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Abstract Transfer of competency in a perceptual task often
depends on shared information between anatomically
different perceptual subsystems. The problem of studying
transfer involves isolating conditions of similarity and then
trying to account for any resulting differences in transfer.
To respect this twofold aspect, this article takes a two-
pronged approach to transfer in dynamic touch. The present
research first tests the hypothesis that functional equiva-
lence supports the transfer of dynamic touch. Participants
were trained to wield unseen objects with the hand or foot
and were then tested on anatomically disparate limbs (i.e.,
the foot or hand, respectively). Next, we examined motion
capture of these wielding behaviors for predictors of any
asymmetry in transfer. Temporally fractal fluctuations of
exploratory behavior can modulate information detection,
and we tested whether the fractality of wielding might
predict asymmetries in transfer across disparate limbs.
Results suggest that transfer of training to anatomically
disparate limbs respects functional conditions of similarity
and also that the degree of temporally fractal fluctuations
predicted limb differences in transfer.
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Transfer of calibration between hand and foot

An essential aspect of the organization of the perceptual
system is the transfer of competency. For example, will
practice kicking a ball with the foot have any benefit for
how one throws a ball with the hand? The question is
whether one perceptual subsystem (i.e., for kicking) can
influence another (i.e., for throwing). Transfer of compe-
tency provides insights into the organization of the
perceptual system at large, because it reveals common
ground among perceptual subsystems. Perception depends
on the detection of information useful for action, but
transfer suggests that information detected with one part
of the body can be shared with another part of the body.
The question behind transfer of competency leads quickly
to a twofold challenge. First, transfer requires conditions of
similarity across perceptual subsystems, and second, the
appearance of transfer is subject to anatomical differences
in capacity for detecting information.

Past research has suggested that transfer can be supported
by anatomical similarity and functional equivalence. In the
former case, transfer may depend on similar anatomical
components having similar capacities for detecting informa-
tion, and in the latter case, transfer may depend on the
similarity of function regardless of different anatomical
capacities for detecting information. Functional equivalence
highlights the intriguing notion that information for perception
may be deeply grounded in the actions that it serves (e.g.,
Arzamarski, Isenhower, Kay, Turvey, & Michaels 2010;
Gibson, 1979). Functional equivalence poses a particularly
interesting case because it also forces the question of how
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anatomical differences might be characterized and reconciled
to permit transfer of competency. Capacities for detecting
information will vary with the exploratory modes available
to any anatomical component (Galloway & Thelen, 2004;
van de Langenberg, Kingma, & Beek, 2006). Hence, the
efficacy of transfer from one anatomical component to
another may depend on the exploratory movements by each
anatomical component involved. However, exploratory
movements must be able to share detected information
across some common ground between anatomically disparate
parts.

The purpose of this article is to elucidate the dynamics of
transfer in the context of functional equivalence across
anatomically disparate components. In order to do justice to
these aforementioned concerns, the article will address a
single experiment in two parts. In the first part, we will
demonstrate functional equivalence in performance for a
given perceptual skill across anatomical disparities and
across different sets of stimuli. This first part will be
restricted to the behavioral data, testing whether training of
one anatomical component leads to recalibration of percep-
tual judgments in another anatomical component. In the
second part, we will demonstrate that the exploratory move-
ments of each anatomical component contribute to individual
differences—both across participants and across anatomical
components—in the use of feedback from training and the
transfer of competency during recalibration. This second part
will focus on testing differences in exploratory movements
between the different anatomical components and on testing
the effects of these movements on the detection and sharing of
information during transfer.

Part 1: Experimental evidence for functional
equivalence

Anatomical similarities and functional equivalence

Anatomical explanations of transfer hinge on similarities
between anatomical components (limbs and muscles). For
instance, van Hedel, Biedermann, Erni, and Dietz (2002)
showed that a newly acquired locomotor skill for bipedal
obstacle avoidance transferred only to specific muscle types
(flexors). Transfer can be remarkably specific to the kinds
of anatomical components: Anstis (1995) found that after-
effects from one-legged hopping (using mostly extensors)
do not transfer to the unadapted leg.

Explanations of transfer based on functional equivalence
focus on the similarity across perceptual subsystems
exhibited in the relationship among anatomical compo-
nents, rather than in any anatomical component. Learning
studies in interlimb coordination have uncovered the
dominance of spatial over muscular transfer in learning

phase relations (Temprado & Swinnen, 2005). The spatial
structure of these phase relations serves to maintain a
symmetrical potential function that may support movement
globally throughout the body (Haken, Kelso, & Bunz,
1985). Competency will transfer from one phase relation to
competency with the symmetrical phase relation (Zanone &
Kelso, 1997). Furthermore, learning of new phase relations
transfers from trained upper limbs to untrained lower limbs
and vice versa (Kelso & Zanone, 2002). Transfer here
depends on a functionally defined phase relation irrespec-
tive of anatomical differences.

The role of functional equivalence in transfer may have
strong foundations in the organization of the sensorimotor
cortex. One implication of functional equivalence across
anatomically disparate components has been that aspects of
transfer may unfold at abstract subcortical and cortical
levels (e.g., Fabri & Polonara, 2008). Crucially, in contrast
to the traditional notions of somatotopic organization of the
sensorimotor cortex, it appears that, for some tasks, cortical
activity respects a functional, rather than a somatotopic,
organization (e.g., Sanes & Donoghue, 2000). In this case,
competency resulting from training fingers to maintain a
given sequence or phase relations will be encoded into
groups of neurons that are specific to the sequence or phase
relation (i.e., function), rather than to the control of fingers
(i.e., anatomy; Grafton, Hazeltine, & Ivry, 1998). Recent
theories of neuroplasticity recast the nervous system as a
field of neurons that solves motor problems adaptively by
reorganizing anatomical components to assume new func-
tional roles (Kleim, Jones, & Schallert, 2003). Hence, there
are both behavioral and neurological reasons to consider
functional equivalence as a viable basis for transfer even
when conditions of anatomical equivalence are not met.

Dynamic touch

We sought to investigate functional equivalence for transfer
in the experimental paradigm of dynamic touch (Carello &
Turvey, 2004; Turvey, 1996; Turvey & Carello, 1995).
Dynamic touch registers properties of manipulated objects
through muscle and tendon deformations. That is, dynamic
touch is a mode of perception defined functionally, rather
than anatomically, as movements made so as to discern the
properties of wielded objects. We adapted the dynamic
touch paradigm to research transfer of perceptual compe-
tency. Transfer of calibration from hand to contralateral
hand had already been found in dynamic touch by
Withagen and Michaels (2004). Our aim was to elaborate
this finding by providing an account of how functional
equivalence might support transfer of competency across
anatomically disparate components. Hence, we sought to
compare competency across anatomically disparate limbs
(i.e., hand and foot) in a dynamic touch task.
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Dynamic touch for perceiving length can be performed
by either foot or hand alone, with no difference in accuracy
or variability between effectors (Hajnal, Fonseca, Harrison,
Kinsella-Shaw, & Carello, 2007). Functional equivalence
between upper and lower limbs was also empirically
demonstrated in dynamic-touch tasks requiring selective
attention (Hajnal, Fonseca, Kinsella-Shaw, Silva, Carello, &
Turvey, 2007): When asked to perceive partial or whole
length of unseen rigid rods by wielding with hand or foot,
participants exhibited performance and variability that did
not differ between effectors.

In the present experiment, participants were asked to
perceive the length of various unseen rigid rods by wielding
with hand and foot. They were told that veridical feedback
would be provided during the training phase of the
experiment. However, feedback was scaled up by a factor
of 1.5 (see Withagen & Michaels, 2004). We reasoned that
inflated feedback makes for a stronger distinction between
effects of feedback and effects of perceptual drift due to
repeated exposure to the same set of stimuli. It is important
to keep in mind that studying transfer boils down to a test
of recalibration, and not a test of accuracy. Veridical
feedback is a more compelling manipulation when studying
accuracy. However, it is crucial that the experimental
method does not conflate accuracy with recalibration.
Scaling up feedback allows a better test of training in this
case and, subsequently, transfer of competency. Veridical
feedback may support transfer, and there may be interesting
interactions between accuracy and transfer, but the present
scope of the article is limited to understanding the transfer
across anatomically disparate components.1 In keeping with
Withagen and Michaels, we chose to omit veridical
feedback altogether and, instead, simply test the effect of
inflated feedback against the control case of no feedback.

We predicted that different effectors would exhibit transfer
of calibration in dynamic touch, suggesting an effect of
functional equivalence in the face of anatomical disparity. We
hypothesized that the change in perceptual competency
induced by training one effector would have both a short-
and a long-term influence on the system as a whole. More
specifically, we predicted that training with feedback would
affect performance of both the trained and untrained effectors
in the short and long terms, respectively. The foregoing
predictions concerning functional equivalence will be tested
here in the first part of the article. Because we expected that
anatomical disparity between hand and foot would introduce
asymmetries in exploration (e.g., Galloway & Thelen, 2004)
and, so, asymmetries in information detection (e.g., Stephen
& Arzamarski, 2009; Stephen, Arzamarski, & Michaels,
2010; van de Langenberg et al., 2006), we used motion
capture to collect data on the exploratory movements on each
trial. However, predictions concerning the motion capture
data will be postponed until the second part of the article. It
is important first to establish the presence of functional
equivalence before pursuing any anatomical qualifications on
functional equivalence.

Method

Participants Thirty-two undergraduate students at the
University of Connecticut participated. They received credit
as part of fulfilling requirements in an introductory
psychology course. All of them signed an informed consent
form approved by the Institutional Review Board of the
University of Connecticut.

Materials Rods were made of different materials (wood,
aluminum, and plastic) with different diameters. To ensure
that improvement did not involve identification of individual
rods, different rod sets were used in the training and testing
phases.2 Both the test set and the training set consisted of 10
rods, the former ranging from 40 to 80 cm, the latter from 40
to 85 cm. The test set included rods of various materials and
diameters, whereas the training set consisted only of wooden

1 The use of visual information is prone to individual differences (see
Withagen & van Wermeskerken, 2009, for an example specific to visual
feedback in dynamic touch) and nonlinearities (e.g., Steingrimsson,
2009; Stevens, 1957), both of which are at odds with conventional
significance testing for mean differences (Dixon, 2005; Green & Luce,
1974; Stephen et al., 2010). It would be premature to compound, with
two kinds of feedback, the variability due to multiple kinds of
feedback before we have a better understanding of transfer in
general (i.e., irrespective of accuracy). Analytical clarity in standard
ordinary least-squares (OLS) regression method (e.g., repeated-measures
analysis of variance [ANOVA]) for demonstrating transfer across
anatomical differences should be challenging enough given the
potential for Type II error incident to nonlinearity and individual
differences (e.g., Molenaar, 2008; Stephen & Arzamarski, 2009).
Hence, systematically introducing a further source of nonlinearity
and individual differences would risk masking real effects of
transfer. We will, in fact, pursue more complex analysis respecting
some amount of the individual differences and nonlinearity in the
second part of the article, but our case may hopefully be more
compelling if it can first be demonstrated in a more traditional, more
conservative analysis, such as an ANOVA.

2 A pilot study was conducted to test whether participants learned to
identify rods only in a single range of lengths. Five participants
practiced perception of rod length in the pretest with rods that spanned
from 30 to70 cm. They were trained with veridical feedback with the
same set of rods. A posttest followed including all the rods from the
pretest and the training block, in addition to 10 rods ranging from 80
to 120 cm. Results revealed that when the training and test phases
contained stimuli from different ranges of length, transfer of
calibration still occurred. There was a significant decrease in absolute
error between the short-range rods used in the pretest (M = 25%, SD =
0.071) and the long-range rods used in the posttest (M = 16%, SD =
0.032), t(4) = 2.378, p<.05. It was concluded that transfer generalized
beyond a single range of stimuli.
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rods of identical diameter. A 15-cm tube handle of 4.2-cm
diameter was screwed onto each rod so that the end of the
object was flush with the end of the handle. A 20-cm-long
plastic tube of 5.1-cm diameter secured to the participant’s
shoe with duct tape was used as a foot handle. The
specifications of both rod sets are given in Table 1. As is
evident from the table, the test set consisted of pairs of rods
that had the same length but, sometimes, very different mass.

Design Formally, this study followed a 2 (test: Phase I, or
“pretest”; Phase III, or “posttest”) × 2 (Phase II (i.e.,
“training”) effector: foot, hand) × 2 (test effector: Phase I
and Phase III, foot; Phase I and Phase III, hand) × 2 (Phase
II feedback: inflated feedback, no feedback) mixed design.
Phase II effector and Phase II feedback were between-
subjects variables.

In total, there were four groups of participants. Half of the
participants used the foot during Phase II, and the other half
used the hand. Within each of these effector groups, half
received training via feedback during this phase, and half did
not. Both the pretest and posttest included a block of wielding
with the hand and a block of wielding with the foot. In the
training trials (Phase II), participants wielded with either the
right hand or the right foot and, if they were in the feedback
condition, received feedback after each trial. Hence, in terms of
10-trial blocks across the experiment, the foot-trained partic-

ipants wieldedwith hand and then foot in Phase I, foot and then
again foot in Phase II, and foot and then hand in Phase III; the
hand-trained participants wielded with foot and then hand in
Phase I, hand and then again hand in Phase II, and hand and
then foot in Phase III. Ordering of effectors was the same for
the control participants, the only difference being the absence
of feedback.

Participants in the control groups were run first. Two linear
regressions quantified the relationship between perceived
length (Lp) and actual length (La) from all the training block
trials of control participants: one regression equation for
hand wielding, one for foot wielding. Experimental partic-
ipants received feedback not on La but on a multiple of Lp.
Just as scaling up feedback allows a test distinguishing
transfer from mere practice judging veridical length (e.g.,
Withagen & Michaels, 2004), basing feedback on Lp ensured
that transfer to a different limb would emerge as the result of
experience with training, rather than of simply practice in
judging veridical length. This rescaling used the slopes from
the linear regressions of Lp on La. For each regression (i.e.,
for hand or for foot), the slope (ccontrol) indicated the
relationship between La and Lp. We derived a scaled-up
feedback (FB) for each limb by multiplying the slope
(ccontrol) of the appropriate regression line by a factor of 1.5:

FB ¼ 1:5� ccontrol � Lað Þ þ cintercept:

Material Diameter (cm) La (cm) I1 (g*cm
2) I3 (g*cm

2) Mass (g)

Test Stimuli in Phase I and Phase III

PVC pipe 3.18 40 120,360 6,080 264

PVC pipe 1.27 40 81,019 11,625 274

PVC pipe 3.18 60 403,810 8,831 387

Wood 1.27 60 148,930 12,252 238

PVC pipe 3.18 70 652,290 10,163 454

Wood 1.27 70 196,310 12,623 229

Aluminum 1.27 75 522,150 14,870 440

Wood 1.27 75 231,000 12,775 232

Wood 1.27 80 310,060 12,910 264

PVC pipe 1.27 80 470,740 15,439 364

Training Stimuli in Phase II

Wood 2.10 40 47,060 6,890 159

Wood 2.10 45 63,917 7,412 170

Wood 2.10 50 117,290 8,618 230

Wood 2.10 55 148,980 8,960 239

Wood 2.10 60 149,610 8,646 210

Wood 2.10 65 187,190 8,927 220

Wood 2.10 70 215,370 9,000 218

Wood 2.10 75 281,220 9,427 240

Wood 2.10 80 337,770 9,647 249

Wood 2.10 85 380,990 9,691 248

Table 1 Specifications of
objects used in the experiment.
Note that the inertial properties
of wooden objects reflect inho-
mogeneities of the material
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That is, participants in the experimental condition were
trained to a scaling up of the actual-to-perceived mapping
of lengths by participants in the control condition.

In Phase I (pretest), each participant in the two experimental
groups received 10 trials of wielding by the effector not to be
trained and 10 trials of wielding by the effector to be trained. In
Phase III (posttest), each participant in the two experimental
groups received 10 trials of wielding by trained effector and 10
trials of wielding by untrained effector. Each of the 10 stimulus
objects was presented once per block of 10 trials. The order of
trial blocks was counterbalanced by test effector. Phase II
(training with inflated FB) distinguished the two experimental
groups: One group received 20 trials restricted to wielding by
foot, and one group received 20 trials restricted to wielding
by hand. With an optional 2-min break halfway through the
experiment, a typical session lasted 1 h.

Procedure A diagram of the experimental setup is shown in
Fig. 1. On all trials, a screen occluded the wielded rod, and
participants indicated the length of the rod by moving a
marker up and down on a vertical pulley system to estimate
how far they could reach with the rod. The grasped end
corresponded to the zero point on the pulley apparatus. The
participant was seated on a mattress on the ground. For hand
trials, the right hand was placed in a horizontal armrest at 45°
from the frontoparallel plane. On every trial, the object was
placed into the gloved hand vertically, so that the end of the
handle was flush with the bottom of the hand. A glove was
used to prevent participants from identifying the same object
in case it was given on two consecutive trials. Participants
were told to maintain a firm grip during wielding and to
restrict exploratory rotations of the wrist. For foot trials, an
additional plastic tube handle was attached to the bottom of
the right shoe with duct tape. For protection, the footwear
was wrapped in a plastic bag. On each trial, an object was
slid into the tube handle so that the initial orientation of the
object was vertical. The tube was positioned such that the
end of the object was flush with the heel. All exploratory
motions were to be restricted to rotations around the ankle,
with the rest of the leg kept as still as possible. No bending
of the knee or hip was allowed.

On each trial, the participant made a perceptual judgment
by positioning the marker to the maximal distance that could
be reached with the rod, with the proximal end of the rod at the
zero point on the pulley apparatus. On the inflated feedback
trials given to the experimental participants, once participants
were satisfied with their marker placement, the experimenter
moved the marker to the distance that corresponded to the
length calculated from the regression formula above. This
spatial extent was always larger than the real length of the
object and constituted inflated feedback. The participant was
told that this was the real length of the object, and he or she
was given opportunity to continue wielding the occluded

object while looking at the experimenter’s indication of its
alleged actual length.

Motion capture Three-dimensional motion capture of effec-
tor positions during wielding behaviors was recorded at
120 Hz, using a magnetic tracking system (Polhemus Fastrak,
Polhemus Corporation, Colchester, VT) and 6-D Research
System software (Skill Technologies, Inc., Phoenix, AZ).
Velcro was used to attach a motion capture marker to the
wielding effector. For each trial, recording began on each trial

Fig. 1 The setup for hand wielding (a) and foot wielding (b) in
Experiment 1
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when the participants began to wield the object, and recording
ended when the participants were satisfied with their
judgment. That is, recording did not include any wielding
while the participant looked at the repositioned marker.

Results

Ratio of perceived length to actual length (Lp/La) The ratio
of Lp to La was used as a basic measure of performance. It is
a dimensionless number that normalizes scores, allowing for
easy comparisons between effectors. A 2 (test: Phase I, or
pretest; Phase III, or posttest) × 2 (Phase II effector: foot,
hand) × 2 (test effector: Phase I and Phase III, foot; Phase I
and Phase III, hand) × 2 (Phase II feedback: inflated
feedback, no feedback) mixed analysis of variance
(ANOVA) was conducted on Lp/La. There were a number
of first- and second-order interactions, which were modified
by a third-order interaction. We begin with the third-order,
Phase II effector × test effector × test × Phase II feedback
interaction, F(1, 28) = 8.8, p < .006. This interaction
ispresented in Fig. 2. It shows that whereas foot training
recalibrated the foot more than it did the hand, hand training
recalibrated the hand and foot equally. This discrepancy
percolated predictably through most of the other interactions.
The significant test effector × test interaction, F(1, 28) = 8.5,
p < .007, and the three-way test effector × test × Phase II
feedback interaction, F(1, 28) = 6.0, p < .02, indicated that
there was a wider gap between pre- and posttest in the case
of foot judgments than in the case of hand judgments and
that this gap was wider for foot judgments than for hand
judgments as a result of feedback. The significant test
effector × test × Phase II effector interaction, F(1, 28) = 16.0,
p < .001, revealed that the pattern of results described by the
test effector × test interaction was preserved but showed
more recalibration when the foot was trained. The test

effector × Phase II feedback interaction was also significant,
F(1, 28) = 5.0, p < .03, reflecting less recalibration in the
control condition than in the feedback condition. The
significant test effector × Phase II effector interaction,
F(1, 28) = 5.6, p < .02, showed more recalibration with foot
than with hand in the foot-training regime. The test × Phase
II feedback interaction, F(1, 28) = 109.9, p < .001,
indicated that feedback influenced both the trained and
untrained effectors. Calibration transfer was confirmed by
analyzing the degree to which the untrained effectors were
recalibrated. Two test × Phase II feedback ANOVAs were
conducted, one for hand training on perception by foot, and
one for foot training on perception by hand. In both training
regimes, the test × Phase II feedback interaction was
significant (p < .001), indicating that the untrained effector
recalibrated as a result of feedback. This was a direct proof
of recalibration and calibration transfer. Although the foot
was recalibrated somewhat more than the hand, more
transfer was observed from hand to foot than vice versa.

Reliability of judgments On average, feedback was scaled
up by 45% and 42% from La for foot and hand,
respectively.3 This rendered measures of accuracy with
respect to actual length difficult to interpret. The reliability
of judgments, defined as the average deviation of an
individual’s responses expressed as a percentage of that
person’s mean perceived length, was best suited to capture
the consistency in the data:

reliability ¼

PNo

i¼1

PNrep

j¼1

Lpij�Lpij j
Lpi

No � Nrep
� 100;

where Lpij is the perceived length for object i on the jth
trial, Lpi is the mean perceived length for object i, No is the
number of objects used in the experiment, and Nrep is the
number of repetitions.4 The 2 (test effector: foot, hand) × 2
(Phase II feedback: inflated feedback, no feedback) × 2
(Phase II effector: foot, hand) mixed ANOVA on the
difference between pretest and posttest reliability returned
only a significant main effect of Phase II effector,
F(1, 28) = 5.7, p < .02. That is, although both effectors
were similarly reliable at the beginning of the experiment,
reliability with foot training increased more than reliability
with hand training. To offer a more detailed picture of the
results, the two training regimes were reanalyzed by
separate ANOVAs. A 2 (test effector: foot, hand) × 2
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Fig. 2 Ratio of perceived rod length and actual length (Lp/La). FT
stands for foot training, HT for hand training. The error bars represent
standard errors

3 These feedback values were calculated for each stimulus object by
plugging actual rod length into the rescaled regression equation.
4 Strictly speaking, none of the objects were offered multiple times
within a block. Since objects came in pairs of equal length, objects of
the same length within a stimulus set were treated as multiple
instances of the same length, and a mean was calculated.
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(Phase II feedback: inflated feedback, no feedback) mixed
ANOVA was conducted on the difference between pretest
and posttest reliability. The only significant effect was a
main effect of Phase II feedback in the hand-training
regime, F(1, 14) = 5.9, p < .03, suggesting that there was an
overall increase of reliability in both the trained and
untrained effectors from pretest to posttest as a result of
feedback. No such increase was observed in the foot-
training condition (F < 1).

Discussion

Overall, rescaling of Lp/La showed evidence for the
existence of transfer between different anatomical structures
of the human body. That is, not only are the present results
consistent with the existing findings that functional equiv-
alence supports transfer in dynamic touch (Withagen &
Michaels, 2004), but also they suggest that functional
equivalence is strong enough a substrate for transfer as to
overcome considerable anatomical disparity, as between the
hand and the foot.

Transfer of competency due to functional equivalence does
not escape qualification by anatomical disparity. Perception of
length was rescaled in both effectors as a result of feedback,
but not by the same amount. More specifically, both the hand
and the foot exhibited a rescaling of dynamic touch as a result
of feedback irrespective of which effector was trained, but foot
training facilitated less transfer to the hand than hand training
did to the foot. We will highlight two major implications of
this asymmetry across effectors.

In the first case, this asymmetry serves as new evidence
that transfer by functional equivalence is deeply entangled
in anatomical constraints of the motor system, further
supporting the view that the “perceptual system” is
unavoidably better thought of as a perception–action
system (Gibson, 1979; Kugler & Turvey, 1987; Thelen &
Smith, 1994). That is, in contrast to views presuming a
fundamental divide between, first, the noisy degrees of
freedom in the motor system and, second, a central
executive processing mechanism to control them, the view
of the organism in terms of a perception–action system
suggests a broader distribution of function across all levels of
biological activity. Under the framework of a perception–
action system, function is less likely an abstract variable
subject to strictly cognitive effects in the executive control
mechanism. Even if function were an abstract regularity
cognitively inferred from relatively noisy events at the motor
periphery, its expression is impossible to divorce from
the motor periphery. Hence, transfer can not be the
central executive’s simple reassignment of an abstract
regularity to a different aspect of the motor periphery.
Otherwise, transfer would have exhibited equivalent

degrees of rescaling no matter which effector was
trained. As it stands, the present results suggest that
anatomical constraints influence not only the detection of
haptic information, but also the later use of visual
feedback for transfer. Transfer of competency may
depend on functional equivalence, but function is not
so easily disembodied from the motor system.

In the second case, the asymmetry between effectors
raises further questions about what the relevant anatom-
ical disparities might be and how they might help to
explain the changes in transfer. The result of increased
reliability only during hand training and the failure of
reliability to increase overall both stand in contrast to the
conventional wisdom that reliability will increase from
pretest to posttest regardless of feedback (Gibson, 1969;
Wagman, McBride, & Trefzger, 2008). It may be that
anatomical disparity between trained and tested effectors
are to blame. The precedent for expecting reliability to
increase overall regardless of feedback is based on a
tradition of testing perceptual abilities within the same or
anatomically similar effectors. Involving two anatomically
disparate effectors, the present paradigm constitutes a
marked departure from this tradition, and so the results do
not necessarily contradict previous findings regarding
reliability. The result simply raises the new challenge of
understanding how the anatomical disparity influences
transfer.

The simplest first conjecture might be that the asymmetry is
due to each limb’s having different capacities to detect
information for dynamic touch. At first glance, it may seem
surprising that the foot should exhibit stronger effects of
transfer. After all, there is a well-documented superiority in
sensory acuity (Kets, Van Leerdam, Van Brakel, Deville, &
Bertelsmann, 1996) and neurophysiological measures of
sensitivity (Kennedy & Inglis, 2002) of hands over feet.
The coarser sensitivity of the foot may have to do with the
tendency of foot movements to span a larger space
(Lederman, Klatzky, Collins, & Wardell, 1987). However,
the traditional measures of sensitivity pertain to cutaneous
touch, rather than to dynamic touch. The foot may actually be
in a better position to detect a broader spectrum of
information through dynamic touch. Not only are there more
diverse synaptic inputs from the motor cortex in foot and leg
muscles than in arm and hand muscles (Machii et al., 1999),
but human infants will reach for objects with their feet
before—and after—they learn to use their hands (Galloway
& Thelen, 2004). Beyond infancy, the role of the feet in
detecting useful haptic information may fade into the
background (Bernstein, 1996; Turvey, 2007), but typically
developing humans frequently rely on their feet to detect
information specific to posture, gait, and even sitting
(Ainscough-Potts, Morrissey, & Critchley, 2006; Hirschfield,
Thorsteinsdottir, & Olsson, 1999; Kajita & Tani, 1997;
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Kavounoudias, Roll, & Roll, 2001; Perry, Santos, & Patla,
2001). Grasping by the hand may seem more subtle than foot
movements (Machii et al., 1999), but overall, upper limb
movements expend less energy than do trunk and lower body
movements that support posture and locomotion (Kumahara,
Tanaka, & Schutz, 2004). Although less salient, perhaps foot
movements have an advantage over hand movements in
making the most of transfer in haptic perception.

Despite the potentially endless list of differences
between hand and foot, a good first place to begin looking
for relevant differences is in exploratory movements. As
was noted above and elsewhere, exploratory movements are
crucial for detecting information (Gibson, 1966, 1979).
Even within the same effector and the same task, a different
exploratory mode can change the information detected from
the same stimulus (Harrison, Hajnal, Lopresti-Goodman,
Isenhower, & Kinsella-Shaw, 2011; Stephen & Arzamarski,
2009; van de Langenberg et al., 2006). Disparate anatom-
ical constraints have immediate implications for changes in
the available exploratory movements. A sensible strategy
would thus be to examine the exploratory movements of the
hand and the foot during the present task. Perhaps there are
differences in these movements that might shed light onto
why the foot appears more ready to take advantage of
transfer in dynamic touch.

Having demonstrated the efficacy of functional equiva-
lence for supporting transfer in the context of anatomical
disparity, we will now revisit the same experiment as that
reported above, and in the second part of the article, we will
present an analysis of the motion-capture data that may
provide some resolution for the present quandary. That is, in
the second part of the article, we will seek to demonstrate that
differences in transfer between hand and foot may be tied to
differences in exploratory behaviors of the hand and the foot.

Part 2: Investigating the role of exploratory movements
in transfer

Exploratory movements are inextricably related to the
detection of information for perception. This relationship
may be seen nowhere as clearly as in the sense of dynamic
touch. Here, during the effortful wielding of an object,
mechanical energy from the object’s position and distribution
of mass produces mechanical pressures on muscular tissues in
the wielding limb. Registered by mechanoreceptors such as
muscle spindles and Golgi tendon organs embedded in the
muscles, these deformations carry information for judgments
in dynamic touch (Carello & Turvey, 2004). Additional
evidence from nonhuman organisms, such as the wandering
spider Cupiennius salei, also suggests that the patterning of
pressures upon mechanoreceptors provides information
about the geometrical extent of structure in the environment

(Barth, 2002). Essentially, haptic experience with environ-
mental structure will produce neuromuscular fluctuations,
and the structure of these fluctuations bear close relationship
with the resulting perception of environmental structure. Our
goal in this part of the article is to pursue the latter point with
an analysis of exploratory movements, recorded during the
experiment in the first part. The analysis of exploratory
movements will aid in capturing the relationship between
neuromuscular fluctuations and the limb differences in
transfer of competency in dynamic touch.

Long-range temporal correlations in exploratory
movements

It will be important, for present purposes, to recognize that
neuromuscular fluctuations have memory. We intend the term
memory not in the cognitive sense of personal recollection,
but instead in the time series analysis sense of long-range
temporal correlation. That is, neuromuscular fluctuations do
not unfold strictly in the short term; the neuromuscular
tissues are not a blank slate wiped clean after each action
potential or muscle contraction. Rather, every change in
these tissues is sensitive to the context set up by a history of
physiological events, and every change, in turn, has
repercussions for later physiological events (e.g., Carling,
2004; Chiel & Beer, 1997; Feldman & Latash, 2005;
Hochachka, Darveau, Andrews, & Suarez, 2003; Johnston
& Edwards, 2002). If the neuromuscular fluctuations are to
provide a foundation for the information detection in
dynamic touch, it cannot be otherwise. The temporal
patterning of wielding is crucial to the detection of
information (Arzamarski et al., 2010; Stephen et al., 2010),
and the neuromuscular tissues involved in wielding must
share in this temporal patterning if they are, in the first place,
to produce wielding movements and, in the second place, to
detect information consequent to wielding. The long-range
temporal correlations emerging within neuromuscular fluc-
tuations must be crucial for the detection of information in
dynamic touch.

One compelling expression of the memory in neuromus-
cular fluctuations is temporally fractal scaling (e.g., Werner,
2010). In temporally fractal scaling, root mean square (RMS)
displacement (i.e., standard deviation of position in a
trajectory integrated from individual displacements from an
arbitrary origin; see Berg, 1993) increases according to a
power law with time scale. The power law entails that RMS
displacement increases quickly (i.e., according to a power of
time scale), and due to the scale-invariant form of the power
law, RMS displacement increases similarly quickly across all
available time scales. Specifically, the power-law growth is
substantially faster that what would be expected from the
central limit theorem (CLT), according to which uncorrelated
RMS displacement increases according to the square root of
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time (Shlesinger, Zaslavsky, & Klafter, 1993). The power-law
growth of fluctuations is evidence of long-range temporal
correlations (Scafetta & Grigolini, 2002; Viswanathan et al.,
1996; Zanette, 1997). Temporally fractal scaling can be
found in neuromuscular fluctuations from the coarser grain,
such as posture (Duarte & Zatsiorsky, 2001) and gait
(Hausdorff et al., 1997), to a finer grain, such as breathing
(Govindan, Wilson, Murphy, Russel, & Lowery, 2007),
heartbeats (Peng, Havlin, Stanley, & Goldberger, 1995),
and finger tapping (Lemoine, Torre, & Delignières, 2006), to
even finer grains, such as electric current in muscle (Gitter &
Czerniecki, 1995), neurotransmitter exocytosis (Lowen,
Cash, Poo, & Teich, 1997), ion-channel kinetics (Varanda,
Liebovitch, Figueiroa, & Nogueira, 2000), and interspike
intervals in neuron firing (Das, Gebber, Barman, & Lewis,
2003)—even independently of spinal influences (Orer, Das,
Barman, & Gebber, 2003). Temporally fractal scaling is a
signature of memory throughout the neuromuscular apparatus
available for dynamic touch.

The temporal fractality (i.e., the degree of temporally
fractal scaling) may also be important for the efficacy of
information detecting. Temporally fractal scaling is statistical
evidence for the absence of a characteristic time scale. That is,
within the sampling limits of a given measuring device,
variability shows no sign of tapering off, no matter how coarse
or how fine the scales chosen for analysis. We have already
considered the definition of temporally fractal scaling on the
time domain—that is, the power-law growth of RMS
displacement over time. The absence of a characteristic time
scale may be illustrated if we consider the evidence for
temporally fractal scaling in the frequency domain: The
spectral power of a temporally fractal time series will decay
according to a power law with greater frequencies. Because of
the scale-invariant form of a power law, measured temporally
fractal time series will exhibit the participation of oscillations at
all frequencies up to the sampling rate of the measuring device.
Neuromuscular fluctuations may thus exploit oscillations on a
wide (theoretically limitless) range of frequencies for the
exploration of environmental structure and, in turn, the
detection of information. That is, temporally fractal scaling
allows exploration to be maximally flexible, responding even
to details so fine or brief as to escape our conscious awareness.
Sensitivity to events across such a wide variety of scales makes
search behavior more thorough and effective (Bartumeus,
Catalan, Fulco, Lyra, & Viswanathan, 2002; Reynolds, 2010).
Indeed, temporally fractal fluctuations in exploratory move-
ments (by the hand and eye) facilitate the detection of
information in perceptual tasks (Dixon, Stephen, Boncoddo,
& Anastas, 2010; Stephen & Anastas, 2011; Stephen,
Boncoddo, Magnuson, & Dixon, 2009). Most relevant to
the present article, temporally fractal fluctuations in wielding
movements promote accuracy in judgments during dynamic
touch by the hand (Stephen et al., 2010).

Beyond considerations of simply optimizing information
detection, perhaps the more important point is that fractality
may provide insights into the individual differences in
information detection. Far from simply being a dichoto-
mous property, fractality encompasses a continuous spec-
trum of long-range temporal correlations. As we have
noted, temporally fractal scaling entails a power-law
relationship between RMS displacement and time scale.
That means that RMS displacement increases according to
time scale raised to a scaling exponent H (e.g., Kantelhardt
et al., 2002; Mandelbrot, 1983; Scafetta, Moon, & West,
2007). Temporally fractal scaling holds at least for the range
:5 < H � 1 (Kantelhardt et al., 2002; West, Geneston, &
Grigolini, 2008). Fractality is considered strongest for H = 1.
The trial-by-trial exponent H for hand wielding in dynamic
touch falls into the fractal range, and the closer H was to 1
during exploration, the more accurate the following judg-
ments became with training. Furthermore, trial-by-trial
changes in this exponent H also predicts trial-by-trial
changes both in the use of inertial information for length
judgments and in the use of visual feedback during training
to rescale these judgments (Stephen et al., 2010). So,
differences in the fractality of hand wielding predict differ-
ences in information detection for dynamic touch, both
across time and across participants. Considering the long-
range temporal correlations of temporally fractal scaling, this
finding makes some sense: The quality of information
detection for haptic perception should be related to the
memory (i.e., temporal coherence) of the neuromuscular
fluctuations involved in exploration.

Hypotheses regarding the effects of fractality on the transfer
of competency

We now bring the foregoing insights to bear on the issue of
transfer and, more specifically, on the questions raised in
the first part of the article. Before, we had considered the
potential for differences in exploratory movements to
produce differences in transfer. As we have seen, the
fractality of hand wielding predicts differences in informa-
tion detection. Perhaps the differences in transfer across the
two effectors (hand and foot) reflect differences in the
fractality of the different effectors’ wielding movements.
Essentially, our experiment provides a ready foundation for
clarifying further the role of fractality in perception. If the
fractality of wielding behaviors does, in fact, indicate
memory on the part of the neuromuscular fluctuations
involved in dynamic touch, the fractality of wielding should
predict how well training rescaled the judgments during the
block immediately following training (i.e., for the trained
limb) and during the final block (i.e., for the untrained
limb). Stephen et al. (2010) had reported an effect of
fractality on the use of feedback only during the training
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session, but we can now test for effects of fractality on the
use of feedback not only by the trained limb after feedback
has ended, but also by the untrained limb an entire block
after feedback has ended. If all of these predictions were
accurate, we would also expect a difference in fractality
between the hand and the foot—at the very least, in the
final block.

The direction of the expected difference between hand
and foot wielding bears some further consideration.
Stephen et al. (2010) found that fractality of wielding
promotes accuracy, but they did so on the pretext of having
given participants veridical feedback. Fractal wielding
predicted use of inertial information and use of feedback
for judgments, and the closer the scaling exponent H was to
1, the more accurate was the use of inertial information and
feedback. Since the only feedback in our experiment was
inflated, and not veridical, accurate use of the feedback
would necessarily make our participants’ responses less
veridical. Still, accurate use of inertial information and
accurate use of the inflated feedback would support
transfer. So, in the present case, it makes more sense to
predict that fractality should promote transfer. Hence,
stronger fractality (i.e., scaling exponents closer to 1)
should predict stronger transfer. In light of our findings in
the first part of the article, because the foot showed stronger
transfer than the hand, we would expect that the foot was
more fractal (i.e., had scaling exponents closer to 1).

Outline of hypotheses

For clarity, we now outline the specific hypotheses that will
structure our analysis. The first two hypotheses will be
similar to those tested by Stephen et al. (2010), with the
exception that they extend the same predictions to wielding
by the foot, as well as by the hand. The last two hypotheses
will move beyond the scope of Stephen et al. (2010) in
addressing the relationship of fractality to transfer and
differences in capacities of different effectors for detecting
information under transfer.

Hypothesis 1 Our first prediction is that the fluctuations in
wielding will be fractal, both for the hand and for the foot.

Hypothesis 2 Our second prediction is that the trial-by-trial
degree of fractality, indicated by the estimated scaling
exponent H, will help predict trial-by-trial changes in use of
inertial information and also use of feedback during
training.

Hypothesis 3 Our third prediction is that the trial-by-trial
degree of fractality will predict the use of feedback both (1)
for the trained limb after training has ended and (2) for the
untrained limb in the transfer block.

Hypothesis 4 Our fourth prediction is that the fractality of
the foot wielding will be greater (i.e., exhibiting trial-by-
trial scaling exponents H closer to 1) than that of the hand
wielding during transfer. We anticipate this difference as a
means of accounting for the asymmetry in transfer reported
in the first part of this article. Note that this prediction is
distinct from a simple expectation that H will be closer to 1
for foot wielding than for hand wielding in general; an
overall mean difference in H between foot and hand
wielding need not be either sufficient or necessary support
for hypothesis 4. Hypothesis 4 pertains specifically to an
expected difference in H during the transfer block.

Analyses

In order to test the four hypotheses enumerated above, we
will need to draw on a variety of analyses. Testing
hypothesis 1 will draw on three analyses: Detrended
fluctuation analysis (DFA; Peng et al., 1994) will provide
the primary estimates of the trial-by-trial fractal scaling
exponents H, and dispersion analysis (Bassingthwaighte,
Liebovitch, & West, 1994; Holden, 2005) and autoregres-
sive fractionally integrated moving average (ARFIMA)
modeling (Granger & Joyeux, 1980) will provide corrob-
orating evidence of fractality. One shortcoming of DFA is
that it may not be sufficient alone to distinguish between
short-range and long-range temporal correlations, and
corroborating evidence of long-range temporal correlations
is necessary before the estimates of scaling exponent H
from DFA can be trusted to reflect fractality (Maraun, Rust,
& Timmer, 2004; Wagenmakers, Farrell, & Ratcliff, 2004,
2005). Provided that a time series can be demonstrated to
have long-range temporal correlations, DFA is one of the
most reliable methods for estimating fractal scaling expo-
nents (Oswiecimka, Kwapien, & Drozdz, 2006; Peng et al.,
1994; Torre, Delignières, & Lemoine, 2007). Because DFA
will be the primary analysis and because dispersion analysis
and ARFIMA modeling will serve to corroborate evidence
from DFA, only DFA will be described in this section, and
descriptions of dispersion analysis and ARFIMA modeling
may be found in Appendix 1.

Detrended fluctuation analysis DFA begins with a time
series x(t) and integrates it to produce a random-walk
trajectory y(t), as follows:

yðtÞ ¼
XN
i¼1

xðiÞ � xðtÞ; ð1Þ

where xðtÞ is the mean of x(t). The individual values of x(t)
represent individual displacements, and y(t) is a time series
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of positions relative to an arbitrary starting point. DFA
calculates RMS displacement (i.e., standard deviation of
positions) after removing local trends. Linear regressions
yn(t) detrend nonoverlapping n-length windows of y(t).
Fluctuation F(n) is calculated as average RMS error of
these regressions for each n:

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

X
½yðtÞ � ynðtÞ�2

q
ð2Þ

for n < N=4.5 Similar to SD in Eq. 1, F(n) increases as

FðnÞ � nH : ð3Þ
Fractal time series generally exhibit scaling exponents H

in the range :5 < H � 1, with stronger fractality yielding H
closer to 1 (e.g., Kiefer, Riley, Shockley, Villard, & Van
Orden, 2009). Logarithmic scaling of Eq. 3 yields

logFðnÞ � H log n: ð4Þ
The slope of F(n) in double-log plots is taken to estimate

H.

Growth curve modeling Testing hypotheses 2–4 will
involve including the estimates of scaling exponents H
from DFA in growth curve modeling (GCM; Singer &
Willett, 2003) of the length judgments by dynamic touch.
GCM is a multilevel modeling technique designed to test
the effects of time-varying predictors on longitudinal data.
Whereas standard ordinary least-squares (OLS) regression
methods (e.g., ANOVA) assume homogeneous variance
across participants and across time, GCM is a maximum
likelihood (ML) regression method that fits random effects
capturing individual differences, allowing for a more
judicious estimate of fixed effects in the presence of
heteroscedasticity. Because change over time may often
manifest as heteroscedasticity (Molenaar, 2008), GCM is
thus well equipped to model the changes in perceptual
responses over time during training or transfer. GCM has
already proven to be an effective way to examine haptic
perceptual learning (Blau, Stephen, Carello, & Turvey,
2009; Stephen & Arzamarski, 2009; Stephen et al., 2010).
We will use GCM to test the effects of time-varying
predictors such as trial-by-trial scaling exponents H on
length judgments by dynamic touch, and this will help shed
light on the effect of fractality on training and transfer.

Definition of predictors in GCM of length judgments In
order to test the effects of fractality on length judgments in

dynamic touch, it will be necessary to incorporate a variety
of predictors to properly account for the changes in length
judgments. There is no value in testing the effect of
fractality unless we control for all of the well-known
factors contributing to responses in dynamic touch. First,
we will want to control for practice in the task, represented
by trial (trial number within each block, varying from 1 to
10) and block (block number, varying from 1 to 6). Second,
we will want to control for the documented effects of the
first and third inertial moments on judgments in dynamic
touch (Arzamarski et al., 2010; Fitzpatrick, Carello, &
Turvey, 1994; Michaels, Arzamarski, Isenhower, & Jacobs,
2008), represented by I1 and I3. Third, we will want to
control for any effect of simple limb difference, represented
by the dichotomous predictor hand (taking the value of 0
for each trial of foot wielding and 1 for each trial of
hand wielding). Fourth, we will want to test effects of
feedback, using three different dichotomous predictors:
FB, PostFB, and Trans. FB will denote the effect of
feedback during training; it will equal 0 for all trials
except for those in blocks 3 and 4 (i.e., Phase II
described in the experimental design), where it will
equal 1 for the feedback condition. PostFB will denote
the effect of having had feedback following training (i.e.,
during the block after feedback has ceased); it will equal
0 for all trials except for those in block 5 for the
feedback condition. Trans will denote the effect of
having had feedback following the change in effector
(i.e., during the final block when dynamic touch is tested
in the untrained effector); it will equal 0 for all trials
except those in block 6 for the feedback condition. All of
the foregoing predictors refer to the characteristics of the
design. That is, they represent the contribution of
experimental manipulation to length judgments in dy-
namic touch.

We introduce three different predictors to account for
exploratory behaviors (i.e., the individual participants’
contributions to their length judgments). Because we are
primarily interested in fractality, we might simply include
one predictor—namely, the trial-by-trial scaling exponent H
estimated by DFA. However, we would like to make an
important distinction. Temporally fractal exploration should
be distinguished from exploration that involves moving
“more” or “more variably.” Hence, in order to guard against
the possible claim that any significant effects of trial-by-
trial scaling exponent H may be simply artifacts of moving
“more” or “more variably,” we introduce the predictors
mean and SD to denote the effects of the mean and the
standard deviation of individual displacements in wielding
movements.

In the following analyses, GCMs will proceed as the test
of progressively higher-order interactions of the predictors
listed above. In all cases, models will include all component

5 Alternately considering the scaling region with a smaller upper bound
(i.e.,N/10) provides a more conservative estimate of H less prone to any
instability in scaling resulting in the progressive scarcity of progres-
sively larger windows (Hu, Ivanov, Chi, Carpena, & Stanley, 2001).
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terms (i.e., all lower-order interactions and main effects) for
the most conservative test possible. Whereas OLS regres-
sion methods evaluate new effects with an R-squared
statistic, the ML estimation requires that new effects be
evaluated on the basis of how well the new effect reduces
the −2 log likelihood (−2LL) deviance statistic. The change
in −2LL will be evaluated as a chi-square test with degrees
of freedom equal to the number of terms added to the
model.

Results

Descriptives on wielding time series As was indicated in the
first part of the article, motion capture during each trial in the
task yielded a three-dimensional time series of foot or hand
positions during wielding, with 120 samples per second. First,
for each trial, we calculated the time series of individual
displacements in wielding behavior by computing the
Euclidean distance between each consecutive pair of three-
dimensional positions. For example, motion capture of 10 s of
wielding would produce a three-dimensional position time
series of 1,200 samples, and the corresponding time series of
individual displacements would have 1,199 values. Thirty two
participants completed 10 trials in each of six blocks of
dynamic touch, generating a total of 1,920 (i.e., 32 × 6 × 10)
displacement time series. These individual-displacement time
series had an average duration of 2,199 values (SE = 26.06),
indicating that participants took, on average, 18.33 s [i.e.,
2199þ 1ð Þ 120= ] to wield before deciding on a length
judgment. An example individual-displacement time series
is displayed in Fig. 3.

Testing hypothesis 1: Long-range temporal correlations in
foot and hand wielding We submitted each time series to
DFA. Estimates for trial-by-trial scaling exponents H fell in
the fractal range (i.e., :5 < H � 1). Foot-wielding time
series exhibited higher scaling exponents (M = .85, SE =
.00) than did hand-wielding time series (M = .79, SE=.00).
As evidence that these fractal scaling exponents reflected
correlations in the temporal sequence, randomly shuffled
copies of the original time series were significantly lower
scaling exponents for the foot (M = .48, SE = .00) and for
the hand (M = .48, SE = .00), paired-samples t(1919) =
82.61 and 66.68, respectively, ps < .0001. Figures 4 and 5
depict example fluctuation functions F(n)/n for foot and
hand, respectively.

Testing hypothesis 1: Corroborating evidence of long-range
temporal correlations Dispersion analysis yielded esti-
mates of FD dimension consistent with long-range temporal
correlations for both the foot (M = 1.25, SE = .00) and the
hand (M = 1.29, SE = .00). ARFIMA modeling exhibited

an improvement in fit above and beyond ARMA model-
ing.6 Summed weights for ARFIMA models were higher
than those for ARMA models according to the Akaike
information criterion (AIC) more often than by chance for
both the foot and the hand, χ2(1) = 303.75 and 507.50,
respectively, ps < .0001. Similarly, summed weights for
ARFIMA models were higher than those for ARMA models
according to the Bayesian information criterion (BIC) more
often than by chance for both the foot and the hand, χ2(1) =
250.10 and 437.40, respectively, ps < .0001. For the AIC,
92.88% and 93.33% of the best-fitting ARFIMA models for
foot and hand, respectively, estimated d significantly greater
than zero; for the BIC, 93.41% and 95.17% of the best-
fitting ARFIMA models for foot and hand, respectively,
estimated d significantly greater than zero. Thus, ARFIMA
modeling provided converging evidence of long-range
temporal correlations in wielding.

As was noted above, the difference in H between foot
and hand might seem to provide tentative support for
hypothesis 4. That said, a mean difference across all trials
and blocks in general need not hold specifically during the
transfer block. Furthermore, until hypotheses 2 and 3 can
be tested and until we have any evidence for the role of
fractality in information detection, there may be no grounds
to expect, let alone interpret, any difference in H during the
transfer block.

Testing hypothesis 2: Effects of trial-by-trial fractality on
the use of inertial information Before arriving at a test of the
crucial points of this hypothesis, there is a great deal of model
building that must be done to ensure that effects of fractality
might not be better accounted for by more likely and less novel
predictors. Models will be reported in terms of their highest
order interactions, but they will include all lower-order
component effects as well (e.g., Stephen et al., 2010).
Parsimony will not be the goal; rather, we seek to test
whether fractality, a variable traditionally excluded from
theoretical discourse, is worth including in later theoretical
discourse at all. To that end, we were as conservative as
possible and allowed many chances for alternate variables to
absorb the predictive power. Furthermore, terms will be
entered into the model in specific organizations that will allow
test of the role of fractality in a variety of specific cases—for
example, the role of fractality above and beyond limb
differences during training, as distinct from the role of
fractality above and beyond limb differences during transfer.

Because the progression of including terms will be
somewhat tedious, we will include the details of this
progression in Appendix 2. In all cases, modeling begins

6 Augmented Dickey–Fuller tests for nonstationarity (i.e., “unit roots”;
Banerjee, Dolado, Galbraith, & Hendry, 1993) prior to ARMA and
ARFIMA modeling rejected the hypothesis of nonstationarity for 99%
of the time series, p < .05.
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with an interaction of trial and block and proceeds by
adding interactions specifying the part of the task during
which a role of fractality is to be tested, the inertial
information, the mean of fluctuations during wielding, and
the standard deviation of fluctuations during wielding.

What will be reported in the main text is the result of the
model at each step when fractality is entered.

Test of the effect of trial-by-trial fractality on the use of
inertial information in general appeared in model 5. Model 5
tested the H*SD*mean*I1*trial*block and H*SD*mean*I3

Fig. 5 Fluctuation function from DFA for a single example Euclidean
displacement time series of hand wielding during an example trial by
an example participant. Circles represent the fluctuation function for
the original time series; triangles represent the fluctuation function for
the shuffled copy of the time series

Fig. 4 Fluctuation function from DFA for a single example Euclidean
displacement time series of foot wielding during an example trial by
an example participant. Circles represent the fluctuation function for
the original time series; triangles represent the fluctuation function for
the shuffled copy of the time series

Fig. 3 Example wielding time
series from a single trial. The top
three panels show each of three
Euclidean dimensions of the
wielding trajectory. The bottom
panel shows the time series of
Euclidean displacements between
successive pairs of positions in
the same trajectory. It is these
Euclidean displacement time
series that, for each participant
on each trial, is submitted to
DFA for estimation of the scaling
exponent H
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*trial*block interactions, thus including the predictor H as
well as its interactions with all 47 terms in model 4 (i.e.,
adding 48 terms). The inclusion of H terms improved
prediction of length judgments, χ2(48) = 83.23, p < .01.
This result has twofold implications: First, it is consistent
with existing evidence that the fractality of fluctuations in
wielding predicted the use of inertial moments for generating
length judgments in dynamic touch (Stephen et al., 2010);
second, it extends that existing finding to a new limb,
demonstrating that the effect of fractality may not be specific
to wielding by the hand. See the first half of Table 2 for a
summary of models leading up to this point.

Testing hypothesis 2: Effects of trial-by-trial fractality on
the use of feedback during training Having tested the effect
of fractality on the use of inertial moments for length
judgments in dynamic touch, it was then necessary to test
the effect of fractality on use of feedback during training.
At this point, a crucial observation is that model 5 provided
a model of length judgments general to all trials in the
experimental procedure. That is, model 5 addressed only
aspects of the experimental design that described the
experience of all the participants, and it does not yet
address those manipulations setting training condition apart
from control condition. Subsequent modeling addressed
these effects by including new sets of interactions of form
similar to those in models 1–5 (see Appendix 2 for details).

Test of the effect of trial-by-trial fractality on the use of
feedback during training appeared in model 10. Model 10
tested the hand*H*SD*mean*I1*trial*block, hand*H*SD
*mean*I3 *trial*block, H*SD*mean*FB*I1*trial*block, and
H*SD*mean*FB*I3*trial*block interactions, thus including
the interactions of H with the 48 terms composing the FB
interactions (i.e., adding 48 terms). The inclusion of these H
interactions improved prediction of length judgments,
χ2(48) = 89.83, p < .001. This result has twofold
implications: First, it is consistent with existing evidence that
the fractality of fluctuations in wielding predicted the use of
inertial moments for generating length judgments in dynamic
touch (Stephen et al., 2010); second, it extends that existing
finding to a new limb, demonstrating that the effect of
fractality may not be specific to wielding by the hand.7 In

sum, fractality predicted changes in the use of feedback
during training, above and beyond the effects of all other
presently available predictors. See the second half of Table 2
for a summary of these models.

Testing hypothesis 3: Effects of trial-by-trial fractality on
the use of feedback by the trained effector after training has
ended Having tested for effects of fractality on the use of
feedback during training, we could then test for the effects
of fractality past the training blocks. That is, specifically,
we could test for the effects of fractality in the trained
effector during the block immediately following training
(i.e., block 5). For this purpose, just as we had introduced
new interactions with FB in previous modeling, we next
introduced new interactions involving PostFB. The only
catch is that, whereas feedback was given over two blocks
(i.e., blocks 3 and 4), there was only one block with
wielding by the trained effector after training ended (i.e.,
block 5). Hence, we could not articulate an interaction of
PostFB (which equals 1 only for block 5 for participants in
the training condition) and block. Modeling proceeded by
introducing new interactions including PostFB where
previous interactions had included block (see Appendix 2
for details; see Table 3).

Test of the effect of trial-by-trial fractality on the use of
feedback by the trained effector after training appeared in
model 14. Model 14 tested the hand*H*SD*mean*I1*trial
*block, hand*H*SD*mean*I3 *trial*block, H*SD*mean
*FB*I1*trial*block, H*SD*mean*FB*I3*trial*block,
H*SD*mean*I1*trial*PostFB, and H*SD* mean*I3* trial
*PostFB interactions, thus including the interactions of H
with the PostFB interactions (i.e., adding 24 terms). The
inclusion of these H terms improved prediction of length
judgments, χ2(24) = 40.02, p < .05, suggesting that the
fractality of fluctuations in wielding predicted the use of
feedback by the trained effector after training had ended.8 As
during training, fractality predicted changes in use of
feedback after training, above and beyond the effects of all
other presently available predictors.

8 As before in Footnote 7, additional modeling (omitted from the
present article) demonstrated an improvement in prediction following
inclusion of interactions of hand with all terms composing the FB
interactions, except to note that including H terms and hand terms
improved prediction of length judgments irrespective of inclusion
order. That is, as was noted above for model 6, effects of fractality did
not exhaust effects of anatomical difference, but effects of fractality
were also not simply artifacts of anatomical differences. This finding
holds even when hand terms are included in earlier interactions, as
noted in Footnote 7. If anything, inclusion of hand terms accentuates
the improvement in prediction by subsequently including fractality.
Alternate modeling (also omitted from the present article) demon-
strated similar significant effects for estimates of H from the more
conservative scaling region specified by Hu et al. (2001). Those
interested in further details may request them from the authors.

7 Additional modeling (omitted from the present article) demonstrated
an improvement in prediction following inclusion of interactions of
hand with all terms composing the FB interactions, except to note that
including H terms and hand terms improved prediction of length
judgments irrespective of inclusion order. That is, as was noted above
for model 6, effects of fractality did not exhaust effects of anatomical
difference, but effects of fractality were also not simply artifacts of
anatomical differences. Alternate modeling (also omitted from the
present article) demonstrated similarly significant effects for estimates
of H from the more conservative scaling region specified by Hu et al.
(2001). Those interested in further details may request them from the
authors.
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Testing hypothesis 3: Effects of trial-by-trial fractality on
the use of feedback by the untrained effector during the
transfer block Having tested for effects of fractality on the use
of feedback by the trained effector after training, we could then
test for the effects of fractality on the transfer of competency
from the trained effector to the untrained effector. Whereas the
effects on trained effector after training could be tested only in
block 5, the effects on the untrained effect could be tested only
in block 6. Just as we had introduced interactions involving
PostFB in the place of block, we adopted a similar strategy of
including new interactions involving Trans in the place of
block. Modeling proceeded by introducing new interactions
including Trans where previous interactions had included
block (see Appendix 2 for details).

Test of the effect of trial-by-trial fractality on the use of
feedback by the untrained effector during transfer appeared
in model 18. Model 18 tested the hand*H*SD* mean*I1*
trial * block, hand *H*SD* mean*I3 * trial * block, H*SD*
mean*FB*I1* trial * block, H*SD* mean *FB*I3* trial *
block, H*SD* mean*FB*I3* trial * block, H*SD*
mean*I1* trial*PostFB, H*SD* mean*I3* trial*PostFB,
H*SD* mean *I1* trial*Trans, and H*SD* mean*I3*
trial*Trans interactions, thus including the interactions of
H with the Trans interactions (i.e., adding 24 terms). The
inclusion of these H terms improved prediction of length
judgments, χ2(24) = 40.71, p < .05, suggesting that the
fractality of fluctuations in wielding predicted the use of
feedback by the trained effector after training had ended.9

As during training, fractality predicted changes in use of
feedback by the untrained effector, above and beyond the
effects of all other presently available predictors. That is,
fractality predicted the degree of transfer in dynamic touch
from one effector to another.

Figures 6, 7, 8 and 9 depict the trial-by-trial length
judgments for a representative sample of participants in each
of the four conditions in the experiment, along with trial-by-
trial prediction of length judgments from model 18. Let us
recall that these four conditions differed both on the order of
effectors used to wield (i.e., either hand, foot, foot, foot, foot,
hand or foot, hand, hand, hand, hand, foot, for blocks 1–6,
respectively, with the embedded order of blocks 1 and 2 and
of blocks 5 and 6 counterbalanced, respectively) and on the
presence or absence of inflated feedback during blocks 3 and
4. For the purpose of explaining the figures in the figure
captions, we adopted the convention of referring to the
conditions by the effector used during blocks 3 and 4 and by
the presence or absence of feedback—hence, “foot control,”
“foot feedback,” “hand control,” and “hand feedback.” In
each figure, we chose to show trial-by-trial predictions from
model 18 for the participants with the two best and the two
worst pairwise correlations between actual judgment and
predicted judgment.

Testing hypothesis 4: Difference in fractality between the
effectors during the transfer block As was noted above in
the test of hypothesis 1, there was a mean difference in trial-
by-trial scaling exponent H between the effectors when
considered across the entire experiment. However, in light
of the effects of fractality on transfer, we sought to determine
whether the relative strength of transfer to the foot (i.e., as
found in Part 1 of this article) reflected greater fractality of
fluctuations in foot wielding specifically during the transfer
block. To this end, we modeled trial-by-trial scaling exponent
H with another GCM. Modeling in this case differed from
previous modeling in two ways. First, whereas previous
modeling had used H as a predictor in models of length
judgment, we now treated H as a dependent measure.
Second, modeling now focused more on individual effects
(i.e., the individual B coefficients composing the regression
model) and less on large sets of interactions.

Model Predictors Description of Included Effects p

Effects on use of inertial information in general

1 Trial*Block Experience in general

2 (I1+I3)*Model 1 Inertia in general <.0001

3 Mean*Model 2 Average individual displacement (ID) in general <.05

4 SD*Model 3 Variability of IDs in general .13

5 H*Model 4 Fractality of IDs in general <.01

Effects on the use of visual feedback during training

6 Hand*Model 5 Limb in general <.0001

7 Model 6+FB*Model 2 Experience with visual feedback during training <.0001

8 Model 6+FB*Model 3 Average ID during training <.05

9 Model 6+FB*Model 4 Variability of IDs during training <.0001

10 Model 6+FB*Model 5 Fractality of IDs during training <.001

Table 2 Summary of models
testing hypothesis 2

9 Comments in Footnote 8 apply equally well at this stage of
modeling. Once more, those interested in further details may request
them from the authors.
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Model 19 modeled H with the hand*Trans and trial*-
block interactions, as well as all constituent main effects
(see Table 4). Trial*block represented terms controlling for
overall drift in H over the course of the experiment,
irrespective of condition. The other interaction addressed
the possibility of effector differences in H during transfer.
Model 19 yielded two effects on H. First, the positive effect
of block (B = .010, SE = .005, p = .07) indicated that
fractality increased marginally in general. Second, the
negative effect of hand (B = −.061, SE = .015, p < .001)
indicated that the fractality of fluctuations in foot wielding
was consistently higher than that of fluctuations in hand
wielding. The absence of a significant interaction of hand
with Trans indicates that the mean difference in fractality
between the effectors is not significantly changed in the
transfer block.10

General discussion

In general, we had hypothesized that the changes in the
temporal fractality of fluctuations in wielding would predict
changes in length judgments during transfer and that this
predictive relationship would improve prediction of differ-
ences in information detection across participants and across
effectors. These expectations manifested more specifically as
four hypotheses. Hypothesis 1 was that fluctuations in
wielding would exhibit temporally fractal fluctuations in both
effectors (i.e., hand and foot). Hypothesis 2 was that the
temporal fractality of wielding would predict changes in the
use of inertial information in general and changes in the use of

visual feedback during training. Hypothesis 3 was that the
temporal fractality of wielding would predict changes in the
use of visual feedback during the block immediately
following training (i.e., with wielding by the trained limb
after feedback had ended) and changes in the use of
visual feedback during the final block (i.e., with wielding
by the untrained limb). Hypothesis 4 was that the
temporal fractality of foot wielding would be stronger
than that of hand wielding during the final block (i.e.,
the transfer block). In all cases, we found that the data
were consistent with these hypotheses.

Temporal fractality of wielding across limbs

The finding of temporally fractal scaling demonstrated
fractal fluctuations in exploratory movements by the hand
and the foot. Fractality of fluctuations in responses by the
hand has been widely demonstrated (Gilden, 2001; Kello,
Beltz, Holden, & Van Orden, 2007; Stephen & Dixon,
2009; Torre et al., 2007; Treffner & Kelso, 1999; Van
Orden, Holden, & Turvey, 2003), but the present finding
extended the observation of temporal fractality to the
responses by the foot. The finding of temporal fractality
in foot wielding may be related to the temporal fractality in
postural sway (Duarte & Zatsiorsky, 2001). Indeed, it has
often been argued that postural sway provides optical
information for visual perception (Riccio & Stoffregen,
1991; Stoffregen, Pagulayan, Bardy, & Hettinger, 2000),
and given the present evidence that fluctuations at the foot
provide haptic information, it may be worth revisiting
postural sway to determine whether its fractal fluctuations
predict detection of optical information. Temporal fractality
of fluctuations in foot wielding entailed that, similar to
fluctuations in hand wielding (e.g., Stephen et al., 2010),
fluctuation in foot wielding were long-range temporally
correlated and exhibit a similarly fast (i.e., power-law)
growth across multiple scales. The power-law growth of

Table 3 Summary of models testing hypothesis 3

Model Predictors Description of Included Effects p

Effects on use of past feedback in block after training had ended (i.e., by trained limb)

11 Model 10+PostFB*(I1+I3)*trial Past training for same limb <.0001

12 Model 10+mean*PostFB*(I1+I3)*trial Average ID in posttraining block .11

13 Model 10+SD*mean*PostFB*(I1+I3)*trial Variability of IDs in posttraining block .12

14 Model 10+H*SD*mean*PostFB*(I1+I3)*trial Fractality of IDs in posttraining block <.05

Effects on the use of past feedback during transfer (i.e., by the untrained limb)

15 Model 14+Trans*(I1+I3)*trial Past training of other limb <.0001

16 Model 14+mean*Trans*(I1+I3)*trial Average ID during transfer .07

17 Model 14+SD*mean*Trans*(I1+I3)*trial Variability of IDs during transfer <.05

18 Model 14+H*SD*mean*Trans*(I1+I3)*trial Fractality of IDs during training <.05

10 Significant effect of hand and null effect of the hand*Trans
interaction remain unchanged in alternate modeling (omitted from
the present article) of estimates of H from the more conservative
scaling region specified by Hu et al. (2001).
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fluctuation—both in the hand and in the foot—suggested
that exploratory movements are open to oscillations at all
available frequencies.

Temporal fractality predicted use of inertial information
and visual feedback

Previously, Stephen et al. (2010) had shown that the trial-
by-trial temporal fractality of fluctuations in hand wield-
ing predicted changes in the use of inertial information

during all blocks and visual feedback during training. The
fact that, in the present study, both hand and foot wielding
exhibited temporally fractal fluctuations allowed us to test
whether the role of fractality in perceptual learning within
limb would generalize to the case of transfer between two
disparate limbs. The results provided evidence in favor of
such a generalization of the role of fractality. The
significant effects of including the trial-by-trial temporal
fractal scaling exponent H and its interactions in models 5
and 10 indicated that, as predicted in hypothesis 2, the
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Fig. 6 Example plots of actual
length judgments and predicted
length judgments (from model
18) for the footexperimental
condition. Predicted length
judgments from model 18 corre-
lated with actual judgments,
rs =.97 (top left), .97 (top right),
.95 (bottom left), and .93
(bottom right)
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Fig. 7 Example plots of actual
length judgments and predicted
length judgments (from model
18) for the footcontrol condition.
Predicted length judgments from
model 18 correlated with actual
judgments, rs =.90 (top left), .89
(top right), .83 (bottom left), and
.78 (bottom right)
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fractality of wielding, irrespective of limb, predicted
changes in the use of inertial information in general and
the use of visual feedback during training. These results
replicated the findings of Stephen et al. (2010) for the
effects of fractality in hand wielding and extended these
findings to encompass fractality in foot wielding. In short,
the present work suggested that temporal fractality may be
a key attribute of exploratory movements irrespective of
limb.

Temporal fractality predicted use of visual feedback after
training had ended both for the trained and untrained limbs

The results of testing hypothesis 3 suggested the novel
conclusion that the temporal fractality of fluctuations in
wielding predicts how well the experience of having had
visual feedback changed length judgments once training
had ended. The findings by Stephen et al. (2010) and the
results of testing hypothesis 2 in the present work addressed
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Fig. 8 Example plots of actual
length judgments and predicted
length judgments (from model
18) for the handexperimental
condition. Predicted length judg-
ments from model 18 correlated
with actual judgments, rs =.96
(top left), .96 (top right), .89
(bottom left), and .71
(bottom right)
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Fig. 9 Example plots of actual
length judgments and predicted
length judgments (from model
18) for the handcontrol condi-
tion. Predicted length judgments
from model 18 correlated with
actual judgments, rs = .94
(top left), .91 (top right), .87
(bottom left), and .86
(bottomr ight)
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only the effects of trial-by-trial fractality on use of
information currently available on each trial. They did not
speak to the possibility that trial-by-trial fractality predicted
the use of previously available visual information from
feedback once feedback was no longer available. Hypothesis
3 pressed upon the proposed role of long-range temporal
correlations as an index of memory in neuromuscular
fluctuations, predicting a relationship between the long-
range temporal correlations of wielding after training had
ended (i.e., after visual information for feedback was no
longer available) and the success with which past experiences
with feedback were woven together with current experiences
in the posttest. The results provided evidence in favor of such
a relationship. The significant effects of including the trial-by-
trial temporal fractal scaling exponent H and its interactions
in models 14 and 18 indicated that, as predicted in
hypothesis 3, the fractality of wielding predicted use of
visual feedback in the blocks after training ended. That is,
fractality of wielding by both the trained limb and the
untrained limb predicted changes in the effect of having had
visual feedback on length judgments following training. In
short, the present results suggested that temporal fractality
reflected the memory of the perception–action system for its
own history of information detection.

Temporal fractality differed across limbs in general
and during transfer

Previous research had demonstrated that greater fractality
(i.e., H closer to 1) supported optimal use of available
information (Stephen et al., 2010). In the present work, we
predicted that the difference during the transfer block
between foot and hand might reflect a difference in the
fractality of hand wielding and of foot wielding. We had
reported in the first part of the present article that transfer to
the foot was stronger than transfer to the hand, and in this
reanalysis, we predicted in hypothesis 4 that this limb
difference might be partially attributable to a difference in
temporal fractality. Because temporal fractality in wielding

predicted the use of visual feedback (only provided during
training) in the blocks after training had ended, it followed
that a limb whose fluctuations exhibited a greater degree of
fractality would be better able to make use of the
information provided during training. The results provided
evidence in favor of this explanation. The significant effect
of hand and the nonsignificant effect of the interaction
between hand and Trans in model 19 indicated that, as
predicted in hypothesis 4, the fractality of wielding was
stronger in the foot than in the hand.

Fractality of wielding supported the transfer of competency
between anatomically disparate limbs

We began this reanalysis with the goal of better under-
standing the asymmetry in transfer for different effectors.
On the basis of previous research into the temporal
structure of exploratory movements by the hand (Stephen
et al., 2010), we proposed that the differences in use of
information might be predicted from differences in tempo-
ral fractality of fluctuations in wielding. We have replicated
the effects previously tested by Stephen et al. (2010) and
expanded them not only to include a different limb, but also
to demonstrate the role of temporal fractality in supporting
the use of previously available information. Finally, we
have shown that foot wielding exhibited stronger fractality
than did hand wielding. We conclude that temporal
fractality of exploratory movements plays a crucial role in
the transfer of competency in dynamic touch.

Before we move on to the deeper theoretical interpreta-
tions of this finding, it is important to concede that
fractality was by no means the only feature on which the
limbs differed. We make no claims to having exhausted all
possible sources of limb differences. Indeed, as was
mentioned above in footnotes, alternate modeling not
reported here demonstrated effects of hand on length
judgments beyond effects of H (i.e., fractality). The crucial
aspect to note is that including hand effects prior to H
effects never prevented inclusion of H effects from
significantly improving model fit. That is, although
temporal fractality may not constitute the only reason for
differences in wielding by hand or by foot, temporal
fractality is a specific feature of wielding behaviors that
appeared to carry significant predictive weight in determin-
ing the use of information for the transfer of competency in
dynamic touch.

Hyper-diffusivity and entailments of fractal fluctuations
for information detection underlying perception

A great deal of interest and controversy has gone into
attempting to infer the exact processes responsible for
generating fractal scaling in perception–action and cogni-

Table 4 Coefficients from model 19

Effect B SE t p

Intercept .873 .030 29.06 <.0001

Control effects

Block .010 .005 1.83 .07

Trial .000 .001 0.30 .77

Trial*block .000 .000 0.43 .67

Substantive effects

Hand −.061 .015 −4.00 <.001

Trans −.019 .085 −0.23 .82

Hand*Trans .022 .053 0.42 .68
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tion. Candidate processes include, at one explanatory
extreme, the interaction-dominated dynamics of self-
organizing systems in which multiplicative cascade pro-
cesses weave together events across a wide variety of scales
(e.g., Holden, Van Orden, & Turvey, 2009; Ihlen &
Vereijken, 2010; Stephen & Dixon, 2011; Stephen &
Mirman, 2010; Van Orden et al., 2003, 2005) and, at
another explanatory extreme, the summed (i.e., not neces-
sarily interactive) aggregation of arbitrarily many autore-
gressive processes (Ding, Chen, & Kelso, 2002; Torre &
Wagenmakers, 2009; Wagenmakers et al., 2004, 2005;
Ward, 2002). Because the variety in trial-by-trial (i.e.,
temporally local) fractality is sufficiently rich to support
prediction of changes in consequent use of information, we
might expect that wielding is multifractal (i.e., bearing
multiple degrees of fractal scaling; e.g., Shlesinger et al.,
1993) and, hence, indicative of interaction dominance (e.g.,
Ihlen & Vereijken, 2010). We did not here present evidence
adjudicating on this question, however, because we sought
to address an alternate, often overlooked theoretical point
about the relationship between fractality of exploratory
movements—namely, that fractal scaling provides a
window on energy flow involved in information detection
underlying perception (Dixon, Holden, Mirman, &
Stephen, in press). Fractal scaling entails a markedly fast
flow of energy, and the degree of fractality thus predicts the
efficiency with which exploratory movements tap into the
available energy distributions for perception. As exempli-
fied by such classic physical examples as turbulence, fractal
fluctuations are both symptomatic of quick energy flow
(Shlesinger et al., 1993) and, perhaps more provocatively,
capable of generating the quickest absorption and disper-
sion of injected energy, as in the case of fractal-generated
turbulence (e.g., Seoud & Vassilicos, 2007). Hence, fractal
fluctuations in exploratory behaviors suggest a rapid
absorption of ambient energy; changes in fractal fluctua-
tions in exploratory behaviors thus bring about changes in
this absorption.

The fluctuations in a motor signal reflect the flow of
mechanical and electrical energy flowing through neuro-
muscular tissues. Motor fluctuations reflect the confluence
of on-board potentials bound up in the physiology of the
perception–action system and the potentials available in the
environment (e.g., Kugler & Turvey, 1987; Stephen et al.,
2010). That is, a variety of physiological degrees of
freedom composing the perception–action system are
available for flushing ambient energy through the
perception–action system. The consequent motor fluctua-
tions thus provide a negative image of how these potentials
diffuse over the course of exploratory movements. Provided
the time series of individual displacements in any physio-
logical signal follow the CLT (i.e., have a finite variance),
the random-walk trajectory integrated from these individual

displacements will cover distance (i.e., RMS displace-
ment noted above) at a rate proportional to the flow of
energy (Scafetta & Grigolini, 2002; Shlesinger et al.,
1993). Whereas ordinary mechanics generate random-
walk trajectories that generally exhibit a square-root
growth of RMS displacement over time, temporal fractal
scaling entails a faster (i.e., power-law) growth of
RMS displacement in trajectory and, thus, entails faster
diffusion—that is, hyperdiffusion. Differences in fractal
scaling do not reflect differences in amount of movement
(as shown by the effects of fractality above and beyond the
effects of mean and SD in foregoing models); rather,
differences in fractality reflect differences in the temporal
structure of fluctuations in the service of promoting energy
flow.

The present research serves as the latest findings
demonstrating that exploratory movements are fractal and
the contention that the changes in fractality predict the
efficacy of information detection. Previous research has
documented such findings in the context of exploratory
movements by the hand (Stephen & Dixon, 2009; Stephen
et al., 2010) or by the eye (Stephen & Anastas, 2011;
Stephen et al., 2009). The predictive power of fractality for
capturing differences in information detection supports a
view of perception–action as the evolving transaction of an
organism with the patterned energy distribution in the
environment (Gibson, 1966; Wagman & Miller, 2003)
without depending on a simple psychophysical correspon-
dence (cf. Postman 1955; Stoffregen & Bardy, 2001). That
is, bare intensities of informational variables (e.g., moments
of inertia) may well elicit various perceptual responses over
time or across participants, but before plunging into the
realm of cognitive processes for a means to explain this
perceptual variety, fractal scaling of exploration is more
plainly and more immediately available as a way to
describe the role exploration can have in the variability in
detection of information.

The present results extend previous work in that they
demonstrate the generality of findings regarding temporal
fractality not only to a new effector (i.e., the foot), but also
across two different effectors within the same task. In short,
the predictive power of fractality for capturing differences in
information detection may be exported across effector in the
same task. Fractal fluctuations thus may serve as a common
currency through which the perception–action system can
share information across multiple effectors or, conversely,
through which an effector can draw upon the experiences of
the perception–action system at large. Fractality of explorato-
ry movements may thus be an important factor modulating the
transfer of competency. It is known that different exploratory
styles and constraints by the same limb can modulate the
available information for dynamic touch (Harrison et al.,
2011). Future research could investigate the deeper relation-
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ships between exploratory style and fractality of exploratory
movements.

Transfer as a matter of function and fractality

Transfer occurs when information detected in one context
influences the information detection in another, later context.
Transfer depends on conditions of similarity between the
earlier context and the later context (Blau et al., 2009). This
article has offered a two-pronged approach to an under-
standing of transfer in the case of dynamic touch. We
presented a task in which training in dynamic touch by one
effector led to changes in dynamic touch by an anatomically
disparate effector. What has emerged is a portrait of transfer
as a subtle interplay of function and fractality.

First, we showed that functional equivalence is sufficient
similarity for transfer of competency in dynamic touch.
That is, transfer of training to one limb (e.g., the hand) is
not limited to a homologous limb (e.g., the contralateral
hand). Rather, recruiting disparate limbs for the same task
can lead to transfer in spite of anatomical disparity.
Function thus appears to play a large role in the detection
of information by the perception–action system.11 Detected
information is not strictly specific to the effector involved
in detection; detected information is also specific to the
function that occasions detection. However, our results in
the first part of the article suggested that there was an
asymmetry between effectors, such that dynamic touch by
the foot reflected stronger transfer of competency from
training of the hand than vice versa. So, the role of function
in supporting transfer is not without qualification by
anatomical disparity.

Second, we showed that temporal fractality of fluctuations
in wielding predicted differences in information detection.
Fractality predicted differences in information detection
throughout the transfer paradigm: in general, during training,
and after training across both limbs. Irrespective of any limb
difference, temporal fractality appears to be a crucial feature of
exploratory behaviors and to index the integration of
information from neuromuscular experience over time. A
significant difference in fractality across limbs held through-
out the transfer paradigm: Wielding by the foot exhibited
greater fractality than did wielding by the hand. We propose
that the fractal advantage of the foot over the hand translated
to an advantage in detecting information and, hence, in
transferring competency for dynamic touch.

The portrait of transfer that emerges is one that melds
functional equivalence and fractal differences. The first part
of the article addressed the possibility that functional

equivalence was sufficient to effect transfer across anatom-
ically disparate limbs. The latter part of the article
addressed the possibility that differences in performance
by anatomically disparate limbs were attributable to differ-
ences in fractality. In both cases, this article identifies
complementary sides of the common ground needed for
transfer to occur. On the one hand, function provides a task-
dependent substrate across which the perception–action
system can share information between its local subsystems
(i.e., effectors). Although we have highlighted differences
in fractality to explain differences in information detection,
fractal fluctuations in general provide a substrate endoge-
nous to the perception–action system. Functional equiva-
lence may support transfer in the first place, and fractality
may modulate the way that transfer unfolds through the
heterogeneities of the perception–action system.

Appendix 1

Dispersion analysis

Dispersion analysis examines the change in standard
deviationD across sample means of nonoverlapping n-length
subsets of the time series x(t). D(n) decays according to a
power law,

DðnÞ � n�c; ðA1Þ
from which follows

logDðnÞ � �c log n: ðA2Þ
The negative slope is used to calculate an estimate of

fractal dimension (FD),

FD ¼ 1� ð�cÞ: ðA3Þ
A time series with long-range temporal correlations will

exhibit 1:5 > FD � 1 (Aon, Cortassa, & O’Rourke, 2006;
Bassingthwaighte et al., 1994; Van Orden et al., 2003).

ARFIMA modeling

Conventionally, linear forecasting methods model time series
in terms of short-range temporal correlations. When time
series x(t) is stationary, these methods attempt to model x(t)
in terms of autoregressive (AR) and moving average (MA)
components. AR components describe the contribution of
the p previous values of x(t) to its own current value:

xðtÞ ¼
Xp

i¼1

fixðt � 1Þ þ "ðtÞ; ðA4Þ

where fi is a coefficient denoting the effect of the ith
previous value on the current value of x(t) and ε(t) is a noise
term. MA components describe the contribution of Gaussian

11 We intend “function” here as the goal-directed relationship between
the organism and its environment irrespective of anatomical partic-
ulars; in this article, function is the perception of an object’s extent
purely by wielding.
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fluctuations interacting with the q previous values of x(t) to
its own current value:

xðtÞ ¼
Xq

i¼1

qi"ðt � iÞ þ "ðtÞ; ðA5Þ

where θi is a coefficient denoting the effect of the ith
previous Gaussian fluctuation. A model with both p AR
components and q MA components is called an ARMA(p,q)
model (Box & Jenkins, 1970).

When x(t) is nonstationary, it is said to have a unit root,
meaning that it is the first-order integration of a stationary
noise. Because AR and MA modeling presupposes statio-
narity, one strategy is to take the difference x(t) – x(t – 1) of
the time series and to fit the (stationary) differences with
AR and MA components. Hence, the linear model for time
series with a unit root is an autoregressive integrated
moving average (ARIMA) model that fits AR and MA
terms to x(t) – x(t – 1), the differences of x(t). In addition to
p AR components and q MA components, ARIMA models
have a d parameter indicating the number of differencings
of x(t) required before p AR and q MA components can be
fit to the data (Box & Jenkins, 1970). These models are
denoted as ARIMA(p,d,q).

ARFIMA modeling is a variation on ARIMA
modeling. When the parameter d is set to fractional
values, the model exhibits long-range temporal correla-
tions: Each current value of x(t) depends on previous
values at all lags. When �:5 � d < 0, the long-range
temporal correlations are negative; when :5 � d > 0, they
are positive. ARFIMA modeling allows a test for long-
range temporal correlations (i.e., significantly nonzero
dj j � :5 for the I component) above and beyond short-
range temporal correlations (i.e., the p AR and q MA
components; Torre et al., 2007; Wagenmakers et al.,
2004, 2005). Essentially, this method amounts to fitting
nine ARMA(p,q) models and nine ARFIMA(p,d,q)
models for which p and q can vary among 0, 1, and 2
and letting the ARFIMA models estimate the optimized
value of d. The best-fitting class of models for a given
time series x(t) is chosen according to either the AIC or
the BIC, defined for the ith model as

AICi ¼ �2 log Li þ 2ki;

BICi ¼ �2 log Li þ ki logNi; ðA6Þ

where logLi, ki, and Ni are the log-likelihood, degrees of
freedom (i.e., pþ qþ 1 for ARMA and pþ qþ 2 for
ARFIMA), and length of the time series, respectively, for
the ith model (Akaike, 1973; Schwarz, 1978). Each ith

model in a set of m models is weighted as wi(AIC) or
wi(BIC), where

ΔiðAICÞ ¼ AICi �minAIC;

ΔiðBICÞ ¼ BICi �minBIC;

LiðAICÞ � expð�:5�ΔiðAICÞÞ;
LiðBICÞ � expð�:5�ΔiðBICÞÞ;

wiðAICÞ ¼ LiðAICÞ
Pm
j¼1

LjðAICÞ
;

wiðBICÞ ¼ LiðBICÞ
Pm
j¼1

LjðBICÞ
:

ðA7Þ

When a time series has long-range temporal correlations,
the sum of weights for ARFIMA models will exceed the
sum of weights for ARMA models, and the highest-
weighted ARFIMA model will have a significantly nonzero
dj j � :5 (Torre et al., 2007). In general, adding parameters
to any model should improve its fit. The main question is
whether the added parameter, here d added to the ARMA
model in order to produce an ARFIMA, has a significant
effect.

Appendix 2

Preliminary models for testing an effect of fractality
on use of inertial information

Model 1 served as the most sparse model of length
judgments that could be extended across the entire
experimental procedure—namely, the trial*block interac-
tion (and implicitly, the main effects of trial and block).
Completely devoid itself of any experimentally relevant
information, this model predicted length judgments purely
as a function of continued experience with dynamic touch,
and it served only as the foundation upon which further, more
experimentally informative predictors can be tested. Model 1
allowed all subsequent reasoning to deal with the role of every
other predictor as it supported changes in length judgment
over time, as in the case of training and transfer.

Subsequent modeling proceeded as follows.Model 2 tested
the I1*trial*block and I3*trial*block interactions, thus in-
cluding inertial predictors I1 and I3, as well as their
interactions with all 3 terms in Model 1 (i.e., adding 8 terms).
The inclusion of I1 and I3 terms improved prediction of
length judgments, χ2(8) = 1,415.26, p < .0001, consistent
with existing findings that inertial moments can predict
length judgments in dynamic touch (Arzamarski et al., 2010;
Fitzpatrick et al., 1994; Michaels et al., 2008). Model 3
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tested the mean*I1*trial*block and mean*I3*trial*block
interactions, thus including the predictor mean as well as
its interactions with all 11 terms in model 2 (i.e., adding 12
terms). The inclusion of mean terms improved prediction of
length judgments, χ2(12) = 25.42, p < .05, suggesting that
the average size of fluctuations in wielding predicted the use
of inertial moments in generating length judgments in
dynamic touch. Model 4 tested the SD*mean*I1*trial*block
and SD*mean*I3*trial*block interactions, thus including the
predictor SD as well as its interactions with all 23 terms in
model 3 (i.e., adding 24 terms). The inclusion of SD terms did
not improve prediction of length judgments, χ2(24) = 32.04,
p = .13, suggesting that the variability of fluctuations in
wielding did not, in general, play a role in the use of
inertial moments for generating length judgments in
dynamic touch.

Preliminary models for testing an effect of fractality
on use of visual feedback during training

Before we could explicitly test for effects of fractality on
use of feedback during training, it was important to control
for difference of effector in general across all trials (i.e., for
those effects composing model 5). Because we had already
found a significant difference in the fractality between foot
and hand wielding, we wanted to safeguard against
confusing subsequent effects of fractality (i.e., on the use
of feedback during training, after training, or during
transfer) with effects of anatomical differences across all
trials. Hence, we ran model 6 to incorporate the predictor
hand into interactions in model 5 general to all trials. So,
model 6 tested the hand*H*SD*mean*I1*trial*block and
hand*H*SD*mean*I3 *trial*block interactions, thus includ-
ing the predictor hand as well as its interactions with all 95
terms in model 5 (i.e., adding 96 terms). The inclusion of
hand terms improved prediction of length judgments,
χ2(96) = 244.00, p < .0001, suggesting that the limb
differences contributing to differences in length judgments
are not exhausted by fractality. It is noteworthy that the
inclusion of H terms improved prediction of length judg-
ments even if hand terms were already included in the model
(i.e., if model 5 included hand terms and model 6 included H
terms, instead of vice versa as reported), indicating that
effects of fractality were not trivial artifacts of anatomical
differences. Essentially, fractality predicted changes in use of
inertial moments above and beyond the effects of all other
presently available predictors.

Now, we proceeded from model 6 to test the effect of
fractality on use of feedback during training. Model 7 tested
the hand*H*SD*mean*I1*trial*block, hand*H*SD*mean*I3
*trial*block, FB*I1*trial*block, and FB*I3*trial*block inter-
actions, thus including the predictor FB as well as its
interactions with all 11 terms from model 2 (i.e., adding 12

terms). The inclusion of FB improved prediction of length
judgments, χ2(12) = 207.25, p < .0001, consistent with
existing evidence that feedback contributes to changes in
relationship between inertial moments and length judgments
in dynamic touch (Michaels et al., 2008; Stephen et al.,
2010). Subsequent modeling enhanced these new FB
interactions. Model 8 tested the hand*H*SD*mean*I1*trial
*block, hand*H*SD*mean*I3 *trial*block, mean*FB*I1
*trial*block, and mean*FB*I3*trial*block interactions, thus
including the interactions of mean with the 12 terms
composing the FB interactions (i.e., adding 12 terms). The
inclusion of these mean interactions improved prediction of
length judgments, χ2(12) = 23.69, p < .05, suggesting that
the average size of fluctuations in wielding predicted the use
of feedback during training. Model 9 tested the hand*H*SD
*mean*I1*trial*block, hand*H*SD*mean*I3 *trial*block,
SD*mean*FB*I1*trial*block, and SD*mean*FB*I3*trial
*block interactions, thus including the interactions of SD
with the 24 terms composing the FB interactions (i.e., adding
24 terms). The inclusion of these SD interactions improved
prediction of length judgments, χ2(24) = 59.27, p < .0001,
suggesting that the variability of fluctuations in wielding
predicted the use of feedback during training.

Preliminary models for testing an effect of fractality on use
of feedback by the trained effector after training had ended

Thus, Model 11 tested the hand*H*SD*mean*I1*trial*block,
hand*H*SD*mean*I3 *trial*block, H*SD*mean*FB*I1
*trial*block, H*SD*mean*FB*I3*trial*block, I1*trial
*PostFB, and I3*trial*PostFB interactions, thus including
PostFB and its interactions with the five terms composing
I1*trial and I3*trial (i.e., adding six terms). The inclusion of
PostFB terms improved prediction of length judgments,
χ2(6) = 106.69, p < .0001, consistent with existing evidence
that training has a lasting effect on the trained effector
(Michaels et al., 2008; Wagman et al., 2008).

With the foregoing replacement of block effects with
PostFB effects in model 11, subsequent modeling proceeded
similarly as for tests of hypothesis 2. Model 12 tested the
hand*H*SD*mean*I1*trial*block, hand*H*SD*mean
*I3 *trial*block, H*SD*mean*FB*I1*trial*block,
H*SD*mean*FB*I3*trial*block, mean*I1*trial*PostFB, and
mean*I3*trial*PostFB interactions, thus including the inter-
actions of mean with the PostFB interactions (i.e., adding 6
terms). The inclusion of these mean terms did not improve
prediction of length judgments, χ2(6) = 10.41, p = .11,
suggesting that the average size of fluctuations in wielding did
not predict the use of feedback by the trained effector after
training had ended. Model 13 tested the hand*H*SD*mea-
n*I1*trial*block, hand*H*SD*mean*I3 *trial*block,
H*SD*mean*FB*I1*trial*block, H*SD*mean*FB*I3*trial
*block, SD*mean*I1*trial*PostFB, and SD*mean*I3*trial
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*PostFB interactions, thus including the interactions of SD
with the PostFB interactions (i.e., adding 12 terms). The
inclusion of these SD terms did not improve prediction of
length judgments, χ2(12) = 18.00, p = .12, suggesting that the
variability of fluctuations in wielding did not predict the use
of feedback by the trained effector after training had ended.

Preliminary models for testing an effect of fractality
on the use of feedback by the untrained effector during
the transfer block

Thus, model 15 tested the hand*H*SD*mean*I1*trial*block,
hand*H*SD*mean*I3 *trial*block, H*SD*mean*FB*I1
*trial*block, H*SD*mean*FB*I3*trial*block, H*SD
*mean*I1*trial*PostFB, H*SD*mean*I3*trial*PostFB,
I1*trial*Trans, and I3*trial*Trans interactions, thus including
Trans and its interactions with the five terms composing
I1*trial and I3*trial (i.e., adding six terms). The inclusion of
Trans terms improved prediction of length judgments,
χ2(6) = 61.88, p < .0001, consistent with the evidence in
Part 1 of this article that training influenced dynamic touch
by the untrained effector.

With the foregoing replacement of block effects with Trans
effects in model 15, subsequent modeling proceeded similarly
as for tests of PostFB. Model 16 tested the hand*H*SD*mea-
n*I1*trial*block, hand*H*SD*mean*I3 *trial*block,
H*SD*mean*FB*I1*trial*block, H*SD*mean*FB*I3*trial
*block, H*SD*mean*FB*I3*trial*block, H*SD*mean*I1
*trial*PostFB, H*SD*mean*I3*trial*PostFB, mean*I1
*trial*Trans, and mean*I3*trial*Trans interactions, thus in-
cluding the interactions of mean with the Trans interactions
(i.e., adding 6 terms). The inclusion of these mean terms did not
improve prediction of length judgments, χ2(6) = 11.49,
p = .07, suggesting that the average size of fluctuations in
wielding only marginally predicted the use of feedback by the
untrained effector. Model 17 tested the hand*H*SD*mea-
n*I1*trial*block, hand*H*SD*mean*I3 *trial*block,
H*SD*mean*FB*I1*trial*block, H*SD*mean*FB*I3*trial
*block, H*SD*mean*FB*I3*trial*block, H*SD*mean*I1
*trial*PostFB, H*SD*mean*I3*trial*PostFB, SD*mean*I1
*trial*Trans, and SD*mean*I3*trial*Trans interactions, thus
including the interactions of SD with the Trans interactions
(i.e., adding 12 terms). The inclusion of these SD terms
improved prediction of length judgments, χ2(12) = 21.00, p <
.05, suggesting that the variability of fluctuations in wielding
predicted the use of feedback by the untrained effector.
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