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Abstract The purpose of this study is to evaluate transfer

learning with deep convolutional neural networks for the clas-

sification of abdominal ultrasound images. Grayscale images

from 185 consecutive clinical abdominal ultrasound studies

were categorized into 11 categories based on the text annota-

tion specified by the technologist for the image. Cropped im-

ages were rescaled to 256 × 256 resolution and randomized,

with 4094 images from 136 studies constituting the training

set, and 1423 images from 49 studies constituting the test set.

The fully connected layers of two convolutional neural net-

works based on CaffeNet and VGGNet, previously trained on

the 2012 Large Scale Visual Recognition Challenge data set,

were retrained on the training set. Weights in the

convolutional layers of each network were frozen to serve as

fixed feature extractors. Accuracy on the test set was evaluated

for each network. A radiologist experienced in abdominal

ultrasound also independently classified the images in the test

set into the same 11 categories. The CaffeNet network classi-

fied 77.3% of the test set images accurately (1100/1423 im-

ages), with a top-2 accuracy of 90.4% (1287/1423 images).

The larger VGGNet network classified 77.9% of the test set

accurately (1109/1423 images), with a top-2 accuracy of

VGGNet was 89.7% (1276/1423 images). The radiologist

classified 71.7% of the test set images correctly (1020/1423

images). The differences in classification accuracies between

both neural networks and the radiologist were statistically

significant (p < 0.001). The results demonstrate that transfer

learning with convolutional neural networks may be used to

construct effective classifiers for abdominal ultrasound

images.

Keywords Machine learning . Classification . Artificial

neural networks . Digital image processing . Deep learning

Introduction

Classification of images by anatomic or pathologic features is

a fundamental cognitive task in diagnostic radiology.

Although computers are currently far from being able to re-

produce the full chain of reasoning required for medical image

interpretation, the automation of basic image classification is a

focus of research in computer vision, a multidisciplinary field

that incorporates ideas from image processing, machine learn-

ing, and neuroscience. A digital image can be regarded as a

matrix of numbers encoding the brightness and color of indi-

vidual pixels. An image classification algorithm typically re-

duces this matrix into a simpler vector of image features such

as edges, curves, blobs, and textures. These features in turn

can be combined to encode larger scale features such as the

identity, shape, orientation, and environment of objects. Until

recently, improvements in automated image classification re-

lied heavily on engineering of hand-crafted image features for

discriminating the image categories of interest.

A branch of machine learning termed Bdeep learning^ has

recently provided breakthrough performance improvements

in diverse tasks including image classification, object detec-

tion, speech recognition, natural language processing, and

game playing [1–4]. A deep learning system most commonly

uses a multilayer artificial neural network, an arrangement of

mathematically interconnected nodes inspired by biological
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neural networks. Neural networks have a long history in ma-

chine learning, including various applications in radiology,

e.g., [5–7]. However, Bdeep^ neural networks feature hierar-

chical multilayer architectures allowing them to learn not only

the mappings of data features to categories but also the fea-

tures themselves [1]. For effective training, these systems have

benefited from the recent availability of large amounts of la-

beled input data as well as improvements in computing power.

For image classification, convolutional neural networks

have proven particularly effective in processing raw pixel da-

ta. These networks employ a hierarchical topology of connec-

tions inspired by biological visual systems, whereby low level

nodes in the network process a spatially limited grid of pixels,

and higher level nodes encode increasingly complex features

by combining simpler features from lower levels. Weights are

shared among nodes in the same layer in a manner allowing

recognition of the same image motif in any number of spatial

positions. Convolutional neural networks of increasing depth

and complexity have been used to advance the state of the art

in image classification. This has been most visibly demon-

strated by recent winning entries in the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [8–10], an

annual competition in object recognition based on a dataset

of over a million images in hundreds of object categories [11].

As convolutional neural networks have become widely

used in image classification, there has been increasing interest

in evaluating the use of these networks in medical imaging [4,

12–16]. However, slow adoption of convolutional neural net-

works in radiology is partly due to the relative lack of large

labeled medical image data sets for training and testing. In this

work, we employ transfer learning [13, 14, 17, 18] to partially

overcome the problem of relatively small medical image

datasets. Specifically, we re-trained two large convolutional

neural networks, originally trained to classify color photo-

graphs for the ImageNet Large Scale Visual Recognition

Challenge, to classify a set of clinical greyscale abdominal

ultrasound images. We hypothesize that the pre-trained

weights of these convolutional neural networks can serve as

an effective image recognition baseline for classification of

ultrasound images.

Materials and Methods

Institutional Review Board approval was obtained for the ret-

rospective data collection and analysis in this study.

Ultrasound Images

A total of 9298 grayscale images from 185 consecutive clin-

ical abdominal ultrasound studies performed on distinct pa-

tients (108 male and 77 female) from August to December

2015 were retrospectively obtained from the picture archival

and communications system (PACS). Ninety-eight studies

were obtained from a Philips EPIQ 7G ultrasound scanner,

and 87 studies from a Toshiba Aplio XG scanner. Patient ages

ranged from 20 to 78 years (mean ± SD, 53 ± 13 years). The

studies were performed for a variety of indications, but many

(101 studies) were performed in patients with end-stage renal

disease, for pre-transplant screening (Table 1).

All images were obtained using curved array transducers.

The images were categorized into 11 categories based on the

text annotation specified by the technologist for the image.

Images that did not fall into any of the 11 categories were

excluded. In addition, images were excluded that employed

color or spectral Doppler, or contained any superimposed an-

notations or measurements. Finally, images were excluded

which were thought to have very limited or no recognizable

anatomy of the labeled target organ. The classifications and

exclusions were performed and reviewed by an abdominal

radiologist with 7 years of post-fellowship clinical experience.

A total of 5518 images remained, with category statistics giv-

en in Table 2.

Each image was cropped to a central square for use in the

training and test sets in order to exclude surrounding text and

graphics annotations. The sizes of the crop squares were de-

termined by the resolution of the images for each ultrasound

scanner, and the maximum square that could be used without

including surrounding text or graphical annotations.

Specifically, the crop squares measured 600 × 600 pixels for

the Philips scanner images (from 1024 × 768 pixel source im-

ages) and 372 × 372 pixels for the Toshiba scanner images

(from 716 × 537 pixel source images). Each grayscale image

was then downsampled and saved in a 256 × 256 resolution in

24-bit RGB JPEG format to fit the size of the 3-channel input

layers of the neural networks.

The 185 studies were randomized with 4094 images from

136 studies constituting the training set, and 1423 images

from 49 studies constituting the test set. Images were grouped

by study in the randomization in order to keep potentially

correlated images together. As shown in Table 2, the category

distributions for the training and test set images were similar,

Table 1 Clinical indications for the abdominal ultrasound studies used

for training and testing the neural networks

Indication Number of studies

End stage renal disease (pre-transplant) 101

Elevated liver function tests 22

Tumor evaluation/surveillance 20

Abdominal pain 14

Organ size assessment 5

Other 23

Total 185

J Digit Imaging (2017) 30:234–243 235



reflecting the category distribution for images in a typical

abdominal ultrasound study.

Neural Networks

For training and testing the neural networks, we used the open

source deep learning framework Caffe [19]. All training and

testing was performed on a Windows 64-bit desktop personal

computer with an Intel Core i7 4770 central processing unit

(CPU), 8 GB random access memory, and no graphical pro-

cessing unit (GPU).

The first neural network architecture we used is CaffeNet

[20], a modified version of the AlexNet winning architecture

used in the ILSVRC 2012 competition [8]. The network con-

sists of 5 convolutional layers (CONV1 to CONV5) followed

by 3 fully connected layers (FC6 to FC8) and a softmax (mul-

tinomial logistic regression) classifier (Fig. 1a). We used pub-

licly available weights for the network [20], trained against the

ILSVRC12 challenge data set. The final fully connected layer

FC8 was replaced with a layer with 11 outputs corresponding

to the 11 image categories, and initialized with random

weights. For training, the weights for the five convolutional

layers were frozen to serve as a feature extractor. We used a

batch size of 256 images for each iteration of training. The

learning rates for the fully connected FC6, FC7, and FC8

layers were fixed at 0.001, 0.001, and 0.01 respectively during

training, allowing learning to occur faster for the final fully

connected layer (FC8). For each image, a training set mean

image was subtracted, and random 227 × 227 pixel crops of

the 256 × 256 pixel input images were used to match the di-

mensions of the input layer (the random crops provide a de-

gree of data augmentation for training).

Training was set to occur over 1000 iterations (62.5 train-

ing epochs), which required approximately 2.5 h. The cross-

entropy loss function for the training batches reached a low

plateau toward the end of training (Fig. 2a). For each test

image, the training set mean image is subtracted, and fixed

central 227 × 227 pixel crops of the 256 × 256 pixel input

images are used in the input layer of the network. Test set

classification required an average of 0.10 s per image.

The second neural network architecture we used is a mod-

ified version of the 16-layer model from the VGG team in the

ILSVRC-2014 competition (denoted as configuration D in

[9]); in our study, we denote it as VGGNet. The network

consists of 13 convolutional layers followed by 3 fully con-

nected layers (FC6 to FC8) and a softmax classifier (Fig. 1b).

We used publicly available weights for the network [21],

trained against the ILSVRC12 challenge data set.

As with the CaffeNet network, the final fully connected

layer FC8 in VGGNet was replaced with a layer with 11

outputs, initialized with random weights. For training, the

weights for the 13 convolutional layers were frozen to

serve as a feature extractor. Due to the larger size and

Table 2 Categories of images in the training and test sets

Category Training set Test set Total images

Liver left longitudinal 482 (11.8%) 191 (13.4%) 673 (12.2%)

Liver left transverse 464 (11.3%) 164 (11.5%) 628 (11.4%)

Liver right longitudinal 531 (13.0%) 171 (12.0%) 702 (12.7%)

Liver right transverse 653 (15.9%) 223 (15.7%) 876 (15.9%)

Spleen 137 (3.3%) 48 (3.4%) 185 (3.4%)

Pancreas 273 (6.7%) 104 (7.3%) 377 (6.8%)

Kidney left longitudinal 183 (4.5%) 65 (4.6%) 248 (4.5%)

Kidney left transverse 318 (7.8%) 99 (7.0%) 417 (7.6%)

Kidney right longitudinal 193 (4.7%) 67 (4.7%) 260 (4.7%)

Kidney right transverse 285 (7.0%) 93 (6.5%) 378 (6.9%)

Gallbladder 576 (14.1%) 198 (13.9%) 774 (14.0%)

Total 4095 1423 5518

Fig. 1 Layer structures of the modified aCaffeNet and bVGGNet neural networks used in the study. Numbers in brackets indicate the number of nodes

within a layer of the neural network. CONV = convolutional layer, FC = fully connected layer
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memory requirements of this model compared to

CaffeNet, we used a batch size of 32 images for each

iteration of training (1/8 the batch size for CaffeNet). To

provide training comparable to CaffeNet, the learning

rates for the fully connected FC6, FC7, and FC8 layers

were fixed at 1/8 the value for the CaffeNet training

(0.000125, 0.000125, and 0.00125, respectively), but for

8 times the number of iterations (8000 iterations, equiva-

lent to 62.5 training epochs given the smaller batch size).

For each image, the training set mean image was

subtracted, and random 224 × 224 pixel crops of the

256 × 256 pixel input images were used to match the input

dimensions of the input layer. Note that we used mean

image subtraction instead of the mean pixel subtraction

used in the original VGGNet description [9], due to the

consistent sector shape of input image data resulting from

the ultrasound curved array transducers.

Training for the 8000 iterations required approximately

27.5 h. The cross-entropy loss function for the training batches

reached a low level toward the end of training, though with

more pronounced oscillations compared to CaffeNet (Fig. 2b).

For each test image, the training set mean image was

subtracted, and fixed central 224 × 224 pixel crops of the

256 × 256 pixel input images were used in the input layer of

Fig. 2 Learning curves for a

CaffeNet and b VGGNet. Loss

curves indicate the training cross-

entropy loss as a function of the

training iteration. The test curves

provide information on the loss

function and classification accu-

racy of the test set during training,

but were not used to optimize

training hyperparameters
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the network. Test set classification required an average of

0.52 s per image.

For both neural networks, the softmax classifier pro-

vides a probability for each of the 11 categories for a

given input image. The category with the highest predict-

ed probability was taken as the classifier prediction for the

image, and we calculated classification accuracy based on

this prediction (top-1 accuracy). We also calculated top-2

accuracy for each network on the test set, using the

highest two probability classes for each image as the clas-

sifier prediction.

Both of the convolutional nets can be regarded as

transforming the input images into 4096-dimensional vec-

tors (the size of the last fully connected layer FC7 before

the classifier). In order to better visualize the classifica-

tion behavior of the networks, we calculated the FC7 vec-

tor representations of the images of the training set, and

reduced them to 50 dimensions using principal compo-

nents analysis (PCA). We then further reduced the dimen-

sionality of these 50-dimensional vectors to two dimen-

sions using t-distributed stochastic neighbor embedding

(t-SNE), a machine learning technique which reduces di-

mensionality while tending to preserve pairwise Euclidean

distances between data points [22]. We used the scikit-

learn open source implementations of both PCA and t-

SNE [23].

Human Classifier

The human classifier for this study was a fellowship-

trained abdominal radiologist with 5 years of post-

fellowship experience, who spends more than 50% of

his clinical time in diagnostic ultrasound, and who is fa-

miliar with the abdominal ultrasound protocol performed

by the technologists in this study. This radiologist had

previously dictated 4 studies from the training set and 1

study from the test set; these ultrasound studies had been

performed and dictated more than 5 months prior to the

classification task required for this study. A custom graph-

ical user interface allowed browsing of classified images

in the training set and shortcut-enabled manual classifica-

tion of the images in the test set. The order of the test set

images was randomized. The total amount of time re-

quired to classify the test set, over several sessions, was

approximately 12 h.

Statistical Analysis

Comparisons between the classification accuracies of the two

neural networks, as well as between the radiologist and each

network, were performed with χ2 tests with a p value of 0.05

or less taken to indicate a statistically significant difference.

The calculations were performed using the R statistical envi-

ronment, version 3.30 [24].

Results

After training, the convolutional neural network based on

CaffeNet classified 99.8% of the training set accurately

(4088/4095 images). The convolutional neural network based

on VGGNet classified 100% of the training set accurately

(4095/4095 images).

On the test set, the Caffenet network classified 77.3% of the

images accurately (1100/1423 images). Considering the top 2

candidate classes for each image (top-2 accuracy), the net-

work’s accuracy is 90.4% (1287/1423 images). By compari-

son, the larger VGGNet network classifies 77.9% of the test

set accurately (1109/1423 images). The top-2 accuracy of

VGGNet was 89.7% (1276/1423 images). The classification

accuracies of the two neural networks were not significantly

different, with χ2 (df = 1) = 0.129, p = 0.719.

Classification accuracies for CaffeNet on images acquired

on the Toshiba scanner versus the Philips scanner were slight-

ly different at 73.8% (432/585 images) and 79.7% (668/838

images), respectively, with χ2 (df = 1) = 6.43, p = 0.011. On

the other hand, classification accuracies for VGGNet on im-

ages acquired on the Toshiba scanner versus the Philips scan-

ner were similar at 77.4% (453/585 images) and 78.3% (656/

838 images), respectively, with χ2 (df = 1) = 0.10, p = 0.75.

Confusion matrices for the CaffeNet network on the test set

of images (Fig. 3) show that the largest sources of error were

in distinguishing between transverse and longitudinal images

of the liver, between views of the left and right kidney, and

between pancreas images and transverse views of the left he-

patic lobe. The VGGNet network performed slightly better

than CaffeNet on distinguishing transverse and longitudinal

images of the left hepatic lobe, and distinguishing pancreas

views from transverse views of the left hepatic lobe.

The radiologist classified 71.7% of the test set images cor-

rectly (1020/1423 images). The difference between the radi-

ologist classification accuracy and the classification accura-

cies of the neural networks was statistically significant.

Comparing the radiologist and CaffeNet, χ2 (df = 1) = 11.54,

p < 0.001. Comparing the radiologist and VGGNet, χ2 (df =

1) = 14.44, p < 0.001.

A Venn diagram of correctly classified images in the

test set shows significant overlap among images correctly

classified by the radiologist and two neural networks

(Fig. 4). Difference confusion matrices for the radiologist

relative to CaffeNet or VGGNet (Fig. 5) show that an

outlier source of excess error for the radiologist was in

distinguishing between longitudinal and transverse images

of the right hepatic lobe, and in distinguishing between

longitudinal and transverse images of the left hepatic lobe.
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If the excess radiologist error from these images com-

pared to CaffeNet was eliminated, the radiologist’s classi-

fication accuracy would be 76.6%. Alternatively, if the

excess radiologist error from these images compared to

VGGNet was eliminated, the radiologist’s accuracy would

be 77.5%.

A t-SNE plot for CaffeNet (Fig. 6) depicts the distribution

of two-dimensional representations of the 4096-element vec-

tors to which the training images are mapped in the last fully

connected layer (FC7). The plot demonstrates areas of overlap

that correspond to classification confusion categories on the

test set images. For instance, there is significant overlap be-

tween the representations of the longitudinal views of the left

and right kidney, and of longitudinal and transverse images of

the right hepatic lobe.

Examples of misclassified images are shown in Fig. 7.

Discussion

This study demonstrates that deep convolutional neural net-

works trained to classify color nonmedical photographs can be

retrained to classify greyscale abdominal ultrasound images.

In particular, the convolutional layer features of these net-

works can be used as unmodified feature extractors for classi-

fying ultrasound images, despite the contrasting image noise

Fig. 3 Confusion matrices for a CaffeNet, b VGGNet, and c an ultrasound radiologist. Numbers in each box indicate the number of images

corresponding to each combination of predicted and true labels. Counts of correctly labeled images are along the diagonal

J Digit Imaging (2017) 30:234–243 239



texture and lack of color information in the ultrasound images.

At the same time, the fully connected layers of these networks

are sufficiently flexible to be retrained on a very different

image set.

Through transfer learning, we were able to train both

neural networks with a relatively small amount of training

data—4094 grayscale ultrasound images, versus the more

than 1.4 million images in the ILSVRC data set [11]. As

we did not evaluate classification accuracy as a function

of training set size, it is possible that the training set could

have been even smaller without severely impacting clas-

sification performance [12]. In any case, we believe that

the success of transfer learning in this study is promising

for the prospect of training convolutional neural networks

for other medical imaging tasks, where the availability of

large image data sets with concise labels may be similarly

limited.

The image classification task in this study is based on clin-

ical diagnostic grayscale abdominal ultrasound images with

readily available ground truth labels. Some image label ambi-

guity arises from the fact that these labels were assigned by the

ultrasound technologist to describe a particular diagnostic

view, rather than the specific anatomy within a given image.

Certain image labels were challenging to reconstruct because

different ultrasound views may overlap. Other image labels

were uncertain because of a lack of distinctive anatomic fea-

tures in a given image to specify a particular view. For in-

stance, our study population included a disproportionately

high number of patients with atrophic kidneys with poorly

distinguishable renal parenchyma.

We felt that it was important to retain these labeling chal-

lenges from the training and test sets in order for them to

constitute a realistic sample of clinical images. In order to

approximate an upper bound for classification within the con-

straints of these ambiguities, we asked an experienced ultra-

sound radiologist to attempt the same classification task,

namely to give the most likely technologist label for a given

Fig. 4 Venn diagram for images correctly classified by the two neural

networks (CaffeNet = dashed circle, VGGNet = dotted circle) and the

radiologist (solid circle). The areas of the diagram are approximately

proportional to the number of images; the large common area in the

center represents the 799 images classified correctly by both neural

networks and the radiologist. A total of 123 images were incorrectly

classified by both neural networks and the radiologist

Fig. 5 Difference confusion matrices comparing incorrectly classified

images between a the radiologist and CaffeNet and b the radiologist

and VGGNet. Positive numbers indicate excess errors by the radiologist

compared to the neural networks; negative numbers indicate excess errors

by the neural networks compared to the radiologist. For clarity, counts of

correctly classified images along the diagonal are omitted
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ultrasound image. We found that while the neural networks

were similar to each other in their classification accuracies,

both networks slightly outperformed the radiologist in overall

classification accuracy.

Although this result was initially surprising, the perfor-

mance of the human radiologist and the neural networks dif-

fered primarily in a few specific categories, such as

distinguishing between transverse and longitudinal views of

the liver. These are distinctions that are not commonly critical

in routine clinical practice, and even when these distinctions

are clinically important, the technologist’s image labels are

readily available and a radiologist does not need to mentally

reconstruct scan planes and locations. Furthermore, we

learned after the classification task was completed that the

ultrasound radiologist in our study did not make use of the

supplied labeled training data. Careful review of the training

data could have improved the radiologist’s performance in

some of the image category distinctions; previous work has

shown that for the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), increased human training on labeled

data improved human classification performance [11].

However, this study differs from the ImageNet study in that

the categories are significantly fewer (11 categories in this

study versus 1000 categories in ILSVRC) and are familiar

labels from clinical practice. As a result, we do not believe

that a lack of awareness of the available image categories is a

source of significant human error in our study, in contrast to

the ImageNet study. Careful human consultation and review

of the training images would have also added significant effort

and time to the classification task. Furthermore, even if we

were to subtract the error discrepancies between the ultra-

sound radiologist and neural networks in the main categories

of increased human error relative to the neural networks, the

radiologist’s classification accuracy would still be slightly

lower than that of the neural networks.

A common valid critique of neural networks is that their

distributed internal representations of learned knowledge limit

insight into how they achieve their results, however impres-

sive. One approach to understanding the networks’ internal

representations is to apply dimensionality reduction tech-

niques to vector representations of input data at downstream

layers of the network.We found that t-SNE applied to the final

fully connected layers of the networks provides a comprehen-

sible map of the structure of the high dimensional space into

which the networks project the input ultrasound images. In

this map, ultrasound images that have similar high dimension-

al representations project near each other. The probabilistic

outputs of the softmax layers of the neural networks provide

further insight into the confidence levels, next-best-category

considerations, and confusion errors associated with neural

network image classification.

It is uncertain to what degree the neural network classifica-

tion performance could have been significantly improved in

this study, given the training data. Stronger regularization of

the training process might be considered to improve perfor-

mance, since both neural networks overfit the training data

even without optimization of training hyperparameters such

as the learning rate. However, both networks already incorpo-

rate randomized deactivation of the fully connected nodes

during training (i.e. Bdropout^), which has been shown to be

effective against overfitting [25]. In addition, continued

overfitting of the networks on the training set data during

prolonged training did not clearly impair test accuracy, as

the test accuracy in both networks reached a plateau rather

than a peak throughout the later training iterations. The similar

classification accuracies of the two networks in this study

despite their differences in layer depth suggest that further

increased network depth is unlikely to yield improved perfor-

mance on this limited data set. We believe that future attempts

to improve the classification accuracy in this study should be

focused on an increase in the size of the training data, though

the intrinsic label ambiguity in this classification problemmay

place an upper bound on test accuracy.

This study is limited in several respects. The ultrasound

image sets were obtained from a skewed population, with

numerous patients undergoing renal transplant evaluation or

cancer staging. Anatomic and pathologic variations likely will

differ in other populations. We also used images from only

two ultrasound machines for this study. Although we did not

expect the images to be significantly different, one of the

networks (CaffeNet) did have slightly different classification

accuracies for images from the twomachines. As noted above,

Fig. 6 Visualization by t-SNE of CaffeNet’s high dimensional vector

representations of the 4094 training set images. Images with a similar

high dimensional vector representation are displayed close to each other

in this map
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the classification task in this study is not a typical clinical task

for an ultrasound radiologist; we chose the particular task in

this study primarily due to the simplicity with which we could

construct a sufficiently large clinical data set with ground truth

labels. As a result, radiologist performance may not be an

optimal comparison standard for evaluating neural network

performance. In addition, we only had one human radiologist

to classify all the test images. Other radiologists with either

increased clinical experience or substantial time to study the

training set images may have performed better on the test set.

Fig. 7 Examples of misclassified images. The correct technologist label

appears above each image; the bar graph below each image depicts the

top three category probabilities given by the CaffeNet network, with the

dark bar corresponding to the correct image label. Images (a) and (b)

were incorrectly classified by the radiologist but correctly classified by

both neural networks. Images (c) and (d) were correctly classified by the

radiologist but incorrectly classified by both neural networks
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Transfer learning as performed in this study may not be suit-

able for higher resolution medical images due to the limited

spatial resolution of the input layers of the neural networks

(e.g., 227 × 227 for CaffeNet). Training on high resolution

radiographs, for instance, would require either downsampling

the input images, or cropping the input images and classifying

only portions of the images at a time. Finally, image classifi-

cation is only a preliminary step in the automated processing

and interpretation of a radiologic image. Evaluation of the

efficacy of deep neural networks in downstream tasks of im-

age segmentation and feature localization is beyond the scope

of the current study.

Conclusions

In summary, transfer learning with convolutional neural net-

works can be used to construct effective classifiers for abdom-

inal ultrasound images, with classification accuracies in this

study slightly exceeding that of a human radiologist. Further

research is required to evaluate the limits of transfer learning

for classification of images in both ultrasound imaging and

other medical imaging modalities.
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