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ABSTRACT

We consider the use of transfer learning, via the use of deep

Convolutional Neural Networks (CNN) for the image classi-

fication problem posed within the context of X-ray baggage

security screening. The use of a deep multi-layer CNN ap-

proach, traditionally requires large amounts of training data,

in order to facilitate construction of a complex complete end-

to-end feature extraction, representation and classification

process. Within the context of X-ray security screening, lim-

ited availability of training for particular items of interest can

thus pose a problem. To overcome this issue, we employ

a transfer learning paradigm such that a pre-trained CNN,

primarily trained for generalized image classification tasks

where sufficient training data exists, can be specifically op-

timized as a later secondary process that targets specific this

application domain. For the classical handgun detection prob-

lem we achieve 98.92% detection accuracy outperforming

prior work in the field and furthermore extend our evaluation

to a multiple object classification task within this context.

Index Terms— Convolutional neural networks, transfer

learning, image classification, baggage X - ray security

1. INTRODUCTION

X-ray baggage security screening is widely used to main-

tain aviation and transport security, itself posing a signifi-

cant image-based screening task for human operators review-

ing compact, cluttered and highly varying baggage contents

within limited time-scales. Within both increased passenger

throughput in the global travel network and an increasing fo-

cus on wider aspects of extended border security (e.g. freight,

shipping postal), this posed both a challenging and timely au-

tomated image classification task.

Fig. 1: Exemplar X-ray baggage imagery containing firearms.

Prior work on object detection in x-ray baggage imagery

is limited. Aviation security screening systems that are avail-

able commercially include X-ray, CT and computer aided de-

tection (to aid human screeners) that performs enhancement,

segmentation and classification of baggage objects [1]. Hand-

gun detection is investigated in [2] by training fuzzy k-NN

classifier with shape context descriptor [3] and Zernike mo-

ments [4], but with limited evaluation over only 15 image ex-

amples.

The work of [5] considers the concept of bag of visual

words (BoW) within X-ray baggage imagery using Support

Vector Machine (SVM) classification with several feature rep-

resentations (DoG, DoG+SIFT, DoG+Harris) achieving per-

formance of 0.7, 0.29, 0.57 recall, precision and average pre-

cision, respectively. Turcsany et al. [6] followed a similar ap-

proach and extended the work presented in [5]. Using a bag of

visual words with SURF feature descriptors and SVM classi-

fier together with a modified version of codebook generation

yields 99.07% true positive, and 4.31% false positive rates.

BoW approach with feature descriptor and SVM classifica-

tion is also used in [7] for the classification of single and dual

view X-ray images. Best average precisions achieved for guns

and laptops are 94.6% and 98.2% [7]. Inspired by implicit

shape models, Mery [8] proposes a method that automatically

detects X-ray baggage objects. By using visual vocabulary,

occurrence structures and 200 X-ray bag images 99% and

0.2% true positive and false positive rates are achieved for

handgun detection.

Baştan thoroughly reviews the current literature in his lat-

est work [9], on which he studies applicability and efficiency

of sparse local features on object detection in baggage im-

agery. This work also investigates how material information

given in X-ray imagery and multi-view X-ray imaging affect

detection performance, concluding that possible future work

may use convolutional neural networks.

Motivated by [6], and current trends in convolutional neu-

ral networks (CNN), we propose a method that accurately

classifies baggage objects by type. Unlike [6], in which the

classical bag of visual words (BoW) is used with Speeded-

Up Robust Features (SURF) and Support Vector Machine

(SVM) classification, we employ a CNN approach for the

entire feature extraction, representation and classification

process. More specifically, with the use of a transfer learn-

ing [10] approach, we optimize the CNN structure designed

by Krizhevsky et. al. [11] by fine-tuning its convolutional

and fully-connected layers for the full feature to classifica-

tion pipeline within this problem domain. To the best of

our knowledge, this is the first study introducing deep con-

volutional networks[11, 12] to the X-ray baggage screening



problem.

2. CLASSIFICATION

Automated threat screening task in X-ray baggage imagery

can be considered as a classical image classification prob-

lem. Here we address this task using the approach of transfer

learning and convolutional neural networks based on the prior

work of [10, 13, 11, 12].

2.1. Convolutional Neural Networks

Deep convolutional neural networks can be considered mod-

ernized version of multi layer perceptrons. They have been

widely used in diverse fields such as speech recognition [14]

and natural language processing [15], also becoming state of

the art within computer vision for challenging tasks such as

image classification [11], object detection [16] and segmen-

tation [17]. Recent developments and affordability of GPUs

and accessibility of large data sets have provided researchers

with further insight into larger and more complex (deeper)

network models [11]. Unlike the traditional neural networks

with conventionally one or two hidden layers, CNN can in-

clude many more hidden layers [18, 19, 12]. Designing a

CNN with certain number of layers can be application, data

or designer dependent. Modern CNN include the following

layers with varying characteristics: convolutional layers (fea-

ture extraction), fully connected layer (intermediate represen-

tation), pooling layer (dimensionality reduction) and non lin-

ear operators (sigmoid, hyperbolic functions and rectified lin-

ear units).

A key differentiator is that CNN is based on two main

concepts named local receptive fields and shared weights

[20]. Local receptive fields are small regions inside the image

which provide local information with region size defined as a

variable parameter. Similar to the notion of sliding window,

local receptive fields are spread across the image such that

each forms a neuron in the following hidden layer. Using

shared weights and biases for neurons in hidden layers of

CNN is another unique notion that provides many advan-

tages. First of all, since each neuron in a hidden layer uses

same weight and bias, hidden layers have distinct feature

characteristics. In [13], for instance, it has been shown that

first convolutional layers behave like Gabor filters. Having

many convolutional layers gives one a very broad feature

matrix. Another advantage of using shared weights is that

total number of parameter used rapidly decreases, which

gives us not only faster training times but also the opportu-

nity to construct more complex (deeper) network structures.

Even though using shared weights significantly decreases the

number of parameters present, these still considerably ex-

ceed those of more traditional machine learning approaches

(requiring specialist training regimes: [11]).

This high-level of parametrization, and hence representa-

tional capacity, make CNN susceptible to over-fitting in the

traditional sense. To overcome this issue, a number of tech-

niques are employed to ensure generality of the learned pa-

rameterization of the target problem. Within the network,

convolutional layers are usually followed by pooling layers

which down-samples the current representation (image) and

hence reduces the number of parameters carried forward in-

addition to improving overall computational efficiency. Fur-

thermore the use of dropout, whereby hidden neurons are ran-

domly removed during the training process, is used to avoid

over-fitting such that performance dependence on individual

network elements is reduced in favor of collective error reduc-

tion and representational responsibility for the problem space.

In addition, with the use of the generalized technique called

transfer learning, initial CNN parameterization (training) to-

wards a generalized object classification task can then be fur-

ther optimized (fine tuned) towards a specific sub-problem

with related domain characteristics.

2.2. Transfer Learning

Modern CNN approach typically include varying number of

layers (3-22) within their structure, leading to a human-like

measurable performance in image classification tasks [21].

Presently, such networks are designed manually with the re-

sulting parametrization of the networks performing training

using a stochastic gradient descent approach with varying

parameters such as batch size, weight decay, momentum and

learning rate over a huge data set (typically 106 in size).

Current state of the art CNN models as such designed by

Krizhevsky et. al. [11], Zeiler et. al. [22], Szegedy et. al.

[12], Simonyan et. al. [19] are trained on a huge dataset such

as ImageNet [23] which contains approximately a million of

data samples and 1000 distinct class labels. However, the

limited applicability of such training and parameter optimiza-

tion techniques to problems where such large datasets are not

available gives rise to the concept of transfer learning [16, 24].

The work of [13] illustrated that that each hidden layer in a

CNN has distinct feature representation related characteris-

tics among of which the lower layers provide general features

extraction capabilities (akin to Gabor filters and alike), whilst

higher layers carry information that is increasingly more spe-

cific to the original classification task. This finding facilitates

the verbatim re-use of the generalized feature extraction and

representation of the lower layers in a CNN, whilst higher lay-

ers are fine tuned towards secondary problem domains with

related characteristics to the original. Using this paradigm,

we can leverage the a priori CNN parametrization of an ex-

isting fully trained network, on a generic 1000+ object class

problem [21], as a starting point for optimization towards to

the specific problem domain of limited object class detec-

tion within X-ray images. Instead of designing a new CNN

with random parameter initialization we instead adopt a pre-

trained CNN and fine tune its parameterization towards our

specific classification domain. Specifically, we make use of

the CNN configuration designed by Krizhevsky et al. [11],

having 5 convolutional layers, 3 fully-connected layer with

60 million parameters, 650,000 neurons, and trained over the



ImageNet dataset on an image classification problem in the

ILSVRC-2012 competition (denoted as AlexNet). We also

employ the network structure proposed by Szegedy et al.

[12], which won the ILSVRC 2014 competition (denoted as

GoogLeNet). The network is designed using many more lay-

ers (22) with 12 times fewer network parameters compared

to AlexNet. From this point we then perform fine-tuning ap-

proach to the networks to train over the X-ray baggage dataset

using propagation algorithm with stochastic gradient descent

method. To observe the effect of input dataset dissimilarity,

we freeze the parameters of certain layers, meaning that the

pre-trained parameters are used for learning the new dataset

instead of being updated during training. Training and testing

are performed via the use of Caffe [25], a deep learning tool

designed and developed by the Berkley Vision and Learning

Center.

2.3. Application to X-ray Security Imagery

To investigate the applicability of CNN transfer learning in

object classification X-ray baggage imagery, we address two

specific target problems:- a) a two class firearm detection

problem (i.e. gun Vs. no gun) akin to that of the prior work

of [6] and; b) a multiple class X-ray object classification

problem (6 classes: firearm, firearm-components, knives, ce-

ramic knives, camera and laptop). Our data-set (6997 X-ray

images) are constructed using single conventional X-ray im-

agery with associated false color materials mapping (from

dual energy, [26] see Figure 1 and 2). To generate a dataset

for firearm detection, we manually crop baggage objects, and

label each accordingly (e.g. Figure 2 ) - on the assumption

an in-service detection solution would perform scanning win-

dow search through the whole baggage image. In addition to

manual cropping, we also generate a set of negative images

by randomly selecting image patches from a large corpus of

baggage images that do not contain any target objects. Fol-

lowing these approaches, as shown in Figure 2, we create

a dataset for firearm detection with 17,419 samples (3924

positive; 13,495 negative). For the multiple class problem we

separate firearms and firearm sub-components into two dis-

tinct classes. Similarly, regular knives and ceramic knives are

considered as two distinct objects. Following the same proce-

dure we generate a dataset with 9123 samples (firearm: 2847,

firearm components: 1060, knives: 2468 ceramic knives:

1416, camera: 432, laptop: 900).

Evaluation of our proposed approach is performed against

the prior SVM-driven work of Turcsany et. al. [6] and the

use of Random Forest classification [27] within a similar bag

of visual words framework. SVM is trained using grid search

and k-fold cross validation routine optimizing parameters cost

C, where log2C ∈ {−5, .., 15} and kernel γ, where log2γ ∈
{−15, .., 3} for bag of visual words of vocabulary sizes 500,

1000, 1500 and 2000 with the use of LIBSVM [28]. The

SVM classifier is trained using RBF Kernels with C = 8 and

γ = 8. Similar to the approach followed within the SVM

Fig. 2: Exemplar X-ray baggage image (A) with extracted data set

regions for camera (B) and firearm (C) objects.

Fig. 3: Bag of visual words approach for multi-class problem. Type

of baggage objects and the number of samples in our dataset is as

follows: (A) Guns, (B) Gun Components, (C) Knives, (D) Ceramic

Knives, (E) Cameras, (F) Laptops

framework, parameter grid search is performed for the best

parameters of random forest of up to 1000 trees, adjusting

sample count {2, .., 15} and depth {5, .., 30} for BoW vocab-

ularies of 500, 1000, 1500 and 2000 feature words. Optimal

performance was achieved with a random forest configuration

of 1000 trees with a maximal depth of 15 and maximal sample

count of 18.

3. EVALUATION

The performance of the proposed method and the prior work

is evaluated by comparing the following metrics: True Pos-

itive (TP), True Negative (TN), False Positive (FP), False

Negative (FN), Precision (PRE), Recall (REC) and Accuracy

(ACC).

Results for the two class problem is given in Tables 1 and

2, each of which are divided into two sections: - first sec-

tion lists the performance of the CNN, notated as AlexNetab
,

meaning that the network is fine-tuned from layer a to layer

b, and rest of the layers are frozen. This means, for instance,

AlexNet4−8 is trained by fine-tuning the layers {4, 5, 6, 7, 8}
and freezing the layers {1, 2, 3} (i.e. remain unchanged from

[11]).

Table 1 shows the performance results of gun detection

based on the training set. We see that true positives and true

negatives have a general trend to decrease as the number of

fine-tuned layers reduce. False positives and false negatives

concordantly increases. Likewise, freezing more layers low-

ers the accuracy of the models. A conclusion can be reached

from these results that fine tuning higher level layers and

freezing lower ones have detrimental impact on the perfor-

mance of the CNN models. This stems from the fact that

features extracted from lower layers of the network are more



general, while the higher layers provide more specific infor-

mation in regards to the training data. SVM has a competitive

true positive rate of 97.43. However, suffering from high false

positives of 14.93% results in poor performance compared

to CNN. Similar to SVM, random forest performs well on

precision and recall, yet high false positives rate cause worse

accuracy compared to the rest of the models.

TP% TN% FP% FN% PRE REC ACC

AlexNet1−8 97.56 99.31 0.68 2.43 0.98 0.98 0.99

AlexNet2−8 98.53 97.60 2.40 1.47 0.83 0.99 0.98

AlexNet3−8 98.62 99.79 0.21 1.38 0.99 0.99 0.99

AlexNet4−8 97.62 98.79 1.21 1.38 0.99 0.98 0.98

AlexNet5−8 97.47 99.72 0.28 2.53 0.99 0.97 0.98

AlexNet6−8 96.21 99.27 0.73 3.79 0.98 0.96 0.99

AlexNet7−8 94.49 96.35 3.65 5.51 0.75 0.94 0.96

AlexNet7−8 95.64 99.07 0.93 4.36 0.97 0.96 0.98

AlexNet8 93.58 97.96 2.03 6.42 0.93 0.94 0.97

SURF +RF 94.10 65.44 34.56 5.90 0.90 0.94 0.87

SURF + SVM [6] 97.43 85.07 14.93 2.57 0.96 0.97 0.95

Table 1: Performance for the two class problem (Guns vs Non-

Guns) using training set.

Table 2 shows the results of the models tested over the un-

seen dataset containing distinct type of objects that are never

trained on the models. We see correlative performance to Ta-

ble 1 such that as the number of fine-tuned layers decreases,

performance of the CNN is adversely affected. SVM shows

TP of 85.81% with a relatively high false positive rate of

11.76%. Even though SVM has the highest precision, its ac-

curacy performs worse than any CNN. Furthermore, all of the

CNN solutions consistently offer a lower FP and FN rate than

the SVM or RF approaches (Table 1 - 2).

TP% TN% FP% FN% PRE REC ACC

AlexNet1−8 99.26 95.92 4.08 0.74 0.74 0.99 0.96

AlexNet2−8 98.53 97.60 2.40 1.47 0.83 0.99 0.98

AlexNet3−8 96.32 97.81 2.19 3.68 0.84 0.96 0.98

AlexNet4−8 95.59 97.04 2.96 4.41 0.79 0.96 0.97

AlexNet5−8 98.16 95.32 4.68 1.84 0.71 0.98 0.96

AlexNet6−8 96.32 94.85 5.15 3.68 0.69 0.96 0.95

AlexNet7−8 94.49 96.35 3.65 5.51 0.75 0.95 0.96

AlexNet8 95.22 95.79 4.21 4.78 0.73 0.95 0.96

SURF +RF 80.74 67.28 32.72 19.26 0.95 0.81 0.79

SURF + SVM [6] 85.81 88.24 11.76 14.19 0.98 0.86 0.86

Table 2: Performance for the two class problem using test set.

Second set of experiments is based on the classification

of multiple baggage objects, a more complex six class object

problem. Here the lesser performing SVM and RF models are

not considered (Table 1 - 2), in favor of the CNN approach.

Instead, we only fine-tune two CNN structures by Krizhevsky

et. al. (AlexNet) [11] and Szegedy et. al. (GoogLeNet)

[12] to evaluate the feasibility of CNN for this problem do-

main. Performance is evaluated based on mean average pre-

cision (mAP) [29]. Figure 4 depicts per-class accuracy ob-

tained via the use of GoogLeNet tested on randomly cho-

sen dataset. Table 3 shows the overall performances of each

of the model. Both show strong results for the multi class

problem. AlexNet performs best when classifying laptops

(99.70%). On the other hand, classifying gun components is

a challenging task for AlexNet as it performs relatively worse

(89.64%), stemming from the high visual overlap between

classes. GoogLeNet shows strong performance even for the

classes similar to each other (Gun / Gun Components, Knives

/ Ceramic Knives), and overall achieves superior mAP.

Fig. 4: Normalized confusion matrix of the fine-tuned GoogLeNet

model tested on unseen test dataset.

Camera Laptop Gun Gun Component Knives Ceramic Knives mAP

AlexNet 97.23 99.70 97.30 89.64 93.19 94.50 95.26

GoogLeNet 97.14 92.56 99.50 97.70 95.50 98.40 98.40

Table 3: Results for the multi-class problem (average precision %).

4. CONCLUSIONS

This work introduces a technique for the classification of X-

ray baggage images using state of the art convolutional neural

networks. CNN with transfer learning achieves superior

performance compared to prior work [6, 7]. The proposed

fine-tuned method achieves 99.26% True Positive (TP) and

95.92% True Negative (TN) with False Positive (FP) and

False Negative (FN) rates of 4.08%, 0.74%, respectively.

This offers a significant improvement over the prior work [6]

which yields TP, TN, FP FN of 85.81%, 88.24%, 11.76%,

14.19% classification. For the classification of multiple X-ray

baggage objects, CNN based approaches achieve 95.26% and

98.40% mean average precision rates, clearly demonstrating

the applicability of CNN within X-ray baggage imagery.
Future work will consider broader comparison between

CNN and hand designed feature descriptors to further investi-
gate the applicability of CNN into this problem domain. Ac-
cumulating larger datasets containing various baggage objects
will lead to much more realistic scheme for a real time appli-
cation. Future work will also investigate localization of X-ray
baggage objects within the image.
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