences of the 20 patients are shown with colours

representing the type of sequence. All the results from the

measured BSPM data lie inside the training set point cloud,

which is important for the RVR to perform well. We can

also see that the 3 different pacing sequences are separated

in clusters, with the simultaneous between the RV pacing and

the LV pacing. The sinus rhythm results in green are almost

all situated near the RV pacing cluster, which is to be expected

for LBBB patients. Interestingly, we can notice that the two

sinus rhythm exceptions that are closer to the LV pacing group

in blue correspond to the two RBBB patients of the cohort

(patients #5 and #15).

B. Estimated Sinus Rhythm Activation Maps

The RVR results of the sinus rhythm sequences in terms

of activation map were used to estimate the local conduction

velocity parameter of each patient. In Figure 9 is represented

the mean solution as a transmural activation map (9a) that was

compared with the CardioInsight epicardial inverse solution

[31] (9b). The CardioInsight solution is interesting for com-

parison even if it is only an epicardial surface reconstruction.

On top are flat representations of the epicardial surface [32].

The wave shape are similar, with a large late activated zone

on the lateral LV wall with probable scar tissue. In Figure 9c

are shown the retained zones for healthy, diseased and scar

tissues from thresholding of Figure 9a. Finally, because the

RVR regression provided the result as a Gaussian probability

distribution in the reduced shape space, the estimated standard

deviation across each mode were projected on the myocardial

mesh. The zones with a high estimated standard deviation

were found near the valves where the mesh is thin, and the

median standard deviation was 37ms (see Figure 9d). The

personalisation results of two other patients (#11 and #15)
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(a) p #11 from RVR (b) p #11 CardioInsight

(c) p #15 from RVR (d) p #15 CardioInsight

Fig. 10. Sinus rhythm of two other patients: #11 (a)(b) and #15 (c)(d).
Flattening view of the epicardial surface. Left: Estimated activation map from
RVR method. Right: CardioInsight epicardial inverse solution.

are compared with the CardioInsight solution in Figure 10,

showing similar activation maps even for the RBBB pattern

(patient #15).

C. Pacing Predictions Results

1) Predicted Activation Maps: From the CV parameters

estimated using the RVR solution of the sinus rhythm BSPMs,

we ran again our cardiac Mitchell-Schaeffer model by using

the measured pacing locations provided by imaging under

different conditions (RV only, LV only, simultaneous, LV

40ms, RV 40ms). We compared its output to the measured

pacing BSPM recordings and to the CardioInsight solution.

This comparison will demonstrate the proximity between a

standard inverse method and a predictive method that could

be performed without any pacemaker on the patient. In Figure

11 is represented the predicted LV 40ms activation map for

patient #9 (Figure 11a), the prediction if we used a model

with a homogeneous myocardial CV (Figure 11a) and the

CardioInsight solution (Figure 11b). The flat representation

allows for a better comparison even if the projection of the

epicardium may differ between two cardiac geometries. We

can see that the homogeneous CV prediction missed the

scar while with the personalised CV the wave shape and

timings globally correspond to CardioInsight. The area with

0.2m/s conduction velocity on the LV lateral wall indicates an

infarction zone, as also visible on the CardioInsight map.

The prediction of LV only pacing of patient 9 is shown on

Figure 12a. The predicted propagation was completely blocked

by the scar zone, while an RV activation is visible on the

CardioInsight solution Figure 12c. With the AV activation

model (see section II-D6), the resulting activation map (Figure

12b) is closer to the CardioInsight solution. In Figure 8,

we could see some LV only projections (red) inside the RV

only point cloud: they correspond to patients 1, 9 and 12 all

showing a separate RV activation and also an important LV

late activated near the LV pacing lead.

(a) homogeneous CV (b) estimated CV (c) CardioInsight

Fig. 11. LV 40ms pacing prediction of patient #9, long-axis and flattening
epicardial representations of the activation maps (a) pacing prediction using
homogeneous conduction velocity ;(b) using the personalised parameters from
sinus rhythm; (c) CardioInsight inverse solution of the actual pacing.

(a) estimated CV (b) AV node active (c) CardioInsight

Fig. 12. LV only pacing prediction of patient #9, long-axis and flattening
epicardial representations. (a) using the personalised parameters from sinus

rhythm; (b) adding the modelled activation of the AV node after 40ms; (c)
CardioInsight inverse solution from actual recordings of the pacing.

(a) RV only (b) RV 40ms (c) simultaneous

Fig. 13. Other pacing predictions of patient #9, long-axis and flattening
epicardial representations. (a) RV only (b) RV 40ms; (c) simultaneous.

As a quantitative comparison, Figure 14 shows the activation

times differences on the flat epicardium, between our predic-

tions and the CardioInsight inverse solutions on 20 patients.

The total median difference is 23.8ms. It indicates some

similar activation patterns even if few points have an important

difference (higher than 50ms). A perfect match is difficult

because of the epicardial projections difference, the piece-wise

constant CardioInsight solution and the approximation in the

pacing electrodes locations. We can notice that the LV only

seems to be the more difficult to predict.
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Fig. 14. Prediction of pacing activation maps (20 patients): activation times
differences on the flattened epicardial points, between our prediction and the
CardioInsight inverse solution. Median difference (red line): 23.8ms.
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Fig. 15. Pacing predictions of patient #3, example of BSPM signals. Gray:

Ground truth signal; blue: pacing prediction with a homogeneous myocardial
CV; red: pacing prediction with a personalised CV from sinus rhythm.

2) BSPM predictions: We also predicted the corresponding

pacing BSPM signals and compared them with the measured

signals. Some signal examples of pacing predictions from

patient #3 (Figure 15) showed a clear improvement when using

the personalised CV for the LV only, while the homogeneous

CV shows already a good agreement for the RV only. In Figure

16 we can see the averaged correlation coefficients (CC)

between measured and predicted BSPM signals. Because the

cardiac geometry was generic and the pacing locations not

accurate, we cannot expect a perfect match between BSPMs.

However, we can see that the mean CC of every pacing type

increases when the local CV was personalised from sinus

rhythm. In particular, the effects on the LV only prediction

are highest because the LV damaged tissues can have higher

impacts on the wave propagation. We can still see some

outliers having low CC values. The lowest one (from patient

#16) corresponds to the LV only outlier (red) in the projected

modes of Figure 8a, in a zone where the training simulations

are sparse. It might indicate that our training set did not cover

properly this region of the parameter space.

IV. DISCUSSION

A. Reference Anatomy

The interpatient study could be a useful tool for different

applications, as it also allows some comparison between
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Fig. 16. Prediction of pacing activation maps (20 patients): averaged correla-
tion coefficient (CC) between measured and predicted BSPM signals. In blue,
the prediction was performed with a homogeneous myocardial conduction
velocity. In red is the result with the CV personalised from sinus rhythm (and
with the AV activation in patients 1, 2 6M, 4, 7, 9, 12, 13).

patients. However, it is not universal because our template

has a large number of electrodes on both sides of the torso. A

new dataset composed of only frontal electrodes would not be

correctly projected on the back. The use of a simpler reference

with fewer electrodes could be a more general alternative.

We used a reference cardiac geometry, where the size of

the heart was fixed. We evaluated the impact of the cardiac

scaling on the simulated resulting BSPM signals. Two cardiac

scalings of ratios 0.8 and 1.7 to the original size were tested

(corresponding to extreme sizes). The center of mass of the

myocardium was taken as origin. The resulting normalized

BSPM signals showed a relative mean signal difference of

0.1% for the 0.8 scaling ratio and 0.2% for the 1.7 scaling

ratio. We can deduce that the size of the heart can be neglected

if an appropriate origin is chosen. We did not quantify the

error caused by local cardiac shape differences, as the precise

patient-specific cardiac anatomy was not available (due to

imaging artifacts caused by the pacemaker).

In our setting, the heart location and orientation was seg-

mented from CT scan images. We think that this ionising and

computational procedure could be replaced by an estimation

of the position and orientation parameters, either by statistical

prediction from easy patient characteristics [33] or by simul-

taneous EP inverse optimization [34], [35].

B. Estimating conduction velocity from activation times

In this work we personalised the local conduction velocity

parameter by assigning low values on late activated zones.

The direct estimation of local velocity from an activation map

raises many challenges (because of the mesh, the anisotropy,

the direction of the wave), even though some recent studies are

proposing new approaches [36], [37]. Their use could improve

our estimation and thus the predictions, as our translation from

activation times into conduction velocity has to be handled

with care and might be wrong in some cases.
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C. Estimating the uncertainty

The RVR standard deviation is a by-product of the regres-

sion and can be a way to interpret the regression uncertainty.

However, a proper posterior distribution would be useful for a

better accuracy and for identifying the stability of the solution.

The use of surrogate modelling into a Metropolis Hasting

sampling was recently proposed [38]. We could then also

integrate the other sources of uncertainty as the mean torso

sensor distance to the template.

D. AV node Activation

We have seen that some patients were activated also from

an atrial pacing via the AV node. We have modelled it with

an arbitrary time delay, but we think it would be possible to

integrate it with more complete data (if the atrial stimulation

was recorded). Moreover, the integration of the atria in the

ventricular model (for example as a thin layer [39]) and a

study of the whole heart beat ECG could be beneficial for a

precise and global personalisation.

V. CONCLUSION

We have developed a methodology for solving the ECG

inverse problem and estimating local cardiac conductivity

parameters using a physiological model-based regression on

a reference anatomy. The data matching to the template

anatomy allowed us to use a large offline simulated database

of EP forward models for the regression of the BSPM signals

from 20 patients with a CRT indication. We used a sparse

Bayesian kernel-based regression for the estimation of cardiac

activation maps with the use of specific BSPM descriptors and

a reduced space for the myocardial geometry. From the CV

parameters estimated with the sinus rhythm BSPM sequence,

we predicted the responses to different pacing conditions. We

compared them with the measured pacing BSPMs and with

a commercially available epicardial inverse solution (median

activation time difference: 24ms). While a validation with

intracardiac recordings is still necessary, we believe that the

small patient-specific computational time (less than 2 minutes)

can be crucial for a clinical use. We predicted the patient-

specific EP response to different pacing configurations, which

are useful for the clinician in order to identify CRT responders.

It is a first step to an identification of CRT responders from

modelling, where we would also need some mechanical output

predictions (such as the ejection fraction).
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