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Abstract

Purpose The nonalcoholic fatty liver disease is the most common liver abnormality. Up to date, liver biopsy is the reference

standard for direct liver steatosis quantification in hepatic tissue samples. In this paper we propose a neural network-based

approach for nonalcoholic fatty liver disease assessment in ultrasound.

Methods We used the Inception-ResNet-v2 deep convolutional neural network pre-trained on the ImageNet dataset to extract

high-level features in liver B-mode ultrasound image sequences. The steatosis level of each liver was graded by wedge biopsy.

The proposed approach was compared with the hepatorenal index technique and the gray-level co-occurrence matrix algorithm.

After the feature extraction, we applied the support vector machine algorithm to classify images containing fatty liver. Based

on liver biopsy, the fatty liver was defined to have more than 5% of hepatocytes with steatosis. Next, we used the features and

the Lasso regression method to assess the steatosis level.

Results The area under the receiver operating characteristics curve obtained using the proposed approach was equal to 0.977,

being higher than the one obtained with the hepatorenal index method, 0.959, and much higher than in the case of the gray-level

co-occurrence matrix algorithm, 0.893. For regression the Spearman correlation coefficients between the steatosis level and

the proposed approach, the hepatorenal index and the gray-level co-occurrence matrix algorithm were equal to 0.78, 0.80 and

0.39, respectively.

Conclusions The proposed approach may help the sonographers automatically diagnose the amount of fat in the liver. The

presented approach is efficient and in comparison with other methods does not require the sonographers to select the region

of interest.
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Introduction

The nonalcoholic fatty liver disease, diagnosed in a large

number of obese patients, is the most common liver abnor-

mality [1]. It is defined as the accumulation of fat in more than

5% of liver cells. This disease is associated with increased

risk of hepatic cirrhosis and hepatocellular carcinoma, but it

is also influencing higher cardiovascular morbidity and mor-

tality in affected patients [2, 3]. Liver biopsy is the reference

standard for direct liver steatosis quantification in hepatic

tissue samples [4]. However, biopsy is a costly and invasive

procedure that carries a high risk of serious complications,

commonly including pain, bleeding and in rare cases, death

[4]. Therefore, liver biopsy is not considered to be an easy,

optimal way to assess and follow-up the progress of com-
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mon liver diseases. Noninvasive liver imaging methods such

as computed tomography, magnetic resonance imaging or

ultrasound (US) have been intensively investigated [5]. US

may be the preferred modality for screening liver steatosis

because of its non-invasiveness, low cost and wide availabil-

ity.

Up to date various approaches have been proposed to

assess the level of steatosis in liver using US [6]. Among

them, the hepatorenal sonographic index (HI) is considered

to be highly efficient and simple [7, 8]. The HI method is

based on comparison of the liver echogenicity to that of the

right kidney cortex. Normal liver and renal tissues show sim-

ilar echogenicity. However, in the presence of steatosis, the

liver tissue brightness is higher than the kidney brightness.

The ultrasound-based diagnostic results may depend on skills

and experience of physicians performing the examination,

type of ultrasound machine and even on US image settings

[9, 10]. This operator dependence makes the comparison

of results difficult and limits wider practical application of

this important imaging technique. Another approach to liver

steatosis assessment employs texture analysis. According to

the review paper on liver image analysis [6], the gray-level

co-occurrence matrix (GLCM) algorithm is the most fre-

quently used method for liver disease characterization [11].

GLCMs provide useful information about spatial gray-level

dependencies in an image. Texture patterns of US images

arise from the interference of backscattered US waves on tis-

sue microstructures. The GLCM-based approaches to liver

steatosis classification using US images have been proposed

in several papers [12–15].

Nowadays new algorithms for image analysis are inten-

sively studied, including deep learning. These machine

learning methods let the computers automatically develop

useful features for classification. The usefulness of convolu-

tional neural networks (CNNs) has been reported in solving

various medical image analysis problems [16, 17]. CNNs

transform input images with convolutional filters into a single

decision variable as an output that usually indicates the input

image label. However, to successfully train a CNN, usually

a large amount of input data are required. This issue limits

the practical applications of deep models in medical image

analysis, since the available medical image datasets are usu-

ally small. Therefore, as a solution, various transfer learning

techniques have been proposed [18]. Instead of building a

completely new model from scratch, it is possible to use a

model developed for another problem. The usefulness of a

pre-trained model depends on its ability to adjust to images

outside the original training dataset. In the case of medical

image analysis, the implementation of transfer learning tech-

niques has been reported in several papers [19–22].

The aim of this paper is to develop a deep learning

model for steatosis level assessment based on US liver B-

mode images and to compare it with the HI and the GLCM

techniques. The US data analyzed in this study were col-

lected from severely obese patients evaluated before bariatric

surgery. We used a pre-trained CNN to extract features based

on B-mode images. Next, using the neural features, we

employed the support vector machine (SVM) algorithm to

classify images containing fatty liver. Aside of fatty liver

classification, it is clinically relevant to quantify the grade of

liver steatosis. For this task, we used the extracted features

and the Lasso regression method. In both cases, liver biopsy

results served as a reference. The performance of the pro-

posed approach was compared with the HI and the GLCM

methods.

This paper is organized in the following way. First, we

describe the patient group and the data acquisition routines.

It is presented how to calculate the HI- and the GLCM-related

features using liver US images. Next, our deep learning solu-

tion to fatty liver assessment is described. We show how to

apply the transfer learning to extract CNN-based features

using B-mode liver images. Next, we employ the CNN- and

the GLCM-based features to perform fatty liver disease clas-

sification and to assess the level of steatosis. Results are

presented and evaluated. Finally, we discuss the advantages

and disadvantages of the applied methods.

Materials andmethods

Clinical dataset

Our study involved 55 severely obese patients (mean age

40.1±9.1, mean BMI 45.9±5.6, 20% of males) admitted

for bariatric surgery (laparoscopic sleeve gastrectomy). The

ultrasound data were acquired in the Department of Inter-

nal Medicine, Hypertension and Vascular Diseases, Medical

University of Warsaw, Poland, during preoperative cardiac

echocardiographic evaluation, 1–2 days before the surgery.

The study was approved by the Ethical Committee at the

Medical University of Warsaw, and all patients gave informed

consent for echocardiography and abdominal ultrasound

examination. Each patient underwent a wedge liver biopsy

during the bariatric surgery as a part of the routine proto-

col implemented at the Department of General, Transplant

and Liver Surgery, Medical University of Warsaw, Poland

[23]. Tissue sample was extracted from the subcapsular part

of the left liver lobe. The histopathological assessment was

performed by a single pathologist following the recommen-

dations of the Clinical Research Network [24]. The level of

steatosis was defined based on the percentage of hepatocytes

with fatty infiltration. The fatty liver was defined to have more

than 5% hepatocytes with steatosis. The number of patients

with fatty liver was equal to 38. The steatosis level distribu-

tion across the population of patients is depicted in Fig. 1.

123



International Journal of Computer Assisted Radiology and Surgery (2018) 13:1895–1903 1897

Fig. 1 Histogram of steatosis level across the population of patients in

the study group

The ultrasound data were acquired using the GE Vivid

E9 Ultrasound System (GE Healthcare INC, Horten, Nor-

way) equipped with a sector probe operating at 2.5 MHz.

The default general abdominal preset with harmonic imag-

ing was used. The resolution of B-mode images was equal

to 434×636 (pixel size of 0.373 mm×0.373 mm), see

Fig. 2. For each patient, a sequence of B-mode images, cor-

responding to one heart beat, was acquired and stored on

the workstation (EchoPac PC software, GE Healthcare INC,

Norway). The image loops were saved in DICOM format

for further off-line processing. Due to motion, the speckle

patterns and relative position of the liver and the kidney

were slightly different across the images in each sequence.

Moreover, the number of images in sequences was not con-

stant. It depended, for example, on the number of focal zones

and the scanner frame rate. For each sequence, ten con-

secutive images were used for further processing. Finally,

the dataset contained 550 B-mode images. We decided to

analyze image sequences rather than single B-mode images

selected by the physician. It was a way of data augmenta-

tion, which enabled us to provide more diverse data to the

models.

The dataset described above can be downloaded via

the Zenodo repository (https://doi.org/10.5281/zenodo.100

9146). The dataset repository includes sequences of B-

mode images and the biopsy results. The provided dataset

could be useful for researchers interested in fatty liver

imaging. It should be noted that during the acquisition of

the data with the cardiac probe, we recorded the images

with the kidney on the left side of the screen. For conve-

nience of those researchers who are used to kidney on the

right side of the image, we provide in Fig. 2 the example

images following the standard convention. In the case of

the dataset, the images were provided with the left sided

kidney arrangement as recorded during the image acquisi-

tion.

Hepatorenal index

The HI is defined as the ratio of average brightness level of

the liver and the kidney cortex. Generally, the HI is expected

to increase with the steatosis level. In our study, the HI was

determined by a physician with experience in ultrasonog-

raphy and echocardiography research acquisition [25]. The

physician was blind to biopsy results. In the first step, a single

scan frame from the B-mode sequence was selected by the

physician. Next, two regions of interest (ROIs) correspond-

ing to the liver and the kidney cortex were specified. The ROI

selection is illustrated in Fig. 2. Care was taken to select liver

and kidney ROI in the middle part of the image sector, side by

side at the same depth. If infeasible due to suboptimal image

quality, liver ROI was selected above kidney ROI with the

shortest distance possible. The ROI was determined by using

circular method with the radius of the circle equal to 5 mm.

In each case, the ROI was as uniform as possible. Regions of

non-uniform speckle pattern, vessels or ducts were omitted

during the ROI selection procedure. The ratio between the

average brightness levels in the ROIs was determined with

Matlab software (MathWorks INC, USA) using histogram

analysis, see Fig. 2.

GLCM-based features

GLCM-based features were extracted following a similar

approach proposed in [12–14]. The same liver ROIs were

employed for analysis as in the case of the HI method. How-

ever, instead of the circular regions, we used square regions

with side length of 10 mm. For each ROI nine different

GLCMs were calculated considering angles between 0, 45

and 135, and path distances of 1, 2 and 3 [12]. Next, for each

GLCM the following texture features were extracted: maxi-

mum probability, uniformity, entropy, dissimilarity, contrast,

inverse difference, inverse difference moment and correla-

tion [26].

CNN-based features

CNN features were extracted using the Inception-ResNet-

v2 CNN implemented in Keras [27, 28]. Calculations were

performed in Python. The model was pre-trained on the

ImageNet dataset [29]. This CNN includes a mixture of resid-

ual inception modules followed by grid reduction modules

and has achieved state-of-the-art accuracy on the ImageNet

dataset that contains 1.2 millions of labeled images [28].

Sample labels include animals, fruits and daily necessities.

This dataset was successfully used for transfer learning in

several medical imaging applications [16]. In our case, the

CNN features were extracted using entire US images. Mini-

mal pre-processing was applied to liver B-mode images, and

the non-relevant data, such as frame number, were removed.
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Fig. 2 Liver B-mode images and the ROIs selected for HI calculation, a steatosis level of 3% and b 25%, respectively

Images were resized using the bi-cubic interpolation algo-

rithm to the resolution originally designed for the network.

Each liver image was given as the network input, and the

corresponding neural features were extracted from the aver-

age pooling layer. Feature extraction procedure is depicted

in Fig. 3. Next, zero-variance features were removed.

Classification and evaluation

We utilized the SVM algorithm to perform the classification

of fatty liver images [30] using the GLCM- or the CNN-

based features. Methods that exclude outliers were used to

normalize the features. The validation scheme is presented

in Fig. 4. Patient-specific leave-one-out cross-validation

(LOOCV) was applied to evaluate the classification. In each

case, the test set consisted of 10 images from the same patient

and the training set contained 540 images from the remaining

54 patients. For each training set, fivefold cross-validation

and grid search were applied to indicate the optimal SVM

classifier hyperparameters and the best kernel. To address the

problem of class imbalance, the SVM hyperparameter C of

each class was adjusted inversely proportional to that class

frequency in the training set. Label 1 indicated the image

containing a fatty liver and label −1 otherwise. After the

training phase, the a posteriori probabilities were calculated

for each image in the test set and the results were averaged to
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Fig. 3 Illustration of feature extraction using the Inception-ResNet-v2

model [28]

obtain the final a posteriori probability related to the exam-

ined liver. Next, these probabilities were used to calculate

the receiver operating characteristic (ROC) curve. The area

under the ROC curve (AUC) was used for evaluation of the

classification performance. We applied the Delong statistical

test implemented in the pROC package in R to compare the

AUC values obtained for all methods [31, 32].

To assess the level of steatosis, we employed the Lasso

regression method. The same validation scheme was applied

as in the case of the classification, but the steatosis level

was estimated instead of the a posteriori class probability.

Spearman correlation coefficients (SCCs) were calculated to

assess the relation between the steatosis level, the models’

outputs and the HI parameter. Moreover, the SCCs between

the models’ outputs and the HI parameter were determined.

Next, the linear regression algorithm was used to relate the

steatosis level and the HI parameter. All regression models

were compared using the Meng test implemented in the cocor

package in R [33, 34].

Results

The classification performance related to the HI parameter

and the SVM classifiers is presented in Fig. 5. All methods

achieved good classification performance. The highest AUC

value, equal to 0.977, was obtained for the CNN-based clas-

sification. The performance of the HI-based approach was

slightly lower, with AUC value equal to 0.959. However,

the Delong test indicated that this difference in AUC values

was not statistically significant (p value > 0.05). The AUC

value obtained for the GLCM-based approach was equal to

0.892 and was significantly lower than that for the CNN-

based method (Delong test p values < 0.05). The performance

summary is presented in Table 1. Sensitivity, specificity and

accuracy were calculated using the threshold corresponding

to the ROC curve point, which was the closest to the upper

left corner of the ROC plot, point (0, 1) [35].

Figure 6 shows the usefulness of the Lasso regression

method and the HI parameter in steatosis level assessment.

The SCCs obtained for the Lasso algorithms utilizing the

CNN- and the GLCM-based features were equal to 0.78 (p

Fig. 4 The validation pipeline
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Fig. 5 The ROC curves for the HI method (AUC�0.959), the GLCM

algorithm (AUC�0.893) and the classifier developed using CNN fea-

tures (AUC�0.977)

Table 1 Classification performance summary

Method AUC Sensitivity Specificity Accuracy

Hepatorenal

index

0.959 ± 0.044 0.895 0.941 0.909

GLCM 0.893 ± 0.059 0.842 0.882 0.854

CNN 0.977 ± 0.021 1 0.882 0.963

value < 0.001) and 0.39 (p value < 0.05), respectively. The

SCC for the HI parameter was equal to 0.80 (p value < 0.05).

The SCC between the CNN-based approach and the HI

parameter was equal to 0.78 (p value < 0.05). The difference

between the Lasso algorithm and the HI method correlation

coefficients was statistically insignificant (p value > 0.05).

Figure 7 illustrates the agreement between these two meth-

ods.

Discussion

Ultrasound imaging is the most commonly applied imag-

ing modality. Our study confirms that the HI parameter is a

good predictor of steatosis level in liver. It is simple to calcu-

late and efficient. Our results are in a good agreement with

other studies reporting the usefulness of the HI parameter.

We obtained high values of the AUC and the SCC parame-

ters, which were equal to 0.959 and 0.80, respectively. The

AUC values reported for the HI method ranges from 0.76 [36]

to 0.99 [8]. However, the papers commonly report different

ranges of the HI parameter and different optimal cutoffs for

the fatty liver classification. [7, 8, 36–39]. This issue illus-

trates the ambiguity related to the HI-based fat assessment.

The performance of the GLCM-based approach was worse

with the AUC and the SCC equal to 0.893 and 0.39, respec-

Fig. 6 The usefulness of a the HI parameter (SCC�0.80), b GLCM-

based features (SCC�0.39) and c the CNN-based features (SCC�

0.78) in steatosis level assessment

tively. Low value of the SCC parameter suggests that the

GLCM-based features are not efficient for the steatosis level

assessment. The obtained AUC value is in agreement with
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Fig. 7 a The relation between the HI parameter and the Lasso regression (SCC�0.78) and b the corresponding Bland–Altman plot

the results reported in the previous studies that employed

GLCM-based features [12, 14, 15]. In [12, 15] the authors

reported AUC values of around 0.8. In [14] the accuracy

of around 0.8 was reported. In [13] the authors achieved

high AUC value of 0.96. However, in this study the cross-

validation was not applied and the authors used the same

dataset to develop and evaluate the classifiers what could

result in overfitting.

Our study shows the feasibility of using deep learning

for the liver steatosis assessment. Although we used a small

dataset containing only 550 images from 55 patients, these

data were sufficient to develop a well performing classifier

with transfer learning. The AUC value in the case of the fatty

liver classification was equal to 0.977. According to Table 1,

the obtained performance was higher than in the case of the

HI method. Moreover, the CNN-based approach achieved

significantly better results than the GLCM-based approach.

The CNN features were useful and enabled efficient training

of the classification and regression models. Good perfor-

mance of the CNN-based approach was expected. In our

study, we did not train the network from scratch, instead

the pre-trained CNN was used for feature extraction. This

model was developed using the ImageNet dataset contain-

ing 1.2 million labeled images of various objects. The HI

calculation includes two convolutional operations (spatial

averaging), which should be supposedly learned by the CNN

to perform well on the ImageNet dataset. These two opera-

tions have to be conducted in the liver and the kidney, so the

network has to detect these tissues first. The appearance of

the liver with respect to surrounding tissues is important for

efficient steatosis assessment.

In the case of the liver steatosis assessment, the obtained

SCC, equal to 0.78, was slightly lower than the SCC calcu-

lated for the HI parameter, which was equal to 0.80. However,

this difference was not statistically significant. Both regres-

sion models performed well, except for the patients with

severe steatosis. In this case, the estimated values of steato-

sis were slightly too small. This may be due to the dataset,

which was too small to build an accurate regression model.

Moreover, the transfer learning in this case may not be effi-

cient enough to capture the dependence between the input

images and the liver steatosis level. Nevertheless, the pro-

posed approach should be considered to be good, especially

since the results were obtained in an automated process. Fig-

ure 7a illustrates the relation between the Lasso regression

method and the HI parameter. In this case, the SCC was equal

to 0.78, indicating high degree of correlation. According to

the Bland–Altman plot in Fig. 7b, the average bias in esti-

mates is low.

Although the performance of the proposed method was

only slightly better than the performance obtained using the

HI parameter, the proposed approach has several advantages

that illustrate its clinical value. First, our method can be con-

sidered as an integrated computer-aided diagnosis system. It

is operator independent and does not require ROI selection

in comparison with the HI method and the GLCM-based

approach. Next, the proposed method efficiently utilizes

sequences of US images to assess the level of steatosis,

while the approaches proposed in the literature commonly

employs only one US image to conduct classification [6].

However, there are several issues related to our work. First of

all, the ROI selection is operator dependent and has impact

on calculation of the HI parameter and the GLCM-based

features. For proper estimation of the HI parameter, the

physician has to select ROIs in the liver and the kidney.

These ROIs have to be as uniform as possible to omit the

regions of blood vessels, ducts or other structures in the

organs. In our study we focused on machine learning and

did not examine observer variability, the ROIs were deter-

mined by a single physician. The obtained results may differ

between observers [9, 10]. Second, all employed methods are

to some extent scanner dependent. B-mode image intensities
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can be modified by using different image reconstruction and

processing algorithms, what may affect the feature extrac-

tion and consequently the classification. This is a general

issue encountered in studies that aim to develop US-based

computer-aided diagnosis systems. Image quality (speckle

patterns and boundary visibility) depends on scanner set-

tings. The Inception-ResNet-v2 network utilized in our study

was trained using the ImageNet dataset that contains images

recorded under slightly different lighting conditions. There-

fore, we believe that the impact of image reconstruction

algorithms implemented in the US scanners should be lower

for the proposed approach than in the case of the HI- and

the GLCM-based methods. We would like to investigate this

problem in the future in two ways. First, it would be interest-

ing to acquire raw ultrasound data and investigate how the

image reconstruction algorithms impact the feature extrac-

tion from the CNN [40]. Second, we are going to acquire

B-mode images of the same liver using different scanner set-

tings and investigate whether the model can learn features

for classification that are independent of scanner settings.

To make the assessment scanner independent, it would be

interesting to employ the quantitative US techniques. These

methods are used to estimate various physical properties of

the tissue, such as the attenuation or scattering characteris-

tics [41]. Quantitative US techniques can be used to create

parametric maps that serve as an additional source of infor-

mation on investigated tissue in comparison with standard

B-mode images [42, 43]. Those maps may serve as a more

proper input to the CNN than regular B-mode images. The

usefulness of quantitative US techniques in liver steatosis

assessment has been reported in several studies [13, 44, 45].

In the future, we plan also to acquire more data and investi-

gate various approaches to model development.

Conclusions

In this paper we proposed a CNN-based approach to steatosis

level assessment utilizing B-mode ultrasound images. The

model was developed using data acquired in obese patients

undergoing wedge liver biopsy during bariatric surgery. Our

approach is efficient and operator independent. Moreover, it

outperforms the HI- and the GLCM-based classification.
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