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Abstract: Articulated slab bridges have been widely used by transportation administration for short-
to-medium span bridges because of their good economy, convenient construction, and environmental
advantages, while the presence of shear keys increases the complexity of structural behavior. Devel-
oping more reasonable analysis approaches of quick assessment, pre-design, and hand calculations
for the articulated slab bridges is a challenge because of the peculiar shear key mechanism. This
paper is devoted to presenting a recursive algorithm, based on the force equilibrium conditions of
each individual slab, thus resulting in simultaneous equations of the transfer matrix method (TMM).
In this procedure, the state vector is an array composed of vertical displacement, shear force, unit
constant; and the transfer matrix contains the bending and torsional stiffness parameters of simply
supported slabs. Then, the influence line of transverse load distribution (TLD) is calculated for each
slab by introducing boundary conditions. To validate and verify the efficiency of the TMM algorithm,
a transversely prefabricated void slab bridge with a span of 20 m is considered as a case study. The
traditional force (FM) and finite element (FEM) methods are used for comparison and validation. It is
demonstrated that the TMM can provide good results with higher algorithm efficiency by exempting
the modeling tasks in FM and FEM and capture variations in TLD along the bridge’s span. In addition,
the influence of the span length and relative stiffness coefficient of slabs on the TLD of articulated
slab bridges are analyzed from the parametric analysis.

Keywords: articulated slab bridges; transfer matrix method; transverse load distribution; force
method; finite element method

1. Introduction

An articulated slab bridge consists of a number of discrete slab units laid side-by-side,
with in-situ casted shear keys to form a continuous deck. This type of deck is competitive
for short-to-medium span bridges because of its good economy, low deck height, and ease
of prefabrication. A crucial point in such a deck is the mechanism by which the beams are
keyed together. One relevant characteristic of the shear key is an absence of reinforcement
crossing the key. Therefore, the flexural strength of the shear key is negligible and transfers
only vertical shear forces between adjacent slabs under vehicle loads.

In view of the unique structural feature invoked by transverse connections, numerous
methods of analysis for such deck structures have been investigated [1–3]. So far, the concepts
of influence line of transverse load distribution (TLD) are broadly accepted to facilitate the
analysis of bridge decks under vehicular live load. A common practice is, thus, to use load
distribution factors, in order to isolate a single slab from the rest of the superstructure system,
thus transforming a complex space analysis into a simple plane problem [4].

Even though many TLD algorithms have been proposed, some major codes still
use fitted empirical formulas, which suggests that more concise and applicable methods
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with a theoretical basis are still in need. Regarding the empirical equations for TLD in
AASHTO LRFD bridge design specifications [5], Zokaie [6] expatiated the fitting process
and their application range. In the Canadian Highway Bridge Design Code (CHBDC) [7],
the live load acting on the bridge was assumed to be distributed equally to the individual
girders and then multiplied by an amplification coefficient. The amplification coefficient
was obtained from extensive parametric analyses, based on the orthotropic plate theory,
according to the structural characteristics of the bridge. On the other hand, the Eurocode [8],
does not explicitly include the concept of the TLD of bridges as an analysis method, and
the loads borne by each girder are generally obtained by the analysis of the grillage model.

In addition to the codified methods, efforts for better algorithms have never stopped.
Semendary et al. [9] investigated the distribution coefficients of the live load bending
moments of a concrete box-girder bridge with cast-in-place, ultra-high-performance
concrete (UHPC) shear key connections. They concluded that the results of the formu-
lae in the AASHTO were conservative through field load tests and 3D finite element
model analysis. Liu et al. [10] argued that the slab bridges connected by longitudinal
joints only transversely transfer shear forces. They introduced the damage factor and
studied the effect of joint damage on TLD by heuristic methods, based on the artificial
bee colony algorithm. Zhao et al. [11] conducted field load tests on a skew void slab
bridge, established a finite element model, and analyzed the effects of span length, skew
angle, and deck slab thickness on the TLD coefficient. Whelchel et al. [12] investigated
the effects of joint damage, joint failure, and deck thickness on live load distribution
coefficients through field load tests and compared the calculation results in the AASHTO
for different periods. Ndong et al. [13] proposed the use of refined analysis methods to
potentially improve the load ratings of concrete T-beam bridges by obtaining a decrease
in TLD factors. Aloisio et al. [14] presented a mathematical model of train–track–bridge
interaction (TTBI) for ballasted track bridges and analyzed the effect of ballast on the load
distribution and damping of the bridge by experiments and finite element simulations. In
addition, in order to improve the reliability of joints, the connection form of transverse
post-tensioning (TPT) was applied in many bridges. Fu et al. [15], Hussein et al. [16], and
Labib et al. [17] investigated the transverse load transfer mechanism of multi-girder bridges
connected by the TPT technique through experiments.

The transfer matrix method (TMM) is as a powerful tool for recursive problems. In
this case, it is intended to relate the displacements with interacting shear forces by transfer
matrix equation on an individual slab basis. Owing to the high efficiency algorithm in the
successive multiplication of state vectors with transfer matrices, TMM has become very
flexible in modeling any number of slabs. Different from the finite element method (FEM),
TMM eliminates the need to build an overall stiffness matrix of the structure, avoiding the
solution of large linear equations [18–20]. Therefore, it is a suitable tool for both detailed
and conceptual design, as it may be implemented manually or in spreadsheets. Meanwhile,
TMM also exhibits high efficiency in creating alternative dynamic solutions for beam
bridges [21], arch bridges [22], and cable-stayed bridges [23].

In this study, a TMM is developed based on the mechanical model for articulated slab
bridges. Further, the TMM is used to calculate and analyze the TLD influence line of each
slab. The results are then compared to those of analysis by the FEM and traditional force
method. Furthermore, parametric analysis is carried out to investigate the critical factors
influencing the TLD.

2. Concept of TLD and Basic Assumptions

A typical articulated slab bridge consists of a number of parallel contiguous slabs
associated with each other along their length by shear keys that transmit no bending
moment. As illustrated in Figure 1, when a concentrated force P applies on the kth slab, part
of the load is carried by the slab, and the rest will be transferred transversely to adjacent
slabs by vertical shear forces via the hinges.
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Figure 1. A typical articulated slab subjected to a concentrated force.

The transverse load distribution is the resultant forces transferred through the shear
key on the rest of the slabs when a concentrated force acts on a certain slab. The midspan
section of bridges is generally taken for analysis to calculate the shear force transferred
between the slabs, as shown in Figure 2. Eventually, the transversely distributed loads,
including vertical loads and transverse torques, are calculated for each slab, which is
given by

Pi,k =

{
Vi−1 −Vi (i = 1, 2, · · · , n; i 6= k)
P + Vi−1 −Vi (i = k)

(1)

Ti,k =

{
Vi−1a−Via (i = 1, 2, · · · , n; i 6= k)
Pe + Vi−1a−Via (i = k)

(2)

where Pi,k and Ti,k are the distributed load and distributed torsion in the slab i coming from
transverse distribution, respectively. Vi−1 and Vi are the shear forces at joint i−1 and joint i,
respectively; a is half-width of the slab, e is the eccentricity of the loading position from the
centerline of the slab k.
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Based on the above mechanical model, the TMM is used to analyze the TLD of the
articulated slab bridges. In addition, the following basic assumptions are taken:

(1) Ends of slabs are simply supported.
(2) The torsional deformation of the slab end is restrained.
(3) The slab sections have no warping deformation.
(4) The lateral connection between the slabs is replaced by an articulated point in the

loading position.

3. TLD Analysis of Articulated Slabs by FM
3.1. Review of Existing Methods

The existing methods for calculating the TLD of bridges can be roughly categorized
into numerical and analytical methods. Although the numerical method based on finite ele-
ment analysis has been widely used, the modeling process is tedious and time-consuming
because of the creation of the model, in particular the grillage model. Thus, some analytical
methods are reviewed here.

The lever rule method [24] assumes that the wheel load is only distributed to one or
two adjacent beams. Although it is the simplest method, it usually overestimates load dis-
tribution and is generally applied to the bearing section. The eccentric compression method,
also known as the rigid transverse beam method [25], assumes that the transverse rigidity
of the bridge is infinitely high. The overall transverse deformation of the bridge always
remains in a straight line, which does not agree with practical engineering. Furthermore,
it is not applicable for articulated slab bridges. On the other hand, the orthotropic plate
method [26] considers that the bridge, consisting of multiple beams, can be approximated
as a rectangular plate with different longitudinal and transverse stiffnesses. Then, the
elastic plate theory is used for the analysis, and the effect of Poisson’s ratio is ignored. The
calculation process is cumbersome, and the concepts are abstract in this method.

Regarding the TLD of articulated slab bridges, the force method (FM), it is also called
the articulated slab method, is commonly applied [27,28]. The FM, as well as the TMM
proposed in this paper, is described in detail in subsequent section.

3.2. Procedure of the FM

In a calculation model, a pair of shear forces in the joint were taken as unknowns.
The calculation diagram is shown in Figure 2b. Assume that P is a unit force, the joint is
considered as a hinge that only transfers the vertical shear force, and Vi is the shear force
of the ith joint (i = 1, 2, . . . , n−1). According to the FM principle, as shown in Figure 3,
the canonical equation of redundant forces considering the characteristics of transverse
connection was established, expressed as Equation (3).

δ1,1V1 + δ1,2V2 + · · ·+ δ1,n−1Vn−1 + δ1,P = 0
δ2,1V1 + δ2,2V2 + · · ·+ δ2,n−1Vn−1 + δ2,P = 0

...
δk,1V1 + δk,2V2 + · · ·+ δk,n−1Vn−1 + δk,P = 0

...
δn−1,1V1 + δn−1,2V2 + · · ·+ δn−1,n−1Vn−1 + δn−1,P = 0

(3)

where Vj is the shear force at joint j; δi,j is the vertical relative displacement at joint i caused
by the unit force acting within joint j; and δk,P is the vertical displacement caused by the
external load P at joint k.
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Figure 3. Calculation model of the FM principle.

The calculation procedure of each constant coefficient in Equation (3) is detailed
in Ref. [27]. According to Figure 3 and Equation (3), there are (n−1) unknown shear
forces and (n−1) simultaneous equations for n slabs. In addition, the equation coefficient
δij needs to be recalculated to obtain the TLD for each slab. Then, a system of linear
equations must be solved again to derive each unknown shear force. It can be seen that
using the FM principle to calculate the TLD of articulated slab bridges is tedious and
requires substantial equations.

After calculating Vj(j = 1, 2, . . . , n−1), the resultant vertical force on each slab can be
obtained through their free body diagram. In case of the slab k subjected to the unit vertical
force, this is exactly the TLD of each slab in the whole section.

P1,k = V1
P2,k = V1 −V2

...
Pk,k = 1 + Vi−1 −Vi

...
Pn,k = Vn−1

(4)

4. TMM for the TLD Analysis
4.1. Transfer Matrix Derivation

To perform a transverse analysis of the whole bridge deck, it reasonably starts from
the slab subjected to the vertical load P, as shown in Figure 4. The left and right nodes of
the slab are denoted as k−1 and k, respectively. Define the state vector at node k as:

Zk =

 δk
Vk
1

 (5)

where δk is the vertical displacement of the node k, and Vk is the vertical shear force at the
same node.
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According to the differential equation of the deflection curve and torsion, the bending
and torsion flexibility coefficients of the section at the loading position of an individual
simply supported slab can be expressed as:

fb =
d2(L− d)2

3EIL
(6)

ft =

{
a2d
2GJ (0 ≤ d ≤ L/2)
a2(L−d)

2GJ (L/2 ≤ d ≤ L)
(7)

where d is the distance from the loading point to the support; L is the effective span of slabs;
a is the half-width of slabs; E is the elastic modulus of concrete; G is the shear modulus of
concrete, with G = E

2(1+µ)
; µ is the Poisson’s ratio of concrete; and I and J are the bending

inertia moment and torsional inertia moment of the slab section, respectively.
From Equations (6) and (7), the basic equations of force and deformation for slab k are

established, and the relationship between the displacement and rotation on both sides of
slab k can be obtained:

δk−1 = ∆k + aφk (8)

δk = ∆k − aφk (9)

with
∆k = (P + Vk−1 −Vk) fb,k (10)

aφk = (P
e
a
+ Vk−1 + Vk) ft,k (11)

where fb,k and ft,k are the bending and torsion flexibility coefficients of section at the loading
position of the slab k, respectively; d is the distance from the loading point to the support;
and e is the eccentricity of the loading position from the centerline of the slab k.

According to simultaneous Equations (8)–(11), it can be deduced that:

δk−1 = ( fb,k + ft,k)Vk−1 − ( fb,k − ft,k)Vk + ( fb,k + λ ft,k)P (12)

δk = ( fb,k − ft,k)Vk−1 − ( fb,k + ft,k)Vk + ( fb,k − λ ft,k)P (13)

where λ = e
a .

From Equations (12) and (13), δk+1 and Vk+1 can be solved as:

δk =
fb,k + ft,k

fb,k − ft,k
δk−1 −

4 fb,k ft,k

fb,k − ft,k
Vk−1 −

2(1 + λ) fb,k ft,k

fb,k − ft,k
P (14)

Vk = −
1

fb,k − ft,k
δk−1 +

fb,k + ft,k

fb,k − ft,k
Vk−1 +

fb,k + λ ft,k

fb,k − ft,k
P (15)
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The matrix forms of Equations (14) and (15) are as follows:

 δk
Vk
1

 =


fb,k+ ft,k
fb,k− ft,k

− 4 fb,k ft,k
fb,k− ft,k

− 2(1+λ) fb,k ft,k
fb,k− ft,k

P
−1

fb,k− ft,k

fb,k+ ft,k
fb,k− ft,k

fb,k+λ ft,k
fb,k− ft,k

P
0 0 1


 δk−1

Vk−1
1

 (16)

or
Zk = FkZk−1 (17)

with

Fk =


fb,k+ ft,k
fb,k− ft,k

− 4 fb,k ft,k
fb,k− ft,k

− 2(1+λ) fb,k ft,k
fb,k− ft,k

P
−1

fb,k− ft,k

fb,k+ ft,k
fb,k− ft,k

fb,k+λ ft,k
fb,k− ft,k

P
0 0 1

 (18)

where Zk−1 and Zk denote the state vectors of nodes k−1 and k, respectively; and Fk is the
field transfer matrix of the internal force and deformation of the left and right nodes of the
slab under load P.

Similarly, the transfer matrix for the slab without external load (P = 0) can be written as:

Zi = FiZi−1 (i = 1, 2, · · · , n + 1; i 6= k) (19)

with

Fi =


fb,i+ ft,i
fb,i− ft,i

− 4 fb,i ft,i
fb,i− ft,i

0
−1

fb,i− ft,i

fb,i+ ft,i
fb,i− ft,i

0
0 0 1

 (20)

where Zi−1 and Zi denote the state vectors of nodes i−1 and i, respectively; and Fi is the
field transfer matrix of the internal force and deformation of the left and right nodes of the
slab without load.

4.2. Transfer Equation Solution

The general case in this study is a bridge deck consisting of a number of slabs laid
side-by-side and keyed together. Referring to Figure 5, individual slabs are numbered as
1, 2, 3, . . . , n, from left to right, and the hinge nodes between the slabs and two exterior
nodes are also sequentially marked with Arabic numerals, from 0 to n.
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Figure 5. Schematic diagram of transversely hinged slabs.

Based on the deduction of Equations (17) and (19), the transfer equation between each
slab can be expressed as: 

Z1 = F1Z0
Z2 = F2Z1

...
Zk = FZk−1

...
Zn = FZn−1

(21)
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It is noted that the above equation starts from the leftmost state vector Z0, and ends
with the rightmost state vector Zn. It is possible to write the last state vector directly from
the first one, by means of a global transfer matrix as:

Zn = AZ0 =

A11 A12 A13
A21 A22 A23
A31 A32 A33

Z0 (22)

or  δn
Vn
1

 =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 δ0
V0
1

 (23)

where A is the global transfer matrix of the articulated deck, by successive multiplication
of every transfer matrix.

A = FnFn−1 · · · Fk+1FkFk−1 · · · F3F2F1 (24)

It can be seen from Equation (23) that the global transfer equation involves only the
boundary state vector but not the state vector of internal hinge nodes. If parameters E, I, G,
J, L, and a are the same for each slab, then all the field transfer matrices are the same for
all the slabs, except for the slab k, where the load P acts. Therefore, Equation (22) can be
rewritten as:

Zn = Fi
n−kFkFi

k−1Z0 (25)

with
Fi

n−k = FnFn−1 · · · Fk+1, Fi
k−1= Fk−1 · · · F3F2F1

The variables within the state vectors of the exterior nodes are the displacement and
shear force, and the two lateral nodes of the exterior slab are the free ends. Therefore, for
the global transfer equation above, the boundary condition is:

V0 = 0, Vn = 0 (26)

By substituting the boundary condition into Equation (23), it can be obtained that:

A21δ0 + A23 = 0 (27)

The solution is:
δ0 = −A23

A21
(28)

Thus, the state vector at node 1 is:

Z0 =

− A23
A21
0
1

 (29)

In light of the recursive equations in Equation (21), all the rest state vectors can be
solved one-by-one. Since each state vector includes displacement and shear, the load and
torque distributed to each slab under external load can be calculated using Equations (30)
and (31). In addition, if the external load acting on slab k is a unit force, the influence line
of TLD for slab k is the curve connecting the load distributed to each slab.

Pi,k =

{
Vi−1 −Vi (i = 1, 2, · · · , n; i 6= k)
P + Vi−1 −Vi (i = k)

(30)

Ti,k =

{
Vi−1a−Via (i = 1, 2, · · · , n; i 6= k)
Pe + Vi−1a−Via (i = k)

(31)
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The MATLAB language was used to implement the calculation model. The flowchart
of the implemented model is shown in Figure 6.
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5. Illustrative Example
5.1. Overview

A transversely prefabricated void slab bridge with a span of L = 20 m; the influ-
ence line of TLD for each slab is to be solved. The bridge is horizontally composed
of 10 prefabricated slabs, which are connected transversely by cast-in-place joint con-
crete. The prefabricated slabs and joints are made of C40 concrete. The transverse
layout of the bridge and the cross-sectional dimensions of the void slabs are shown in
Figures 7 and 8. The calculating parameters in this paper are adopted as: a = 0.745 m,
EI = 1.76 × 106 kN·m2, and GJ = 1.70 × 106 kN·m2.
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Figure 8. Cross-sectional of a void slab (cm).

5.2. Application of the TMM

The TLD for each slab is calculated according to Equations (30) and (31), derived in
Section 4, assuming that the load acts on the vertical centerline of the slab cross-section. Taking
Slab 1 as an example, the field transfer matrix can be given from Equations (18) and (20) as:

F1 =

 1.03 −6.59× 10−6 −3.30× 10−6

−1.07× 104 1.03 1.02
0 0 1

 F2 = F3 = . . . = F10 = F =

 1.03 −6.59× 10−6 0
−1.07× 10−4 1.03 0

0 0 1


According to Equation (23), the global transfer matrix can be easily described as:

A = F10F9 · · · F2F1= F9F1 =

 6.98 −1.71× 10−4 −1.51× 10−4

−2.79× 105 6.98 6.18
0 0 1


By very simple matrix operation, the state vector of each slab can be obtained by

Equation (29), as shown in Table 1. Then, the distributed loads and torques for each slab
can be calculated from Equations (30)–(31) as Table 2. The curve plotted with the values in
the second row of Table 2 is also referred to as the influence line of the TLD for slab 1.
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Table 1. The values of state vectors.

State Vectors Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

δ (10−5) 2.22 1.97 1.52 1.18 0.92 0.73 0.59 0.48 0.42 0.38 0.36
V 0 0.78 0.60 0.45 0.34 0.25 0.19 0.13 0.08 0.04 0
1 1 1 1 1 1 1 1 1 1 1 1

Table 2. The TLD of each slab under the unit force of slab 1.

Slab No. 1 2 3 4 5 6 7 8 9 10

Load 0.221 0.184 0.142 0.111 0.087 0.069 0.057 0.048 0.042 0.039
Torque 0.164 0.137 0.106 0.083 0.065 0.052 0.042 0.035 0.031 0.029

5.3. Finite Element Model

In order to validate the proposed method, a finite element model of the void slab
bridge was constructed. Outstretching rigid arms were established along the bridge span
between the slabs, and articulated joints were set between the rigid arms to transfer only the
shear force, but not the bending moment. The finite element model, transverse connection
configuration and boundary conditions are shown in Figure 9.
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Furthermore, symmetry was considered when calculating the influence line of TLD for
each slab. The unit load was applied to the centerline of Slabs 1–5 in turn, and the influence
line of each slab was solved.

It is important to note here that there are multiple transverse connections along
the longitudinal direction of the bridge in the finite element model. Therefore, the load
transferred from the loaded slab to the other slabs is not a concentrated force. There are two
approaches to calculate the TLD influence lines of slabs. One is to adopt the overall reaction
force subjected to each slab as the load fraction. The other is obtained by the proportion of
the displacement of each slab to the total displacement of the same cross-section [29], as
shown in Equation (32). The latter is adopted in this paper.

LFi =
δi

n
∑

j=1
δj

(32)

where LFi is load fraction for ith slab; δi is deflection of ith slab at the loading section; δj is
deflection of jth slab; and n is number of total slabs.
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5.4. Results and Discussions
5.4.1. The TLD of Slabs in the Midspan and L/8 Span

The TLD influence the lines of each slab in the middle, and L/8 span are calculated
by TMM, FEM, and FM, respectively, as shown in Figures 10 and 11. According to
Figures 10 and 11, the TLD influence lines of each slab in the midspan calculated by the
TMM, FEM, and FM are very close, with influence line peak values difference within
10%. Furthermore, the TLD influence lines of each slab calculated by TMM and FEM in
the L/8 span are still close, while the influence line peak values calculated by FM have a
maximum difference of more than 15%, compared with FEM. It can also be seen from
the figures that the influence line peak values gradually decrease from slabs 1 to 5, both
at the midspan and L/8 span, thus indicating that the closer the external loading point
is to the lateral center of the bridge, the more uniformly the load is distributed among
the slabs. The above proves that the calculation method in this paper is adequate for
engineering purposes.
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Figure 10. The TLD influence lines of each slab in the midspan: (a) slab 1; (b) slab 2; (c) slab 3; (d) 
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Figure 10. The TLD influence lines of each slab in the midspan: (a) slab 1; (b) slab 2; (c) slab 3;
(d) slab 4; (e) slab 5.
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Figure 11. The TLD influence lines of each slab in the L/8 span: (a) slab 1; (b) slab 2; (c) slab 3;
(d) slab 4; (e) slab 5.

In addition, compared with the conventional FM, TMM contains a smaller number of
equations. On the other hand, it is obvious from Equations (18)–(22) that the transfer matrix
of each slab and the global transfer matrix are always of order 3× 3, regardless of the number
of slabs. Therefore, compared with the FEM, the dimension of the matrix does not increase
with the increased element numbers, which makes it convenient for hand or spreadsheets
calculations, showing high overall computational efficiency and accurate results.

5.4.2. Variations of TLD along the Span

The TLD of slabs can be approximately calculated by the lever method when the load
is applied near the bearing. Therefore, only the variations of TLD in the range of L/10 to
9L/10 span are analyzed in this paper, and the results are shown in Figure 12. According to
Figure 12, both TMM and FEM can capture variations in TLD along the bridge span with
similar results, while FM cannot. It is proven that the TMM has a wide range of applicability.
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Figure 12. The influence line peak values of TLD for each slab along the span: (a) slab 1; (b) slab 2;
(c) slab 3; (d) slab 4; (e) slab 5.

Figure 12 also shows that the variations of the TLD calculated by TMM are first
decreased and then increased from the vicinity of the bearing to the midspan, while by
FEM it decreases gradually, and the decreasing trend is becoming slower. This is caused by
the fact that the TMM assumes that the transverse connection exists only at the loading
position in order to simplify the calculation, and that the trends of bending and torsion
flexibility coefficients from the bearing to the span are varied.

6. Effects of Parameter Variations on TLD
6.1. Span Length

The effects of span lengths (10, 15, 20, 25, and 30 m) on the TLD for each slab were
analyzed under the condition that both the cross-section and transverse quantity of slabs
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are constant. The results are shown in Figures 13 and 14. It can be seen from Figure 13
that, as the span of the slab increases, the force on each slab under the load becomes more
uniform. With other conditions unchanged, the increase of the span is equivalent to the
increase of the span-width ratio of the bridge. The whole upper structure of the bridge
can be regarded as a rectangular plate, and the load is easily transferred in the direction
parallel to the short side. As shown in Figure 14, the peak influence line of each slab shows
a non-linear decrease with the increase of the span-width ratio. It can also be seen from
Figure 14 that the curve of the exterior slab is slightly steeper than that of the interior slabs,
which is because the interior slabs are constrained by the adjacent slabs, and one side of the
exterior slab is a free end. Moreover, the smaller the span-width ratio of a bridge indicates
that the load on the slab near the loading position is higher. Therefore, for transversely
prefabricated slab bridges, the span-width ratio of the bridge can be increased appropriately
from the perspective of overall force uniformity.
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Figure 13. The TLD influence lines of each slab at different spans: (a) slab 1; (b) slab 2; (c) slab 3; (d) 
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Figure 13. The TLD influence lines of each slab at different spans: (a) slab 1; (b) slab 2; (c) slab 3;
(d) slab 4; (e) slab 5.
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Figure 14. The peak values of the TLD influence line of each slab at different spans.

6.2. Relative Stiffness Coefficient

According to Equations (18) and (20), the field transfer matrix is only related to fb
and ft when the applied load is determined. Additionally, γ is defined as the relative
stiffness coefficient of the slab, and γ = ft/ fb . The effects of γ (0.01, 0.05, 0.1, 0.2, and
0.5) on the TLD of the slab bridge were analyzed, as shown in Figures 15 and 16. It
can be seen from Figure 15 that the force of each slab becomes more uniform with the
increase of γ. The increase in γ can be explained by the decrease in the torsional rigidity
of each slab. Therefore, the inhibition of the deformation of the slab adjacent to the slab
under the load is reduced. Figure 16 suggests that the peak values of the TLD influence
lines for each slab are positively correlated with γ. As shown in Figure 16, the curve of
the exterior slab is slightly steeper than that of the interior slabs, which is because the
interior slabs are constrained by the adjacent slabs, while one side of the exterior slab is
a free end. The lower torsional rigidity of the slab means that the slab near the loading
position is subjected to a higher load. Therefore, from the overall force perspective, the
box-shaped section is more advantageous than the T- or I-shaped sections.
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Figure 15. The influence lines of TLD for each slab at different relative stiffness.
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Figure 16. The peak values of influence lines of TLD for each slab at different relative stiffness.

7. Conclusions

(1) In this paper, the TMM is provided for calculating the influence line of TLD of
articulated slab bridges. The field transfer matrix and transfer equation of each slab are
developed, and the TLD of each slab is calculated by very simple matrix operations. The
method avoids the large linear equations of bridge structures, which has a highly efficient
algorithm and is easy for implementation in hand calculations, spreadsheets, or small
computer programs.

(2) A transversely prefabricated void slab bridge is taken as an example, and FEM
and FM are used to verify the method in this paper. The calculation results are very close,
with maximum errors lower than 10%, thus proving the correctness and feasibility of the
proposed method. In addition, TMM can capture variations in TLD along the bridge span
compared with FM, which further proves the wide applicability of TMM.

(3) Under constant cross-sections and transverse quantities of slabs, the force on each
slab under the load becomes more uniform as the span of the bridge became larger. The
peak value of the influence line of TLD for each slab showed a non-linear decrease with the
increase of the span-width ratio, and the decrease rate of exterior slabs is larger than that
of interior slabs. In the design of transversely prefabricated slab bridges, a more uniform
overall force can be achieved by appropriately increasing the span-width ratio of bridges.

(4) The peak values of the influence line of TLD for slabs increased with the increase
of relative stiffness coefficients and rate of exterior slabs is larger than that of interior slabs.
The lower torsional rigidity of slabs indicated that the slab near the loading position is
subjected to a higher load. Therefore, from the overall force perspective, the box-shaped
section is superior to the T- or I-shaped sections.



Buildings 2022, 12, 1610 19 of 20

Author Contributions: K.G.: methodology, validation, investigation, formal analysis, writing—
original draft. Z.L.: conceptualization, methodology, writing—review and editing, supervision,
project administration. J.-M.B.: conceptualization, investigation, writing—review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 51978161.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code and model presented in this study are available on request
from the corresponding author.

Acknowledgments: The support provided by the China Scholarship Council (CSC), during a visit of
the first author to Universitat Politècnica de Catalunya, is acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huckelbridge, A.A.; El-Esnawi, H.; Moses, F. Shear Key Performance in Multibeam Box Girder Bridges. J. Perform. Constr. Facil.

1995, 9, 271–285. [CrossRef]
2. Barbieri, D.M.; Chen, Y.; Mazzarolo, E.; Briseghella, B.; Tarantino, A.M. Longitudinal Joint Performance of a Concrete Hollow

Core Slab Bridge. Transp. Res. Rec. 2018, 2672, 196–206. [CrossRef]
3. Shi, W.; Shafei, B.; Liu, Z.; Phares, B. Longitudinal box-beam bridge joints under monotonic and cyclic loads. Eng. Struct. 2020,

220, 110976. [CrossRef]
4. Kong, S.Y.; Zhuang, L.D.; Tao, M.X.; Fan, J.S. Load distribution factor for moment of composite bridges with multi-box girders.

Eng. Struct. 2020, 215, 19. [CrossRef]
5. AASHTO. AASHTO LRFD Bridge Design Specification, 9th ed.; American Association of State Highway and Transportation

Officials: Washington, DC, USA, 2020.
6. Zokaie, T. AASHTO-LRFD Live Load Distribution Specifications. J. Bridge Eng. 2000, 5, 131–138. [CrossRef]
7. CSA. Canadian Highway Bridge Design Code, CAN/CSA-S6; Canadian Standards Association: Mississauga, ON, Canada, 2019.
8. European Union. European Standard, Eurocode 1: Actions on Structures—Part 2: Traffic Loads on Bridges; European Union:

Brussels, Belgium, 2020.
9. Semendary, A.A.; Steinberg, E.P.; Walsh, K.K.; Barnard, E. Live-Load Moment-Distribution Factors for an Adjacent Precast

Prestressed Concrete Box Beam Bridge with Reinforced UHPC Shear Key Connections. J. Bridge Eng. 2017, 22, 04017088.
[CrossRef]

10. Liu, H.; He, X.; Jiao, Y. Damage Identification Algorithm of Hinged Joints for Simply Supported Slab Bridges Based on Modified
Hinge Plate Method and Artificial Bee Colony Algorithms. Algorithms 2018, 11, 198. [CrossRef]

11. Zhao, Y.; Cao, X.; Zhou, Y.; Wang, G.; Tian, R. Lateral Load Distribution for Hollow Slab Bridge: Field Test Investigation. Int. J.
Concr. Struct. Mater. 2020, 22, 8. [CrossRef]

12. Whelchel, R.T.; Williams, C.S.; Frosch, R.J. Live-load distribution of an adjacent box-beam bridge: Influence of bridge deck. PCI J.
2021, 66, 51–71. [CrossRef]

13. Ndong, A.K.; Sherif, M.M.; Kassner, B.; Harris, D.K.; Ozbulut, O.E. Potential Improvement in Rating Factors of Concrete T-Beam
Bridges through Refined Analysis: Evaluation of Distribution Factors. J. Bridge Eng. 2022, 27, 04022081. [CrossRef]

14. Aloisio, A.; Rosso, M.M.; Alaggio, R. Experimental and Analytical Investigation into the Effect of Ballasted Track on the Dynamic
Response of Railway Bridges under Moving Loads. J. Bridge Eng. 2022, 27, 04022085. [CrossRef]

15. Fu, C.C.; Pan, Z.; Ahmed, M.S. Transverse Posttensioning Design of Adjacent Precast Solid Multibeam Bridges. J. Perform. Constr.
Facil. 2011, 25, 223–230. [CrossRef]

16. Hussein, H.H.; Sargand, S.M.; Al-Jhayyish, A.K.; Khoury, I. Contribution of Transverse Tie Bars to Load Transfer in Adjacent
Prestressed Box-Girder Bridges with Partial Depth Shear Key. J. Perform. Constr. Facil. 2017, 31, 04016100. [CrossRef]

17. Labib, S.N.; El-Gendy, M.G.; El-Salakawy, E.F. Adjacent Concrete Box Girders Transversely Post-Tensioned at Top Flanges Only:
Experimental Investigation. J. Bridge Eng. 2021, 26, 04021017. [CrossRef]

18. Rui, X.; Wang, G.; Lu, Y.; Yun, L. Transfer matrix method for linear multibody system. Multibody Syst. Dyn. 2008, 19, 179–207.
[CrossRef]

19. Stephen, N.G. Repetitive beam-like structures: Distributed loading and intermediate support. Int. J. Solids Struct. 2009, 46,
3664–3668. [CrossRef]

20. Stephen, N.G. On the Riccati transfer matrix method for repetitive structures. Mech. Res. Commun. 2010, 37, 663–665. [CrossRef]
21. Tan, G.J.; Wang, W.S.; Jiao, Y.B. Free vibration analysis of a cracked simply supported bridge considering bridge-vehicle interaction.

J. Vibroeng. 2016, 18, 3608–3635. [CrossRef]

http://doi.org/10.1061/(ASCE)0887-3828(1995)9:4(271)
http://doi.org/10.1177/0361198118781653
http://doi.org/10.1016/j.engstruct.2020.110976
http://doi.org/10.1016/j.engstruct.2020.110716
http://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(131)
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001127
http://doi.org/10.3390/a11120198
http://doi.org/10.1186/s40069-020-0397-1
http://doi.org/10.15554/pcij66.6-03
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001928
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001934
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000147
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000973
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001699
http://doi.org/10.1007/s11044-007-9092-0
http://doi.org/10.1016/j.ijsolstr.2009.06.016
http://doi.org/10.1016/j.mechrescom.2010.07.017
http://doi.org/10.21595/jve.2016.16908


Buildings 2022, 12, 1610 20 of 20

22. Kang, H.J.; Xie, W.D.; Guo, T.D. Modeling and parametric analysis of arch bridge with transfer matrix method. Appl. Math. Model.
2016, 40, 10578–10595. [CrossRef]

23. Su, X.Y.; Kang, H.; Guo, T.D.; Cong, Y.Y. Modeling and Parametric Analysis of In-Plane Free Vibration of a Floating Cable-Stayed
Bridge with Transfer Matrix Method. Int. J. Struct. Stab. Dyn. 2020, 20, 2050004. [CrossRef]

24. Mensah, S.A.; Durham, S.A. Live Load Distribution Factors in Two-Girder Bridge Systems Using Precast Trapezoidal U-Girders.
J. Bridge Eng. 2014, 19, 281–288. [CrossRef]

25. Hołowaty, J. Live Load Distribution for Assessment of Highway Bridges in American and European Codes. Struct. Eng. Int. 2012,
22, 574–578. [CrossRef]

26. Cheung, M.S.; Bakht, B.; Jaeger, L.G. Analysis of box-girder bridges by grillage and orthotropic plate methods. Can. J. Civ. Eng.
1982, 9, 595–601. [CrossRef]

27. Li, G.; Shi, D. Calculation of Load Transverse Distribution for Highway Bridges; China Communications Press: Beijing, China, 1987.
28. Wang, W.; Zhang, C.; Wan, S. Study on transverse load distribution of hinged hollow beam. IOP Conf. Ser. Mater. Sci. Eng. 2017,

269, 012052. [CrossRef]
29. Harris, D.K. Assessment of flexural lateral load distribution methodologies for stringer bridges. Eng. Struct. 2010, 32, 3443–3451.

[CrossRef]

http://doi.org/10.1016/j.apm.2016.07.009
http://doi.org/10.1142/S0219455420500042
http://doi.org/10.1061/(ASCE)BE.1943-5592.0000520
http://doi.org/10.2749/101686612X13363929518018
http://doi.org/10.1139/l82-069
http://doi.org/10.1088/1757-899X/269/1/012052
http://doi.org/10.1016/j.engstruct.2010.06.008

	Introduction 
	Concept of TLD and Basic Assumptions 
	TLD Analysis of Articulated Slabs by FM 
	Review of Existing Methods 
	Procedure of the FM 

	TMM for the TLD Analysis 
	Transfer Matrix Derivation 
	Transfer Equation Solution 

	Illustrative Example 
	Overview 
	Application of the TMM 
	Finite Element Model 
	Results and Discussions 
	The TLD of Slabs in the Midspan and L/8 Span 
	Variations of TLD along the Span 


	Effects of Parameter Variations on TLD 
	Span Length 
	Relative Stiffness Coefficient 

	Conclusions 
	References

