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Abstract

We describe a neural network-based system for text-to-speech (TTS) synthesis that
is able to generate speech audio in the voice of different speakers, including those
unseen during training. Our system consists of three independently trained compo-
nents: (1) a speaker encoder network, trained on a speaker verification task using an
independent dataset of noisy speech without transcripts from thousands of speakers,
to generate a fixed-dimensional embedding vector from only seconds of reference
speech from a target speaker; (2) a sequence-to-sequence synthesis network based
on Tacotron 2 that generates a mel spectrogram from text, conditioned on the
speaker embedding; (3) an auto-regressive WaveNet-based vocoder network that
converts the mel spectrogram into time domain waveform samples. We demonstrate
that the proposed model is able to transfer the knowledge of speaker variability
learned by the discriminatively-trained speaker encoder to the multispeaker TTS
task, and is able to synthesize natural speech from speakers unseen during training.
We quantify the importance of training the speaker encoder on a large and diverse
speaker set in order to obtain the best generalization performance. Finally, we show
that randomly sampled speaker embeddings can be used to synthesize speech in
the voice of novel speakers dissimilar from those used in training, indicating that
the model has learned a high quality speaker representation.

1 Introduction

The goal of this work is to build a TTS system which can generate natural speech for a variety of
speakers in a data efficient manner. We specifically address a zero-shot learning setting, where a
few seconds of untranscribed reference audio from a target speaker is used to synthesize new speech
in that speaker’s voice, without updating any model parameters. Such systems have accessibility
applications, such as restoring the ability to communicate naturally to users who have lost their
voice and are therefore unable to provide many new training examples. They could also enable
new applications, such as transferring a voice across languages for more natural speech-to-speech
translation, or generating realistic speech from text in low resource settings. However, it is also
important to note the potential for misuse of this technology, for example impersonating someone’s
voice without their consent. In order to address safety concerns consistent with principles such as [1],
we verify that voices generated by the proposed model can easily be distinguished from real voices.

Synthesizing natural speech requires training on a large number of high quality speech-transcript
pairs, and supporting many speakers usually uses tens of minutes of training data per speaker [8].
Recording a large amount of high quality data for many speakers is impractical. Our approach is to
decouple speaker modeling from speech synthesis by independently training a speaker-discriminative
embedding network that captures the space of speaker characteristics and training a high quality TTS
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model on a smaller dataset conditioned on the representation learned by the first network. Decoupling
the networks enables them to be trained on independent data, which reduces the need to obtain high
quality multispeaker training data. We train the speaker embedding network on a speaker verification
task to determine if two different utterances were spoken by the same speaker. In contrast to the
subsequent TTS model, this network is trained on untranscribed speech containing reverberation and
background noise from a large number of speakers.

We demonstrate that the speaker encoder and synthesis networks can be trained on unbalanced and
disjoint sets of speakers and still generalize well. We train the synthesis network on 1.2K speakers
and show that training the encoder on a much larger set of 18K speakers improves adaptation quality,
and further enables synthesis of completely novel speakers by sampling from the embedding prior.

There has been significant interest in end-to-end training of TTS models, which are trained directly
from text-audio pairs, without depending on hand crafted intermediate representations [17, 23].
Tacotron 2 [15] used WaveNet [19] as a vocoder to invert spectrograms generated by an encoder-
decoder architecture with attention [3], obtaining naturalness approaching that of human speech by
combining Tacotron’s [23] prosody with WaveNet’s audio quality. It only supported a single speaker.

Gibiansky et al. [8] introduced a multispeaker variation of Tacotron which learned low-dimensional
speaker embedding for each training speaker. Deep Voice 3 [13] proposed a fully convolutional
encoder-decoder architecture which scaled up to support over 2,400 speakers from LibriSpeech [12].

These systems learn a fixed set of speaker embeddings and therefore only support synthesis of voices
seen during training. In contrast, VoiceLoop [18] proposed a novel architecture based on a fixed
size memory buffer which can generate speech from voices unseen during training. Obtaining good
results required tens of minutes of enrollment speech and transcripts for a new speaker.

Recent extensions have enabled few-shot speaker adaptation where only a few seconds of speech
per speaker (without transcripts) can be used to generate new speech in that speaker’s voice. [2]
extends Deep Voice 3, comparing a speaker adaptation method similar to [18] where the model
parameters (including speaker embedding) are fine-tuned on a small amount of adaptation data to a
speaker encoding method which uses a neural network to predict speaker embedding directly from a
spectrogram. The latter approach is significantly more data efficient, obtaining higher naturalness
using small amounts of adaptation data, in as few as one or two utterances. It is also significantly
more computationally efficient since it does not require hundreds of backpropagation iterations.

Nachmani et al. [10] similarly extended VoiceLoop to utilize a target speaker encoding network to
predict a speaker embedding. This network is trained jointly with the synthesis network using a
contrastive triplet loss to ensure that embeddings predicted from utterances by the same speaker are
closer than embeddings computed from different speakers. In addition, a cycle-consistency loss is
used to ensure that the synthesized speech encodes to a similar embedding as the adaptation utterance.

A similar spectrogram encoder network, trained without a triplet loss, was shown to work for
transferring target prosody to synthesized speech [16]. In this paper we demonstrate that training a
similar encoder to discriminate between speakers leads to reliable transfer of speaker characteristics.
Our work is most similar to the speaker encoding models in [2, 10], except that we utilize a network
independently-trained for a speaker verification task on a large dataset of untranscribed audio from tens
of thousands of speakers, using a state-of-the-art generalized end-to-end loss [22]. [10] incorporated
a similar speaker-discriminative representation into their model, however all components were trained
jointly. In contrast, we explore transfer learning from a pre-trained speaker verification model.

Doddipatla et al. [7] used a similar transfer learning configuration where a speaker embedding
computed from a pre-trained speaker classifier was used to condition a TTS system. In this paper we
utilize an end-to-end synthesis network which does not rely on intermediate linguistic features, and a
substantially different speaker embedding network which is not limited to a closed set of speakers.
Furthermore, we analyze how quality varies with the number of speakers in the training set, and find
that zero-shot transfer requires training on thousands of speakers, many more than were used in [7].

2 Multispeaker speech synthesis model

Our system is composed of three independently trained neural networks, illustrated in Figure 1: (1) a
recurrent speaker encoder, based on [22], which computes a fixed dimensional vector from a speech
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Figure 1: Model overview. Each of the three components are trained independently.

signal, (2) a sequence-to-sequence synthesizer, based on [15], which predicts a mel spectrogram from
a sequence of grapheme or phoneme inputs, conditioned on the speaker embedding vector, and (3) an
autoregressive WaveNet [19] vocoder, which converts the spectrogram into time domain waveforms.1

2.1 Speaker encoder

The speaker encoder is used to condition the synthesis network on a reference speech signal from the
desired target speaker. Critical to good generalization is the use of a representation which captures the
characteristics of different speakers, and the ability to identify these characteristics using only a short
adaptation signal, independent of its phonetic content and background noise. These requirements are
satisfied using a speaker-discriminative model trained on a text-independent speaker verification task.

We follow [22], which proposed a highly scalable and accurate neural network framework for speaker
verification. The network maps a sequence of log-mel spectrogram frames computed from a speech
utterance of arbitrary length, to a fixed-dimensional embedding vector, known as d-vector [20, 9]. The
network is trained to optimize a generalized end-to-end speaker verification loss, so that embeddings
of utterances from the same speaker have high cosine similarity, while those of utterances from
different speakers are far apart in the embedding space. The training dataset consists of speech audio
examples segmented into 1.6 seconds and associated speaker identity labels; no transcripts are used.

Input 40-channel log-mel spectrograms are passed to a network consisting of a stack of 3 LSTM
layers of 768 cells, each followed by a projection to 256 dimensions. The final embedding is created
by L2-normalizing the output of the top layer at the final frame. During inference, an arbitrary length
utterance is broken into 800ms windows, overlapped by 50%. The network is run independently on
each window, and the outputs are averaged and normalized to create the final utterance embedding.

Although the network is not optimized directly to learn a representation which captures speaker
characteristics relevant to synthesis, we find that training on a speaker discrimination task leads to an
embedding which is directly suitable for conditioning the synthesis network on speaker identity.

2.2 Synthesizer

We extend the recurrent sequence-to-sequence with attention Tacotron 2 architecture [15] to support
multiple speakers following a scheme similar to [8]. An embedding vector for the target speaker is
concatenated with the synthesizer encoder output at each time step. In contrast to [8], we find that
simply passing embeddings to the attention layer, as in Figure 1, converges across different speakers.

We compare two variants of this model, one which computes the embedding using the speaker
encoder, and a baseline which optimizes a fixed embedding for each speaker in the training set,
essentially learning a lookup table of speaker embeddings similar to [8, 13].

The synthesizer is trained on pairs of text transcript and target audio. At the input, we map the text to
a sequence of phonemes, which leads to faster convergence and improved pronunciation of rare words
and proper nouns. The network is trained in a transfer learning configuration, using a pretrained
speaker encoder (whose parameters are frozen) to extract a speaker embedding from the target audio,
i.e. the speaker reference signal is the same as the target speech during training. No explicit speaker
identifier labels are used during training.

Target spectrogram features are computed from 50ms windows computed with a 12.5ms step, passed
through an 80-channel mel-scale filterbank followed by log dynamic range compression. We extend
[15] by augmenting the L2 loss on the predicted spectrogram with an additional L1 loss. In practice,

1See https://google.github.io/tacotron/publications/speaker_adaptation for samples.
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Figure 2: Example synthesis of a sentence in different voices using the proposed system. Mel
spectrograms are visualized for reference utterances used to generate speaker embeddings (left), and
the corresponding synthesizer outputs (right). The text-to-spectrogram alignment is shown in red.
Three speakers held out of the train sets are used: one male (top) and two female (center and bottom).

we found this combined loss to be more robust on noisy training data. In contrast to [10], we don’t
introduce additional loss terms based on the speaker embedding.

2.3 Neural vocoder

We use the sample-by-sample autoregressive WaveNet [19] as a vocoder to invert synthesized mel
spectrograms emitted by the synthesis network into time-domain waveforms. The architecture is the
same as that described in [15], composed of 30 dilated convolution layers. The network is not directly
conditioned on the output of the speaker encoder. The mel spectrogram predicted by the synthesizer
network captures all of the relevant detail needed for high quality synthesis of a variety of voices,
allowing a multispeaker vocoder to be constructed by simply training on data from many speakers.

2.4 Inference and zero-shot speaker adaptation

During inference the model is conditioned using arbitrary untranscribed speech audio, which does
not need to match the text to be synthesized. Since the speaker characteristics to use for synthesis are
inferred from audio, it can be conditioned on audio from speakers that are outside the training set. In
practice we find that using a single audio clip of a few seconds duration is sufficient to synthesize
new speech with the corresponding speaker characteristics, representing zero-shot adaptation to novel
speakers. In Section 3 we evaluate how well this process generalizes to previously unseen speakers.

An example of the inference process is visualized in Figure 2, which shows spectrograms synthesized
using several different 5 second speaker reference utterances. Compared to those of the female
(center and bottom) speakers, the synthesized male (top) speaker spectrogram has noticeably lower
fundamental frequency, visible in the denser harmonic spacing (horizontal stripes) in low frequencies,
as well as formants, visible in the mid-frequency peaks present during vowel sounds such as the ‘i’ at
0.3 seconds – the top male F2 is in mel channel 35, whereas the F2 of the middle speaker appears
closer to channel 40. Similar differences are also visible in sibilant sounds, e.g. the ‘s’ at 0.4 seconds
contains more energy in lower frequencies in the male voice than in the female voices. Finally, the
characteristic speaking rate is also captured to some extent by the speaker embedding, as can be seen
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Table 1: Speech naturalness Mean Opinion Score (MOS) with 95% confidence intervals.

System VCTK Seen VCTK Unseen LibriSpeech Seen LibriSpeech Unseen

Ground truth 4.43 ± 0.05 4.49 ± 0.05 4.49 ± 0.05 4.42 ± 0.07
Embedding table 4.12 ± 0.06 N/A 3.90± 0.06 N/A
Proposed model 4.07 ± 0.06 4.20 ± 0.06 3.89± 0.06 4.12± 0.05

by the longer signal duration in the bottom row compared to the top two. Similar observations can be
made about the corresponding reference utterance spectrograms in the right column.

3 Experiments

We used two public datasets for training the speech synthesis and vocoder networks. VCTK [21]
contains 44 hours of clean speech from 109 speakers, the majority of which have British accents. We
downsampled the audio to 24 kHz, trimmed leading and trailing silence (reducing the median duration
from 3.3 seconds to 1.8 seconds), and split into three subsets: train, validation (containing the same
speakers as the train set) and test (containing 11 speakers held out from the train and validation sets).

LibriSpeech [12] consists of the union of the two “clean” training sets, comprising 436 hours of
speech from 1,172 speakers, sampled at 16 kHz. The majority of speech is US English, however since
it is sourced from audio books, the tone and style of speech can differ significantly between utterances
from the same speaker. We resegmented the data into shorter utterances by force aligning the audio to
the transcript using an ASR model and breaking segments on silence, reducing the median duration
from 14 to 5 seconds. As in the original dataset, there is no punctuation in transcripts. The speaker
sets are completely disjoint among the train, validation, and test sets.

Many recordings in the LibriSpeech clean corpus contain noticeable environmental and stationary
background noise. We preprocessed the target spectrogram using a simple spectral subtraction [4]
denoising procedure, where the background noise spectrum of an utterance was estimated as the 10th
percentile of the energy in each frequency band across the full signal. This process was only used on
the synthesis target; the original noisy speech was passed to the speaker encoder.

We trained separate synthesis and vocoder networks for each of these two corpora. Throughout this
section, we used synthesis networks trained on phoneme inputs, in order to control for pronunciation
in subjective evaluations. For the VCTK dataset, whose audio is quite clean, we found that the
vocoder trained on ground truth mel spectrograms worked well. However for LibriSpeech, which
is noisier, we found it necessary to train the vocoder on spectrograms predicted by the synthesizer
network. No denoising was performed on the target waveform for vocoder training.

The speaker encoder was trained on a proprietary voice search corpus containing 36M utterances with
median duration of 3.9 seconds from 18K English speakers in the United States. This dataset is not
transcribed, but contains anonymized speaker identities. It is never used to train synthesis networks.

We primarily rely on crowdsourced Mean Opinion Score (MOS) evaluations based on subjective
listening tests. All our MOS evaluations are aligned to the Absolute Category Rating scale [14], with
rating scores from 1 to 5 in 0.5 point increments. We use this framework to evaluate synthesized
speech along two dimensions: its naturalness and similarity to real speech from the target speaker.

3.1 Speech naturalness

We compared the naturalness of synthesized speech using synthesizers and vocoders trained on VCTK
and LibriSpeech. We constructed an evaluation set of 100 phrases which do not appear in any training
sets, and evaluated two sets of speakers for each model: one composed of speakers included in the
train set (Seen), and another composed of those that were held out (Unseen). We used 11 seen and
unseen speakers for VCTK and 10 seen and unseen speakers for LibriSpeech (Appendix D). For each
speaker, we randomly chose one utterance with duration of about 5 seconds to use to compute the
speaker embedding (see Appendix C). Each phrase was synthesized for each speaker, for a total of
about 1,000 synthesized utterances per evaluation. Each sample was rated by a single rater, and each
evaluation was conducted independently: the outputs of different models were not compared directly.
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Table 2: Speaker similarity Mean Opinion Score (MOS) with 95% confidence intervals.

System Speaker Set VCTK LibriSpeech

Ground truth Same speaker 4.67± 0.04 4.33± 0.08

Ground truth Same gender 2.25± 0.07 1.83± 0.07

Ground truth Different gender 1.15± 0.04 1.04± 0.03

Embedding table Seen 4.17 ± 0.06 3.70± 0.08

Proposed model Seen 4.22 ± 0.06 3.28± 0.08

Proposed model Unseen 3.28± 0.07 3.03± 0.09

Results are shown in Table 1, comparing the proposed model to baseline multispeaker models
that utilize a lookup table of speaker embeddings similar to [8, 13], but otherwise have identical
architectures to the proposed synthesizer network. The proposed model achieved about 4.0 MOS in
all datasets, with the VCTK model obtaining a MOS about 0.2 points higher than the LibriSpeech
model when evaluated on seen speakers. This is the consequence of two drawbacks of the LibriSpeech
dataset: (i) the lack of punctuation in transcripts, which makes it difficult for the model to learn to
pause naturally, and (ii) the higher level of background noise compared to VCTK, some of which the
synthesizer has learned to reproduce, despite denoising the training targets as described above.

Most importantly, the audio generated by our model for unseen speakers is deemed to be at least as
natural as that generated for seen speakers. Surprisingly, the MOS on unseen speakers is higher than
that of seen speakers, by as much as 0.2 points on LibriSpeech. This is a consequence of the randomly
selected reference utterance for each speaker, which sometimes contains uneven and non-neutral
prosody. In informal listening tests we found that the prosody of the synthesized speech sometimes
mimics that of the reference, similar to [16]. This effect is larger on LibriSpeech, which contains
more varied prosody. This suggests that additional care must be taken to disentangle speaker identity
from prosody within the synthesis network, perhaps by integrating a prosody encoder as in [16, 24],
or by training on randomly paired reference and target utterances from the same speaker.

3.2 Speaker similarity

To evaluate how well the synthesized speech matches that from the target speaker, we paired each
synthesized utterance with a randomly selected ground truth utterance from the same speaker. Each
pair is rated by one rater with the following instructions: “You should not judge the content, grammar,
or audio quality of the sentences; instead, just focus on the similarity of the speakers to one another.”

Results are shown in Table 2. The scores for the VCTK model tend to be higher than those for
LibriSpeech, reflecting the cleaner nature of the dataset. This is also evident in the higher ground truth
baselines on VCTK. For seen speakers on VCTK, the proposed model performs about as well as the
baseline which uses an embedding lookup table for speaker conditioning. However, on LibriSpeech,
the proposed model obtained a lower similarity MOS than the baseline, which is likely due to the
wider degree of within-speaker variation (Appendix B), and background noise level in the dataset.

On unseen speakers, the proposed model obtains lower similarity between ground truth and synthe-
sized speech. On VCTK, the similarity score of 3.28 is between “moderately similar” and “very
similar” on the evaluation scale. Informally, it is clear that the proposed model is able to transfer the
broad strokes of the speaker characteristics for unseen speakers, clearly reflecting the correct gender,
pitch, and formant ranges (as also visualized in Figure 2). But the significantly reduced similarity
scores on unseen speakers suggests that some nuances, e.g. related to characteristic prosody, are lost.

The speaker encoder is trained only on North American accented speech. As a result, accent mismatch
constrains our performance on speaker similarity on VCTK since the rater instructions did not specify
how to judge accents, so raters may consider a pair to be from different speakers if the accents do not
match. Indeed, examination of rater comments shows that our model sometimes produced a different
accent than the ground truth, which led to lower scores. However, a few raters commented that the
tone and inflection of the voices sounded very similar despite differences in accent.

As an initial evaluation of the ability to generalize to out of domain speakers, we used synthesizers
trained on VCTK and LibriSpeech to synthesize speakers from the other dataset. We only varied the
train set of the synthesizer and vocoder networks; both models used an identical speaker encoder. As
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Table 3: Cross-dataset evaluation on naturalness and speaker similarity for unseen speakers.

Synthesizer Training Set Testing Set Naturalness Similarity

VCTK LibriSpeech 4.28± 0.05 1.82± 0.08

LibriSpeech VCTK 4.01± 0.06 2.77± 0.08

Table 4: Speaker verification EERs of different synthesizers on unseen speakers.

Synthesizer Training Set Training Speakers SV-EER on VCTK SV-EER on LibriSpeech

Ground truth – 1.53% 0.93%
VCTK 98 10.46% 29.19%

LibriSpeech 1.2K 6.26% 5.08%

shown in Table 3, the models were able to generate speech with the same degree of naturalness as
on unseen, but in-domain, speakers shown in Table 1. However, the LibriSpeech model synthesized
VCTK speakers with significantly higher speaker similarity than the VCTK model is able to synthesize
LibriSpeech speakers. The better generalization of the LibriSpeech model suggests that training the
synthesizer on only 100 speakers is insufficient to enable high quality speaker transfer.

3.3 Speaker verification

As an objective metric of the degree of speaker similarity between synthesized and ground truth audio
for unseen speakers, we evaluated the ability of a limited speaker verification system to distinguish
synthetic from real speech. We trained a new eval-only speaker encoder with the same network
topology as Section 2.1, but using a different training set of 28M utterances from 113K speakers.
Using a different model for evaluation ensured that metrics were not only valid on a specific speaker
embedding space. We enroll the voices of 21 real speakers: 11 speakers from VCTK, and 10 from
LibriSpeech, and score synthesized waveforms against the set of enrolled speakers. All enrollment
and verification speakers are unseen during synthesizer training. Speaker verification equal error rates
(SV-EERs) are estimated by pairing each test utterance with each enrollment speaker. We synthesized
100 test utterances for each speaker, so 21,000 or 23,100 trials were performed for each evaluation.

As shown in Table 4, as long as the synthesizer was trained on a sufficiently large set of speakers,
i.e. on LibriSpeech, the synthesized speech is typically most similar to the ground truth voices. The
LibriSpeech synthesizer obtains similar EERs of 5-6% using reference speakers from both datasets,
whereas the one trained on VCTK performs much worse, especially on out-of-domain LibriSpeech
speakers. These results are consistent with the subjective evaluation in Table 3.

To measure the difficulty of discriminating between real and synthetic speech for the same speaker, we
performed an additional evaluation with an expanded set of enrolled speakers including 10 synthetic
versions of the 10 real LibriSpeech speakers. On this 20 voice discrimination task we obtain an
EER of 2.86%, demonstrating that, while the synthetic speech tends to be close to the target speaker
(cosine similarity > 0.6, and as in Table 4), it is nearly always even closer to other synthetic utterances
for the same speaker (similarity > 0.7). From this we can conclude that the proposed model can
generate speech that resembles the target speaker, but not well enough to be confusable with a real
speaker.

3.4 Speaker embedding space

Visualizing the speaker embedding space further contextualizes the quantitive results described in
Section 3.2 and 3.3. As shown in Figure 3, different speakers are well separated from each other in
the speaker embedding space. The PCA visualization (left) shows that synthesized utterances tend
to lie very close to real speech from the same speaker in the embedding space. However, synthetic
utterances are still easily distinguishable from the real human speech as demonstrated by the t-SNE
visualization (right) where utterances from each synthetic speaker form a distinct cluster adjacent to a
cluster of real utterances from the corresponding speaker.
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Figure 3: Visualization of speaker embeddings extracted from LibriSpeech utterances. Each color
corresponds to a different speaker. Real and synthetic utterances appear nearby when they are from
the same speaker, however real and synthetic utterances consistently form distinct clusters.

Table 5: Performance using speaker encoders (SEs) trained on different datasets. Synthesizers are all
trained on LibriSpeech Clean and evaluated on held out speakers. LS: LibriSpeech, VC: VoxCeleb.

SE Training Set Speakers Embedding Dim Naturalness Similarity SV-EER

LS-Clean 1.2K 64 3.73± 0.06 2.23± 0.08 16.60%
LS-Other 1.2K 64 3.60± 0.06 2.27± 0.09 15.32%

LS-Other + VC 2.4K 256 3.83± 0.06 2.43± 0.09 11.95%
LS-Other + VC + VC2 8.4K 256 3.82± 0.06 2.54± 0.09 10.14%

Internal 18K 256 4.12± 0.05 3.03± 0.09 5.08%

Speakers appear to be well separated by gender in both the PCA and t-SNE visualizations, with
all female speakers appearing on the left, and all male speakers appearing on the right. This is an
indication that the speaker encoder has learned a reasonable representation of speaker space.

3.5 Number of speaker encoder training speakers

It is likely that the ability of the proposed model to generalize well across a wide variety of speakers
is based on the quality of the representation learned by the speaker encoder. We therefore explored
the effect of the speaker encoder training set on synthesis quality. We made use of three additional
training sets: (1) LibriSpeech Other, which contains 461 hours of speech from a set of 1,166 speakers
disjoint from those in the clean subsets, (2) VoxCeleb [11], and (3) VoxCeleb2 [6] which contain
139K utterances from 1,211 speakers, and 1.09M utterances from 5,994 speakers, respectively.

Table 5 compares the performance of the proposed model as a function of the number of speakers
used to train the speaker encoder. This measures the importance of speaker diversity when training
the speaker encoder. To avoid overfitting, the speaker encoders trained on small datasets (top two
rows) use a smaller network architecture (256-dim LSTM cells with 64-dim projections) and output
64 dimensional speaker embeddings.

We first evaluate the speaker encoder trained on LibriSpeech Clean and Other sets, each of which
contain a similar number of speakers. In Clean, the speaker encoder and synthesizer are trained on
the same data, a baseline similar to the non-fine tuned speaker encoder from [2], except that it is
trained discriminatively as in [10]. This matched condition gives a slightly better naturalness and a
similar similarity score. As the number of training speakers increases, both naturalness and similarity
improve significantly. The objective EER results also improve alongside the subjective evaluations.

These results have an important implication for multispeaker TTS training. The data requirement for
the speaker encoder is much cheaper than full TTS training since no transcripts are necessary, and the
audio quality can be lower than for TTS training. We have shown that it is possible to synthesize very
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Table 6: Speech from fictitious speakers compared to their nearest neighbors in the train sets.
Synthesizer was trained on LS Clean. Speaker Encoder was trained on LS-Other + VC + VC2.

Nearest neighbors in Cosine similarity SV-EER Naturalness MOS

Synthesizer train set 0.222 56.77%
3.65± 0.06

Speaker Encoder train set 0.245 38.54%

natural TTS by combining a speaker encoder network trained on large amounts of untranscribed data
with a TTS network trained on a smaller set of high quality data.

3.6 Fictitious speakers

Bypassing the speaker encoder network and conditioning the synthesizer on random points in the
speaker embedding space results in speech from fictitious speakers which are not present in the train
or test sets of either the synthesizer or the speaker encoder. This is demonstrated in Table 6, which
compares 10 such speakers, generated from uniformly sampled points on the surface of the unit
hypersphere, to their nearest neighbors in the training sets of the component networks. SV-EERs
are computed using the same setup as Section 3.3 after enrolling voices of the 10 nearest neighbors.
Even though these speakers are totally fictitious, the synthesizer and the vocoder are able to generate
audio as natural as for seen or unseen real speakers. The low cosine similarity to the nearest neighbor
training utterances and very high EER indicate that they are indeed distinct from the training speakers.

4 Conclusion

We present a neural network-based system for multispeaker TTS synthesis. The system combines an
independently trained speaker encoder network with a sequence-to-sequence TTS synthesis network
and neural vocoder based on Tacotron 2. By leveraging the knowledge learned by the discriminative
speaker encoder, the synthesizer is able to generate high quality speech not only for speakers seen
during training, but also for speakers never seen before. Through evaluations based on a speaker
verification system as well as subjective listening tests, we demonstrated that the synthesized speech
is reasonably similar to real speech from the target speakers, even on such unseen speakers.

We ran experiments to analyze the impact of the amount of data used to train the different components,
and found that, given sufficient speaker diversity in the synthesizer training set, speaker transfer
quality could be significantly improved by increasing the amount of speaker encoder training data.

Transfer learning is critical to achieving these results. By separating the training of the speaker
encoder and the synthesizer, the system significantly lowers the requirements for multispeaker
TTS training data. It requires neither speaker identity labels for the synthesizer training data, nor
high quality clean speech or transcripts for the speaker encoder training data. In addition, training
the components independently significantly simplifies the training configuration of the synthesizer
network compared to [10] since it does not require additional triplet or contrastive losses. However,
modeling speaker variation using a low dimensional vector limits the ability to leverage large amounts
of reference speech. Improving speaker similarity given more than a few seconds of reference speech
requires a model adaptation approach as in [2], and more recently in [5].

Finally, we demonstrate that the model is able to generate realistic speech from fictitious speakers
that are dissimilar from the training set, implying that the model has learned to utilize a realistic
representation of the space of speaker variation.

The proposed model does not attain human-level naturalness, despite the use of a WaveNet vocoder
(along with its very high inference cost), in contrast to the single speaker results from [15]. This
is a consequence of the additional difficulty of generating speech for a variety of speakers given
significantly less data per speaker, as well as the use of datasets with lower data quality. An additional
limitation lies in the model’s inability to transfer accents. Given sufficient training data, this could be
addressed by conditioning the synthesizer on independent speaker and accent embeddings. Finally,
we note that the model is also not able to completely isolate the speaker voice from the prosody of
the reference audio, a similar trend to that observed in [16].
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