

Open access • Posted Content • DOI:10.1101/2021.06.22.21259323

Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistanis and Bangladeshis — Source link

Qin Qin Huang, Neneh Sallah, Dunca D, Bhavi Trivedi ...+15 more authors

Institutions: Wellcome Trust Sanger Institute, University College London, Queen Mary University of London, University of Southampton ...+3 more institutions

Published on: 24 Jun 2021 - medRxiv (Cold Spring Harbor Laboratory Press)

Topics: Population and Genome-wide association study

Related papers:

- A genome-wide association study in europeans and South asians identifies 5 new Loci for coronary artery disease.
- Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease.
- Inclusion of variants discovered from diverse populations improves polygenic risk score transferability
- Population-specific and transethnic genome-wide analyses reveal distinct and shared genetic risks of coronary artery disease
- Improved Genetic Profiling of Anthropometric Traits Using a Big Data Approach.

Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistanis and Bangladeshis

Qin Qin Huang^{1,*}, Neneh Sallah^{2,3,*}, Diana Dunca³, Bhavi Trivedi⁴, Karen A. Hunt⁴, Sam Hodgson⁵, Samuel A. Lambert^{6,7,8,9}, Elena Arciero¹, Genes & Health Research team, John Wright¹⁰, Chris Griffiths¹¹, Richard C. Trembath¹², Harry Hemingway^{2,13,14,15}, Michael Inouye^{6,7,8,15,16,17,18}, Sarah Finer⁴, David A. van Heel⁴, Thomas Lumbers^{2,13,19,+}, Hilary C. Martin^{1,+}, Karoline Kuchenbaecker^{3,20,+}

1. Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK

2. Institute of Health Informatics, University College London, London, UK

3. UCL Genetics Institute, University College London, London, UK

4. Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK

5. Primary Care Research Centre, University of Southampton

6. Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK

7. British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK

8. Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK

9. European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK

10. Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service

(NHS) Foundation Trust, Bradford, UK

11. Institute of Population Health Sciences, Barts and the London School of Medicine and Dentistry,

Queen Mary University of London, London, UK

12. Department of Medical and Molecular Genetics, King's College London, London, UK

13. Health Data Research UK, University College London, London, UK

14. University College London Hospitals Biomedical Research Centre (UCLH BRC), London, UK

15. The Alan Turing Institute, London, UK NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

16. National Institute for Health Research Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

17. British Heart Foundation Cambridge Centre of Research Excellence, Department of Clinical

Medicine, University of Cambridge, Cambridge, UK

18. Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne,

Victoria, Australia

19. British Heart Foundation Research Accelerator, University College London, London, UK

Bart's Heart Centre, St. Bartholomew's Hospital, London, UK

20. Division of Psychiatry, University College London, London, UK

* These authors contributed equally to this work

⁺ These authors jointly supervised this work

Correspondence:

Karoline Kuchenbäcker, PhD, Associate Professor

Department of Genes Evolution and Environment University College London

Tottenham Court Road, London W1T 7NF

Tel: 020 3108 4228

Email: k.kuchenbaecker@ucl.ac.uk

1 Abstract

Background: Individuals with South Asian ancestry have higher risk of heart disease than
other groups in Western countries; however, most genetic research has focused on Europeanancestry (EUR) individuals. It is unknown whether reported genetic loci and polygenic scores
(PGSs) for cardiometabolic traits are transferable to South Asians, and whether PGSs have
utility in clinical settings.

Methods: Using data from 22,000 British Pakistani and Bangladeshi individuals with linked electronic health records from the Genes & Health cohort (G&H), we conducted genome-wide association studies (GWAS) and characterised the genetic architecture of coronary artery disease (CAD), body mass index (BMI), lipid biomarkers and blood pressure. We applied a new technique to assess the extent to which loci from GWAS in EUR samples were transferable. We tested how well existing findings from EUR studies performed in genetic risk prediction and Mendelian randomisation in G&H.

14 Results: Trans-ancestry genetic correlations between G&H and EUR samples for the tested 15 traits were not significantly lower than 1, except for BMI (r_q=0.85, p=0.02). We found evidence 16 for transferability for the vast majority of loci from EUR discovery studies that were sufficiently 17 powered to replicate in G&H. PGSs showed variable transferability in G&H, with the relative 18 accuracy compared to EUR (ratio of incremental r²/AUC) ≥0.95 for HDL-C, triglycerides, and 19 blood pressure, but lower for BMI (0.78) and CAD (0.42). We observed significant 20 improvement in categorical net reclassification in G&H (NRI=3.9%; 95% CI 0.9–7.0) when 21 adding a previously developed CAD PGS to clinical risk factors (QRISK3). We used 22 transferable loci as genetic instruments in trans-ancestry Mendelian randomisation and found 23 evidence of an increased CAD risk for higher LDL-C and BMI, and for lower HDL-C in G&H, 24 consistent with our findings for EUR samples.

Conclusions: The genetic loci for CAD and its risk factors are largely transferable from EUR
 studies to British Pakistanis and Bangladeshis, whereas the transferability of PGSs varies

1 greatly between traits. Our analyses suggest clinical utility for addition of PGS to existing 2 clinical risk prediction tools for this population. 3 **Clinical Perspective** 4 What is new? 5 6 This is the first study to explore the transferability of GWAS findings and PGSs for CAD 7 and related cardiometabolic traits in British Pakistani and Bangladeshi individuals from 8 a cohort with real-world electronic clinical data. We propose a new approach to assessing transferability of GWAS loci between 9 populations, which can serve as a new methodological standard in this developing 10 11 field. 12 We find evidence of overall high transferability of GWAS loci in British Pakistanis and • 13 Bangladeshis. BMI, lipids and blood pressure show the highest transferability of loci, 14 and CAD the lowest. 15 The transferability of PGSs varied between traits, being high for HDL-C, triglycerides • 16 and blood pressure but more modest for CAD, BMI and LDL-C. 17 Our results suggest that, for some traits, the use of transferable GWAS loci improves • 18 the robustness of Mendelian randomisation estimates in non-Europeans. 19 20 What are the clinical implications? 21 The polygenic score for CAD derived from genetic studies of European individuals 22 improves reclassification on top of clinical risk factors in British Pakistanis and 23 Bangladeshis. The improvement was driven by identification of more cases in younger 24 individuals (25–54 years old), and of controls in older individuals (55–84 years old). 25 Incorporation of the polygenic score for CAD into risk prediction models is likely to 26 prevent cardiovascular events and deaths in this population. 27

1 Introduction

Individuals with South Asian ancestry (SAS) account for more than a fifth of the global population and experience a higher risk of coronary artery disease (CAD) than other ancestries. For example, British South Asians have three- to four-fold higher CAD risk than White British people ¹. Understanding the determinants of excess CAD burden in SAS populations and improving prediction to enable preventive interventions represent important public health priorities.

8

9 Common genetic variation is an important determinant of CAD and of upstream risk factors 10 such as blood pressure, lipids, and body mass index (BMI). The genetic component of disease 11 risk can be harnessed to identify underlying disease genes and pathways, to estimate the 12 unconfounded effects of risk factors by Mendelian randomisation (MR), and to improve risk 13 prediction through the application of polygenic scores (PGS). However, the genetic basis of 14 CAD risk is not well characterised in SAS populations because genome-wide association 15 studies (GWAS) have been mostly limited to European-ancestry (EUR) populations ².

16

17 Fundamental questions remain about the extent to which the genetic determinants of 18 cardiometabolic traits are shared by EUR and SAS populations. These have important implications to translational applications of genetic data such as causal inference with MR 19 which could prioritise different prevention strategies or drug targets between ancestries, and 20 21 clinical risk prediction. Whilst the predictive performance of PGSs derived from EUR populations in non-EUR individuals decreases with genetic distance ³⁻⁶, the extent to which 22 23 this attenuation is due to genetic drift (differences in linkage disequilibrium and allele frequency 24 ⁷) versus heterogeneity of causal genetic effects remains unclear. Furthermore, the potential 25 clinical utility of a CAD PGS in a real-world healthcare system is largely unknown, since 26 previous studies have mostly examined research cohorts composed of volunteers who are healthier and wealthier than average (e.g. UK Biobank ^{8–12}). 27

1

2 Here, we perform a comparative analysis of the genetics of CAD and upstream 3 cardiometabolic traits in EUR and SAS populations, using data from the Genes & Health 4 (G&H) cohort ¹³. G&H is a community-based cohort of British Pakistani and Bangladeshi (BPB) 5 individuals with linked electronic health record (EHR) data (N=22,490 individuals). This unique 6 cohort represents an understudied and clinically vulnerable population with high levels of 7 socioeconomic deprivation, and this is the first major genetic study focused on it. We apply 8 new approaches to the replication of genomic risk loci across populations, perform ancestry-9 specific and trans-ancestry MR analysis, investigate the transportability of PGSs for CAD and 10 its risk factors, and estimate the incremental improvement in CAD prediction when 11 incorporating the CAD PGS into clinical risk tools.

12 Methods

13 Genes & Health cohort

14 Genes & Health (G&H) is a community-based cohort of BPB individuals recruited primarily in 15 East London¹³. All participants have consented for lifelong EHR access and genetic analysis. 16 The study was approved by the London South East NRES Committee of the Health Research 17 Authority (14/LO/1240). 97.4% of participants in G&H are in the lowest two quintiles of the Index of Multiple Deprivation in the UK. About two thirds are British Bangladeshi and the 18 19 remainder British Pakistani. The median age at recruitment was 37 and 43 years for female 20 and male participants, respectively (Figure S1). The cohort is broadly representative of the 21 background population with regard to age, but slightly over-sampled females and those with 22 medical problems since two-thirds of people were recruited in healthcare settings such as GP surgeries ¹³. We used the 2020 February data release which contained 28,022 individuals 23 24 genotyped on the Illumina Infinium Global Screening Array v3 chip (with the additional multi-25 disease variants). Of these, 22,490 (80%) individuals had linkage to primary or secondary care

data, of which 56.5% were female. Having identified related individuals (second degree or
 closer; kinship coefficient >0.0884) using KING v2.2.4¹⁴, we performed principal component
 analysis (PCA) in unrelated samples, and projected the remainder onto the same PC space
 using smartpca from EIGENSOFT v7.2.1¹⁵.

5 Quality control and imputation of genotype data from Genes &

6 Health

7 Quality control of genotype data was performed using Illumina's GenomeStudio and plink v1.9. 8 We first removed variants with cluster separation scores <0.57, Gentrain score <0.7, excess 9 of heterozygotes >0.03, or ChiTest 100 (Hardy-Weinberg test) <0.6 in GenomeStudio, as well 10 as variants that were included on the array in order to tag specific structural variants. We 11 removed samples with low call rate (<0.995 for male samples and <0.992 for female samples 12 across all 637,829 variants including those on Y chromosome for males) and those that failed 13 gender checks. When there were duplicate samples, we retained the sample with the highest 14 call rate. Using plink, we further removed variants with low call rate (<0.99), and the variant 15 with the lowest call rate amongst duplicate variant pairs. We excluded rare variants with minor 16 allele frequency (MAF) <1%. The high levels of autozygosity in this cohort can cause variants 17 to fail Hardy-Weinberg equilibrium test. We thus removed variants that failed the Hardy-18 Weinberg test $(p<1x10^{-6})$ in a subset of samples with low level of autozygosity. To define these 'low-autozygosity' individuals, we pruned SNPs (LD $r^2 > 0.8$) and called runs of homozygosity 19 20 (RoHs) using plink1.9 with default parameters, then took the 64% of the individuals who had 21 a fraction of the genome in RoHs <0.5%. We excluded individuals who did not have 22 Bangladeshi or Pakistani ancestry (further than +/- 3 standard deviations [SD] from the mean 23 of PC1 for the individuals who self-reported as coming from that group), and those who self-24 reported as coming from other ethnic groups or who did not report this information (Figure 25 S2).

We used the Michigan Imputation Server¹⁶ to perform imputation with the GenomeAsia pilot
 reference panel¹⁷, imputing from 336,133 autosomal, biallelic SNPs with matched alleles.
 Eagle v2.4 and Minimac v4 were used for phasing and imputation, respectively. We excluded
 SNPs with imputation INFO score <0.3 or MAF <0.1%, which left 9,527,863 autosomal SNPs.

5 Quality control and imputation of genotype data from eMERGE

6 We used EUR samples from the eMERGE cohort (henceforth eMERGE), a consortium of US 7 medical research institutions, to compare with BPB individuals from G&H. Network Phase III 8 data (N=61,377) were downloaded from dbGaP (Accession number: phs001584.v1.p1). 9 Quality control of genotype data and imputation to the Human Reference Consortium (HRC) 10 reference panel have been described previously ¹⁸. To identify EUR samples, we performed 11 PCA in samples from the 1000 Genomes project phase 3 dataset, and projected eMERGE participants onto the same PC space using smartpca from EIGENSOFT v7.2.1¹⁵. For PCA, 12 13 we restricted to LD-pruned common SNPs (MAF ≥1%) with imputation INFO score ≥0.98 in 14 eMERGE. We identified samples that were clustered together with the EUR samples from the 15 1000 Genomes project using a dimension reduction method, Uniform Manifold Approximation and Projection (UMAP), applied to the first 20 PCs, performed using the R package "umap" 16 17 v0.2.6.0¹⁹. Self-reported Hispanic or Latino, African, Asian, American Indian or Alaska Native 18 individuals were excluded. This resulted in 43,877 EUR individuals available for the 19 comparison with G&H. Well-imputed (INFO ≥0.3) bi-allelic SNPs with MAF ≥0.1% 20 (N=11,625,805) were retained for downstream analysis.

Phenotype and covariate definitions from electronic health record data in Genes & Health

Of the 22,490 genotyped G&H individuals with EHR data, 20,830 had primary care data
 available through the Discovery Data Service²⁰ which includes clinical observations as well as

current and historic diagnoses (coded using READ version 2 codes, and recently converted
 to SNOMED CT codes using standard mapping protocols²¹). 17,226 had diagnosis and
 procedure codes (ICD10 and OPCS4 codes, respectively) extracted from the UK's largest
 secondary care health provider, Barts Health NHS Trust.

5

Coronary artery disease (CAD) cases and controls were defined using the same ICD10 and 6 7 OPCS4 codes as Khera et al.²² (Table S1). We defined CAD cases as those with myocardial 8 infarction or coronary revascularization in either primary and secondary care data. We 9 excluded individuals with angina, chronic ischemic heart disease, aneurysm or atherosclerotic cardiovascular disease from the control sample ²³. Since procedure codes were not available 10 11 in eMERGE, we performed a sensitivity analysis in G&H to investigate the effects of excluding 12 OPCS4 codes in CAD ascertainment. For this, we defined CAD solely using ICD10 codes in 13 individuals with secondary care data, ignoring OPCS codes and primary care data; we 14 excluded individuals without secondary care data for this analysis.

15

16 We used median adult height and weight measurements within the past 5 years to calculate 17 BMI. For lipids, we took the latest adult measurements and corrected for statin usage if lipid 18 levels were measured between the start and end date of any statin prescriptions. No 19 adjustment was made on HDL cholesterol (HDL-C) or triglycerides. Adjustment of lipids 20 followed the procedure in Liu *et al.*²⁴, as follows. To correct for statin usage, total cholesterol 21 (TC) was replaced by TC/0.8. LDL cholesterol (LDL-C) levels were calculated using the 22 Friedewald equation, and statin-adjusted LDL-C was recalculated using adjusted TC levels as 23 follows: corrected LDL-C = uncorrected LDL-C + 0.2*adjusted TC. LDL-C/0.7 was used for 32 24 individuals for whom we couldn't find a TC measurement on the same date. Rank-based 25 inverse normal transformation was applied to the lipid levels.

26

We extracted the latest systolic blood pressure (SBP) and diastolic blood pressure (DBP)
measurements and adjusted for blood pressure medication use by adding 15 and 10 mmHg

1 to SBP and DBP, respectively, if the measurement coincided with any prescription date ²⁵.

2 Sample sizes are shown in Table 1 (all individuals) and Table S2 (unrelated).

3

To calculate a standard clinical risk score to compare with the PGS, we calculated the QRISK3 4 10-year predicted risk for CAD ²⁶ in G&H using the R package "QRISK3" v0.3.0 ²⁷. QRISK3 5 6 was calculated based on the data available up until 1 January, 2010, which is about 10 years 7 prior to the latest data extraction. We excluded about one third of CAD cases whose diagnosis 8 was made earlier than this assessment date (prevalent cases) and used incident cases who 9 developed CAD later. Follow-up varied for cases and was fixed at 10 years for controls. We 10 used clinical data that were extracted earlier than the assessment date (1 January 2010) to 11 calculate QRISK3. The QRISK3 algorithm has variables that indicate whether a patient has a 12 variety of other diseases, and these were defined using the codes shown in Table S3, following¹⁰. Medication use (hypertension treatment, corticosteroid, and atypical antipsychotic 13 14 medication) was defined as two or more prescriptions, with the most recent one having been 15 issued within 28 days prior to the assessment. We used the most recent measurements taken 16 prior to the assessment date, and kept individuals with at least three non-missing 17 measurements out of four (height, weight, SBP, and TC). Pattern of missingness is shown in 18 Figure S3. Townsend index was not available in G&H, so we used the mean value (3.307) of the lowest two quintiles from the 2011 census data in the UK²⁸. HDL-C levels were all 19 20 measured later than 2010 in G&H, so for TC/HDL-C ratio, we used 3.905 and 4.882 (averages 21 calculated using later data) for females and males, respectively. To deal with missing data, we 22 applied multiple imputation which accounts for sex, age, and genetically-defined ancestry 23 (Bangladeshi versus Pakistani; identified using PCA-UMAP), using the R package "mice" 24 v3.13.0 to impute height, weight, SBP, SD of SBP measurements within 2 years, and smoking 25 status.

Phenotype definitions from electronic health-record data in eMERGE

3 Phenotype data in eMERGE were downloaded from dbGaP (phs001584.v1.p1, 4 phs000888.v1.p1, phs001584.v2.p2). Individuals younger than 16 years old were excluded. 5 BMI was provided and we took the median value from adult measurements. Lipid and blood 6 pressure measurements were taken from dataset phs000888.v1.p1. Data on medications 7 affecting lipid and BP measurements were not available, so the highest measurements for 8 LDL, TC, SBP, and DBP were used when comparing PGSs with G&H in order to minimise the 9 effects of medications. CAD was ascertained using ICD9/10 codes which were available in 10 the updated eMERGE Phase III dataset (phs001584.v2.p2). Coronary artery disease (CAD) 11 cases and controls were defined based on secondary care ICD10 codes as described above 12 for G&H (Table S1).

13 Genome-wide association analyses in Genes & Health

GWAS was performed with SAIGE ²⁹ and adjusted for age, age², sex and the first twenty principal components. For total cholesterol and LDL-C, adjustments were made for use of statins as described above. We followed the QC procedure in ³⁰ (*EasyQC* package) with the following exclusion criteria for variants: monomorphic variants, missing / invalid estimates, allele mismatch and allele frequency difference of >0.2 with reference panel, imputation INFO score <0.7 (<0.9 for downstream analysis i.e. correlation and colocalisation), MAF <0.005 (<0.01 for downstream analysis i.e. correlation and colocalisation).

21 Heritability and trans-ancestry correlations

Datasets that were used in analyses are provided in **Table S4**. We used GCTA to estimate SNP heritability in G&H and eMERGE³¹. We excluded one sample in each pair of 3rd-degree relatives (kinship coefficient >0.0442 calculated using KING v2.2.4¹⁴). We used SNPs with

INFO >0.9 and MAF >0.01 in each cohort separately. We also calculated SNP heritability using the intersection of these SNP sets in both cohorts. For CAD, we estimated SNP heritability on the liability scale using 6.7% as the prevalence estimate in the US ³², and 3.33% for the UK background population from which G&H is sampled, defined as all people from South Asian ethnicities (N=255,066 aged ≥20 years) registered with a primary health physician/GP in four east London boroughs.

7

For the genetic correlation analyses, we used GWAS summary statistics generated in EUR 8 9 individuals from UK Biobank (UKBB), since we needed a larger sample size of ancestrally 10 homogeneous individuals than is available through eMERGE to obtain accurate estimates. 11 We used Popcorn (https://github.com/brielin/Popcorn) to estimate the trans-ancestry genetic 12 correlations between G&H and UKBB EUR individuals while accounting for differences in LD structure ³³ (i.e. the correlation of causal-variant effect sizes across the genome at SNPs 13 14 common to both populations). Variant LD scores were estimated for ancestry-matched 1000 15 Genomes v3 data for each study combination (i.e. SAS-EUR). The estimation of LD scores 16 failed for chromosome 6 for some groups, so we left out the major histocompatibility complex 17 (MHC) region (positions 28,477,797 to 33,448,354) from chromosome 6 from all comparisons. 18 Variants with INFO score <0.9 or MAF <0.01 were excluded. A p-value <0.05 indicated that 19 the genetic correlation was significantly less than 1 i.e. $r_q < 1.0$.

20 Assessment of transferability of established loci

Previous studies that evaluated reproducibility of GWAS loci in SAS individuals did not formally account for differences in power or LD patterns ^{34–36}. We assessed whether established traitassociated loci were reproducible in G&H by performing a lookup of loci identified in non-SAS ancestry GWAS (**Table S4**). Credible sets for established loci were generated and consisted of lead (independent) variant plus proxy SNPs ($r^2 >= 0.8$) within a 50kb window (based on the EUR 1000 Genomes data) of the sentinel variant and with p-value <100 × p_{sentinel}. The locus

1 was defined as being 'transferable' if at least one variant from the credible set was associated 2 at p <0.05 with the relevant trait in G&H, and the direction of effect matched in both datasets. 3 For loci harbouring multiple signals, we only kept the most strongly associated variant (i.e. smallest p-value). Expected power for replication was calculated using alpha=0.05, the effect 4 5 size estimated in the EUR GWAS, and the allele frequency of the variant and sample size in 6 G&H. The power of lead variants per locus was summed up and divided by the number of loci 7 to give an estimate of the number of expected significant loci per trait, which was compared 8 with the observed number of such loci; to our knowledge, this is a novel approach for 9 assessing reproducibility of GWAS findings. Loci were only deemed to be 'non-transferable' if they contained at least one variant in the credible set with >80% power and yet none of the 10 variants in the credible set had p < 0.05 and no variant within 50kb of locus had p < 1×10^{-3} in 11 12 G&H. LocusZoom (http://locuszoom.org/) was to create regional association plots.

13

14 Trans-ancestry colocalisation

15 We used Trans-ethnic colocalisation the method (TEColoc) (https://github.com/KarolineKuchenbaecker/TEColoc)³⁷ which tests whether a specific locus 16 17 has the same causal variant in two groups with different ancestry, and applied it to G&H and 18 UKBB EUR individuals. This method adopts the joint likelihood mapping (JLIM) statistic developed by Chun and colleagues³⁸ that estimates the posterior probabilities for 19 colocalisation between GWAS signals and compares them to probabilities of distinct causal 20 21 variants while explicitly accounting for LD structure. For this, LD scores were estimated using 22 a subset of samples from the 1000 Genomes Project v3 that had matching ancestry to all Europeans for UK Biobank. For G&H we used raw genotype data and LD was estimated 23 24 directly for these samples. JLIM assumes only one causal variant within a region in each study. 25 We therefore used small windows of 50Kb for each known locus to minimise the risk of 26 interference from additional association signals. Distinct causal variants were defined by separation in LD space by $r^2 \ge 0.8$ from each other. We excluded loci where the overlap 27

between UKBB and G&H was <10 SNPs and the proportion of well-imputed SNPs overlapping
between cohorts (SNP coverage) was <10%; this left no loci to consider for CAD, SBP and
DBP. We used a significance threshold of p <0.05 to determine evidence of sharing.
LocusZoom (<u>http://locuszoom.org/</u>) was to create regional association plots.

5 Construction of polygenic risk scores

6 We evaluated the performance of PGSs in G&H and eMERGE. We first assessed PGSs that 7 were previously constructed (mostly optimised in EUR samples) from the PGS Catalog³⁹. We 8 restricted to 7,353,388 bi-allelic SNPs that had INFO ≥0.3 and MAF ≥0.1% in both eMERGE 9 and G&H. Variant information in existing PGS was harmonised to GRCh37 using dbSNP 10 mappings from Ensembl Variation and liftover. We calculated PGSs as weighted sums of 11 imputed allele dosages using plink2.0 --score function. There were often multiple PGSs that 12 were previously developed from different studies available for each trait, and below we report 13 the one that had the highest accuracy in each cohort. The best PGS (defined as described in 14 the next section of the Methods) for BMI was derived from GWAS conducted in primarily EUR 15 samples and optimised in EUR individuals, and those for lipids and BP contained genome-16 wide significant variants identified in EUR GWASs. We selected different PGSs for CAD in 17 eMERGE and G&H, with the former optimised in EUR individuals and the latter in SAS 18 individuals; in both cases these were based on GWAS conducted in primarily EUR samples. 19 The details of each PGS are in Table S5.

20

Next we calculated PGSs using the clumping and p-value thresholding method (C+T) and optimised PGSs in G&H and eMERGE separately. We used GWAS summary data from primarily EUR samples (**Table S4**). We used LD estimated using EUR samples (N=503) from the 1000 Genomes project for clumping using PRSice2 v2.2.11⁴⁰. We calculated multiple scores using combinations of various LD r² thresholds (0.1, 0.2, 0.5, 0.8) and p-value thresholds (5×10⁻⁸, 1×10⁻⁷, 5×10⁻⁷, 1×10⁻⁶, 5×10⁻⁶, 1×10⁻⁵, 5×10⁻⁵, 1×10⁻⁴, 5×10⁻⁴, 0.001,

0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1) for each trait, and reported the PGS
with the best predictive performance within each target cohort.

3

4 Lastly, we calculated meta-PGSs proposed by Marquez-Luna et al.⁴¹ that incorporate GWAS 5 summary data from the target populations. We downloaded GWAS summary data that were 6 generated in SAS samples of the UKBB from the Pan-UK Biobank website 7 (<u>https://pan.ukbb.broadinstitute.org</u>), and constructed scores (PGS_{SAS}) using the C+T method 8 described above and using SAS samples from the 1000 Genomes project for the LD 9 reference. We combined the scores derived from EUR GWASs (PGS_{EUR}) and PGS_{SAS} in linear 10 regression to construct meta-PGSs.

11 Assessment of PGS accuracy and clinical performance

We excluded one sample in each pair of 2nd-degree relatives (kinship coefficient >0.0884 12 calculated using KING v2.2.4¹⁴). Individuals with the highest number of relatives (and controls, 13 14 if the trait is binary) were removed first. Sample sizes for each trait are in Table S2. 15 Quantitative traits were inverse normal transformed. Age at recruitment was used as a 16 covariate for analysis of disease status, and age at measurement for analysis of quantitative 17 traits. PGSs were standardised to a mean of 0 and SD of 1. We fitted the following two models: (1) the full model which had PGS and covariates namely sex, age, age², and the first 10 genetic 18 19 PCs, and (2) the reference model which accounted for the covariates only. For continuous risk factors, linear regression was fitted, and the gain in R² when adding PGS as an additional 20 predictor, or incremental R², was calculated as the difference between the R² of the full model 21 22 and the reference model. Logistic regression was used to assess the associations between 23 PGSs and CAD. The area under the receiver operating characteristic curve (AUC) was 24 estimated for both models with the R package "pROC" v1.16.2 and incremental AUC was 25 calculated similarly. We performed bootstrap resampling of individuals 1,000 times to estimate the 95% confidence intervals for incremental R² and incremental AUC. The best PGS per trait 26

was the one with the highest incremental R² for continuous risk factors and the one with the
highest incremental AUC for CAD. We estimated the effect size (or odds ratio for binary traits)
per SD of PGS from the full model. Effect size or odds ratio for quintiles, and for top 10%
versus middle 40-60% were reported as well. Relative accuracy was calculated as the ratio of
incremental AUC (or incremental R² for continuous traits) in G&H to that in eMERGE.

6

7 QRISK3 scores were calculated for 8,112 unrelated individuals as described above (420 CAD 8 cases and 7,702 controls). To integrate QRISK3 scores with PGS for CAD, we followed Riveros-Mckay et al.¹⁰ and calculated an integrated score by multiplying the odds converted 9 10 from the QRISK3 score with the odds ratio given an individual's PGS, where the odds ratio 11 per SD of PGS was estimated using a logistic regression in which QRISK3 and their interaction 12 were accounted for. The logistic regression was performed in males and females separately. 13 We used the most accurate PGS for CAD in SAS from the PGS Catalog, which was developed by Wang et al.⁴²; this score was derived from EUR GWAS using LDpred and tuned in SAS 14 15 individuals in UKBB. We regressed out 10 PCs from the PGS, and used the scaled residuals 16 in the Cox regression analysis. Cox regression was performed using the R package "survival" 17 v3.2-7. The concordance indices (C-indices) of the following models were compared: (1) age 18 at assessment + gender, (2) PGS + age at assessment + gender, (3) QRISK3, and (4) the 19 integrated score. We calculated the continuous net reclassification index (NRI) and categorical 20 NRI (using 10% as the threshold to classify high-risk individuals) for the integrated score 21 compared to QRISK3 alone. NRI was calculated as the sum of NRI for cases and NRI for 22 controls (noncases):

23

NRI = P(up|case) - P(down|case) + P(down|noncase) - P(up|noncase)

For continuous NRI, P(up|case) and P(down|case) indicate the proportions of cases that had higher or lower risk estimates using the integrated score, respectively. For categorical NRI, P(up|case) indicates the proportions of cases that were reclassified as high-risk individuals (i.e. with <10% risk by QRISK3 but >10% by the integrated scores). We calculated NRI in two age groups (25–54 versus 55–84 years old at baseline, chosen since the average age of onset

in this cohort was 55.3 years old), as well as in sex-by-gender subgroups. Bootstrap
resampling (1,000 times) was used to estimate confidence intervals for NRI.

3 Mendelian randomisation analysis

We modelled liability to CAD as our outcome within a two-sample Mendelian randomisation⁴³ 4 5 (MR) framework using the risk factors (BMI, SBP, DBP, LDL-C, HDL-C, TG) as exposures. To 6 identify genetic instruments for the exposure, we explored three alternative approaches: (a) established loci significant at $p < 5x10^{-8}$ in the original EUR GWAS; (b) transferable loci defined 7 8 as described above, taking the effect size from the original EUR GWAS; and (c) loci significant at p<5x10⁻⁸ in the SAS ancestry group of the Pan-UKBB GWAS, LD-clumped to an r²<0.2 with 9 10 a LD window of 50kb, based on SAS 1000 Genomes project LD reference. Where insufficient 11 genome-wide significant instruments were identified, we used a more permissive p-value threshold of p<5x10⁻⁵ for instrument selection in UKBB SAS. The primary MR analysis was 12 13 performed using, as outcome, summary association data from the G&H CAD GWAS 14 performed as described above, using the inverse-variance weighted method under a random 15 effect model, implemented with the TwoSampleMR R package⁴⁴. For comparison, a two-16 sample MR approach was also performed using summary data for CAD from eMERGE and established loci significant at $p < 5x10^{-8}$ in the original EUR GWAS. We also undertook several 17 18 sensitivity analyses. In brief, we evaluated the MR-Egger intercept to assess directional pleiotropy and Cochran's Q statistic⁴⁵ as an indicator of heterogeneity. MR analysis using 19 weighted median⁴⁶ and weighted methods⁴⁷ models were additionally performed in the 20 21 presence of heterogeneity.

22 Results

In G&H, 4.9% (N=1,110) of the individuals had coronary artery disease (CAD), with the age of
onset ranging from 17 to 97 years old (median 55). A quarter of the G&H participants were on

active statin prescriptions, 23% on BP medications, 29% had high TC levels (>5 mmol/L), and
 30% had high LDL-C levels (>3 mmol/L; **Table S6**)⁴⁸. Datasets that were used in each analysis
 are provided in **Table S4**.

4 Shared genetic architecture of cardiometabolic traits

5 We compared the genetic architecture of coronary artery disease (CAD) and upstream risk 6 factors, namely HDL-C, LDL-C, triglycerides (TG), total cholesterol (TC), systolic and diastolic 7 blood pressure (SBP & DBP), between British Pakistanis and Bangladeshis (BPB) from G&H, 8 and European-ancestry populations (EUR) (Figure 1). We used EUR individuals from the 9 EHR-based eMERGE cohort to estimate heritability, since phenotypes had been ascertained 10 in a similar way to G&H (i.e. EHRs). All traits were found to have significant SNP heritability 11 (h²= 0.03–0.23) in G&H, with estimates similar to those in eMERGE (**Table S7**, **Figure 2A**), 12 except for LDL-C, SBP and DBP which had significantly lower values in G&H than eMERGE (e.g. for LDL-C, h² was 0.21 [95% CI: 0.17–0.25] in eMERGE and 0.06 [95% CI: 0.02–0.10] in 13 14 G&H). Conclusions were unchanged when restricting the heritability estimates to the same set 15 of well-imputed SNPs in both cohorts (Table S7). We observed high genetic correlations between G&H and EUR from UKBB for all traits, with the lowest value seen for SBP (r_a=0.71 16 17 [95% CI: 0.36–1.06], p=0.09; Figure 2B). The only trait for which the genetic correlation 18 differed significantly from one was BMI ($r_a=0.85$ [95% CI: 0.71–0.99], p=0.02).

1

Figure 1. Summary of study design, research questions and analyses conducted. The coloured boxes indicate input data. Within the white boxes, black text indicates the analyses we used to address the questions in blue. BPB: British Pakistanis and Bangladeshi ancestry; EUR: European ancestry; SAS: South Asian ancestry; CAD: coronary artery disease; BMI: body mass index; SNP: single nucleotide polymorphism; GWAS: genome-wide association study; MR: Mendelian randomisation; PGS: polygenic score; UKBB: UK Biobank. Datasets and discovery GWAS that were used in each analysis are provided in Table S4.

9

1 Figure 2. SNP heritability and trans-ancestry genetic correlations for cardiometabolic traits. A.

2 SNP heritability was estimated using GCTA in G&H (orange) and eMERGE (grey) for cardiometabolic 3 traits. Dashed line indicates statin-adjusted LDL cholesterol levels in G&H which are not available in 4 eMERGE. Error bars represent 95% confidence intervals in both plots. B. Genetic correlations were 5 estimated using GWAS summary statistics generated from G&H and European-ancestry individuals 6 from UK Biobank. Red indicates that the genetic correlation is significantly lower than 1 (p-value = 0.02) 7 for BMI). BMI: body-mass index; BPB: British Pakistani ancestry; CAD: coronary artery disease; EUR: 8 European ancestry; LDL-C: low-density lipoprotein cholesterol; G&H: Genes & Health; HDL-C: high-9 density lipoprotein cholesterol; SBP: systolic blood pressure; DBP: diastolic blood pressure.

10

11 High transferability of cardiometabolic loci

12 We assessed whether published trait-associated genomic loci identified in predominantly EUR 13 populations were shared by the BPB population represented by G&H. To account for 14 differences in LD patterns, our assessment of transferability was based on the credible sets 15 of variants per locus, likely to contain the causal variant, rather than the sentinel variants alone. 16 Low numbers of transferable loci may be due to limited statistical power rather than lack of 17 causal variant sharing. Therefore, we compared the number of observed transferable loci with 18 the number expected given the sample size and allele frequency in G&H if all causal variants were shared. The number of expected transferable loci varied widely between traits (e.g. we 19 20 expected to be able to detect significant associations for 56% of HDL-C loci but only for 18% 21 of SBP loci), highlighting the importance of accounting for power when assessing 22 transferability. Across most traits examined, the observed number of transferable loci closely 23 matched the loci we expected (Table 1 and Table S8). For example, for BMI we expected to be able to find evidence for transferability for 20% of loci and we did indeed observe 24 25 transferability for 21% of loci. However, the exception was CAD for which the number of 26 observed transferable loci (13%) was below the expected number (21%), although this 27 difference was only marginally significant (binomial p-value = 0.05).

2 **Table 1**. Reproducibility of loci for cardiometabolic phenotypes in British Pakistani and Bangladeshis.

3 Note that when assessing sharing of causal variants, we excluded loci where the overlap between

- 4 UKBB and G&H was <10 SNPs and SNP coverage of the region was low (<10%). *For SBP and DBP,
- 5 power was calculated with observed effect size in normalised BP values.

Trait	N. samples (cases:controls)	N. establishe d loci	N. observed transferable loci (%)	Percentage of expected transferable loci	Observed/ Expected	N. transferable loci with shared causal variant/N. transferable loci assessed (%)
BMI	16890	662	140 (21%)	20%	1.05	15/58 (26%)
LDL-C	12746	82	51 (62%)	50%	1.24	15/32 (47%)
HDL-C	14944	103	66 (64%)	56%	1.14	14/29 (48%)
тс	15641	107	61 (57%)	49%	1.16	23/38 (61%)
TG	13037	95	47 (49%)	47%	1.04	14/25 (56%)
DBP	18536	175	36 (21%)	21%*	1.00	NaN
SBP	18536	171	30 (18%)	18%*	1.00	NaN
CAD	22008 (1110:20898)	71	9 (13%)	21%	0.62	NaN

6

7

8 We also assessed whether there were any specific loci that were not transferable despite 9 being well powered to observe an association (power >80%). Out of a total of 184 well-10 powered loci tested across all traits, only nine were non-transferable; that is, no variant in the 11 credible set was significant at p<0.05 and no variant within 50kb of locus was significant at 12 p<1x10⁻³ (**Figure S4**). These nine loci were all associated with lipid traits: *EVI5, NBEAL1,* 13 *GPAM, CETP, STAB1, TTC39B, SH2B3, ACP2* and *NECAP2* (**Table 2**). Of these loci, *CETP*,

- 1 which was previously associated with LDL-C levels in Europeans (established variant in
- 2 Europeans rs7499892), was strongly associated with HDL-C in G&H (p=7.08x10⁻⁵⁶), but not
- 3 with LDL-C levels (p=0.23) (Figure S5) despite having >80% power for replication.
- 4
- **Table 2**. Established loci from European-ancestry GWAS inferred to be non-transferable to British
 Pakistani and Bangladeshis. * Tag SNP: rs7499892, r²=1.

Trait	SNP	Chromo	Position	Locus	Other	Effect	p-value	Effect
		some			allele/effect	allele		size
					allele	frequency		
LDL	rs7515577	1	93009438	EVI5	C/A	0.96	0.88	0.005
LDL	rs2255141	10	113933886	GPAM	A/G	0.8	0.15	-0.023
LDL	rs11076175*	16	57006378	CETP	A/G	0.16	0.23	-0.021
HDL	rs13326165	3	52532118	STAB1	A/G	0.89	0.19	-0.022
HDL	rs643531	9	15296034	TTC39B	C/A	0.95	0.09	0.043
HDL	rs2167079	11	47270255	ACP2	C/T	0.48	0.09	0.019
HDL	rs3184504	12	111884608	SH2B3	T/C	0.92	0.99	0
тс	rs7515577	1	93009438	EVI5	C/A	0.96	0.7	-0.011
тс	rs2351524	2	203880992	NBEAL1	T/C	0.98	0.39	-0.032
тс	rs2255141	10	113933886	GPAM	A/G	0.8	0.05	-0.028
TG	rs4841132	8	9183596	NECAP2	A/G	0.9	0.44	-0.016

7

8

9 Even when there are associations in the same region in two ancestry groups, it is possible 10 that they are driven by different causal variants, as previously seen ⁴⁹. To assess the extent 11 of sharing of causal variants between ancestries at previously reported loci with evidence of 12 transferability, we applied trans-ancestry colocalisation for G&H with UKBB EUR samples as 13 the reference. We found evidence for the most extensive sharing of causal variants for transferable lipid loci: total cholesterol (61% of loci had significant colocalisation), followed by
TG (56%), HDL-C (48%) and LDL-C (47%) (Table 1). For BMI we found evidence for sharing
of causal variants for only 26% of transferable loci assessed (Table 1 and Table S9). Causal
variants in major lipid loci such as *PCSK9* were among variants that were consistently not
shared (p_{JLIM}>0.05) between the two populations (Figure S6 and Table S9).

6

7 Variable transferability of polygenic scores

Polygenic scores (PGSs) for CAD have been shown to have predictive value over risk scores based on clinical factors alone ^{10,11,42,50–54}. To assess the transferability of PGSs for cardiometabolic traits derived from EUR populations into BPB individuals, we compared predictive performance in G&H to that in EUR individuals from eMERGE. We quantified predictive accuracy using the "incremental AUC" statistic for CAD and the "incremental R²" statistic for continuous risk factor traits; these are the gain in AUC or R² when adding the PGS to the regression of phenotype on the baseline covariates (sex, age and genetic PCs).

15

16 We first evaluated the previously published PGSs from the PGS Catalog (Table S5). The 17 PGSs for risk factors were developed using data from primarily EUR individuals, and the CAD 18 PGSs that proved to have the best performance in G&H and eMERGE were two different scores optimised in SAS ⁴² and EUR samples ⁵³, respectively. PGSs for all traits assessed 19 20 were significant predictors in G&H (Table S5, Figure 3A). For prediction in G&H, the 21 incremental \mathbb{R}^2 for BP was low (~1.8%), but it was higher for lipids and BMI, ranging from 3.9% 22 to 6.7%. Relative accuracy of PGS in eMERGE and G&H, determined by the ratio of 23 incremental AUC or R², was close to 1 for HDL-C, TG, SBP and DBP, and lower for CAD (42%, 95% CI: 30%–59%) and BMI (78%, 95% CI: 68%–88%; Figure 3B). Amongst the risk 24 25 factors, prediction of LDL-C had the lowest relative accuracy (66%, 95% CI: 53%-79%), 26 probably due to the fact that we did not adjust for statin usage since medication data were not

available in eMERGE, and BPB individuals were more likely to be treated with statins ⁵⁵.
Incremental R² for the PGS for LDL-C increased from 3.9% (3.3%–4.5%) to 6.2% (5.3%–
7.1%) when using statin-adjusted LDL-C in G&H (Table S5, Figure 3A), although the
heritability was not significantly different (Figure 2A). In a sensitivity analysis, the relative
accuracy of the CAD PRS in eMERGE *versus* G&H was consistent when defining CAD based
on diagnostic codes only, rather than with the inclusion of procedure codes in the G&H
definition (Table S5).

8

Figure 3. Comparison of the predictive accuracy of polygenic scores in people of British Pakistani and Bangladeshi versus European ancestry. A. Predictive accuracy of polygenic scores (PGSs) for cardiometabolic traits in British Pakistani and Bangladeshi (BPB) individuals from G&H (purple) and European-ancestry (EUR) individuals from eMERGE (green). Incremental AUC was

calculated for coronary artery disease (CAD), and incremental R² was calculated for its continuous risk 1 2 factors. Error bars indicate 95% confidence intervals (CIs) estimated by bootstrap resampling of 3 samples. The highest measurements for low-density lipoprotein cholesterol (LDL-C), systolic blood 4 pressure (SBP), and diastolic blood pressure (DBP) are compared between eMERGE and G&H, and 5 statin-adjusted LDL-C data are also shown for G&H. B. Relative accuracy of PGSs (i.e. the ratio of 6 incremental AUC for CAD or incremental R² for risk factors estimated in G&H to that in eMERGE) for 7 PGS Catalog scores (red) and C+T scores (blue). Error bars represent 95% bootstrap CIs. Panel C and 8 D show the effect sizes of PGSs from the PGS Catalog. C. The odds ratio per standard deviation (SD) 9 of PGS is shown for CAD on the left panel, and the differences in phenotypic SD per SD of PGS are 10 shown for quantitative traits on the right panel. D. The odds ratio for CAD comparing the four quintiles 11 to the middle quintile (40-60%) is shown on the left panel. Quintiles are determined in controls. The 12 differences in phenotypic SD compared to the reference quintile are shown on the right panel. Error 13 bars show 95% CIs estimated using the standard error in C and D.

14

15

16 To assess whether the performance of PGS based on EUR GWAS could be improved in BPB, 17 we next constructed PGS using the clumping and P-value thresholding (C+T) method and 18 optimised them separately within G&H and eMERGE. The numbers of SNPs in the best C+T 19 PGSs are similar between eMERGE and G&H, and PGSs for lipids contained fewer SNPs (194 to 454) than other traits (>20,000; Table S10, Figure S7). C+T PGSs and PGSs from 20 21 the PGS Catalog showed similar performance in G&H across traits, although they were 22 optimised in different ancestry populations (BPB and primarily EUR, respectively; Figure 3A). 23 For BMI, triglycerides and HDL-C, we observed slightly larger differences in predictive 24 accuracies between G&H and eMERGE for C+T PGSs than observed with the PGS Catalog 25 scores (Figure 3B).

26

We then assessed whether PGS methods that account for ancestry differences improved
 predictive accuracy in G&H. PGSs were constructed using a meta-score strategy ⁴¹, combining
 the EUR-derived PGS (described above) and that from UKBB SAS samples. The improvement

in accuracy was modest (5–11%) (Figure S8). This may be due to the low sample sizes in the
 UKBB SAS GWASs.

3

4 Modest improvement in CAD risk prediction by adding PGS to

5 clinical risk score

6 A CAD PGS derived from EUR GWAS summary statistics and tuned in SAS individuals from UKBB⁴² (PGS000296 in the PGS Catalog), showed the highest predictive accuracy in BPB 7 8 individuals in G&H. This score had an OR per SD of 1.63 (95% CI: 1.51–1.76) and incremental 9 AUC of 0.009 (95% CI: 0.006–0.012; Table S5). Individuals in the top guintile of PGS were 10 predicted to have a 2.2-fold increase (95% CI: 1.78–2.76) in disease risk relative to the middle 11 auintile (quintiles were determined in controls; Figure 3D). We investigated the additional 12 predictive power of PGS on top of established clinical risk factors for CAD, and the net 13 reclassification improvement (NRI) achieved by adding the PGS to a clinical risk score.

14

15 To calculate the clinical risk score, we used the QRISK3 algorithm to estimate 10-year risk of 16 cardiovascular disease at a baseline time point, selected so that the participants in G&H had 17 about 10 years of follow-up. QRISK3 was a strong predictor of CAD events and had a 18 concordance index (C-index) of 0.843 (95% CI: 0.828-0.858; Figure 4A, Table S11). Consistent with previous findings in EUR individuals¹⁰, the CAD PGS was uncorrelated with 19 20 QRISK3 (Pearson's correlation coefficient r=-0.0056 and p-value=0.62). We followed Riveros-Mckay et al.¹⁰ to construct an integrated score combining QRISK3 and the CAD PGS. The 21 22 integrated score had a non-significant improvement in the C-index (0.853, 95% CI: 0.838-23 0.867). However, compared with QRISK3 alone, the integrated score showed significant 24 improvement in reclassification (categorical NRI: 3.9%; 95% CI: 0.9%-7.0%) using a 10-year risk threshold of 10% based on the threshold for preventive intervention with statin treatment 25 recommended by National Institute for Health and Care Excellence ⁵⁶. The integrated score 26

1 reclassified 3.2% of the population as high risk and 2.5% as low risk (Table S11). This 2 improvement was mostly driven by the enhanced identification of CAD cases in people at 25-3 54 years old (NRI in cases being 7.0% versus NRI in controls being -1.2%), and of controls in 4 people at 55–84 years old (NRI in cases being 0.0% versus NRI in controls being 6.8%) 5 (Figure 4B, Table S11). The QRISK3 classified most (91.4%) of the individuals at 55–84 years 6 old as high risk. Using the integrated score, 7.6% of the individuals older than 55 years were 7 down-classified from high to low risk (Table S11). Using continuous NRI, the integrated score showed significant improvement (27.0%; 95% CI: 17.7%-36.2%) and similar trends in age 8 groups (Figure S9, Table S11). 9

10

11

12 Figure 4. Model discrimination and net reclassification index for coronary artery disease with 13 addition of a polygenic score to QRISK3. A. The concordance index (C-index) of QRISK3 (red) and 14 an integrated score that combines QRISK3 and a polygenic score (PGS) for CAD (blue) in all British 15 Pakistani and Bangladeshi individuals from G&H as well as in age-by-gender subgroups. The error bars 16 represent 95% confidence intervals (CIs) estimated using the standard error. B. Categorical net 17 reclassification index (NRI) for the integrated score compared to QRISK3 in all samples as well as in 18 age-by-gender subgroups. NRI in cases (red) and controls (blue) are also shown. The error bars 19 indicate 95% CIs estimated using the bootstrap method.

Causal effects of CAD risk factors largely consistent across ancestries

3 We carried out two-sample Mendelian randomisation (MR) analyses to assess the causal 4 effects of the risk factors on CAD in G&H and compared findings with EUR samples from 5 eMERGE. For G&H, we used transferable loci as genetic instruments to benefit from the 6 precision of large EUR discovery GWAS whilst ensuring only valid instruments are used. In 7 eMERGE, causal effects for BMI, BP and lipids, except TG, were statistically significant 8 (Figure 5). Consistent with this, we found that higher BMI (OR=1.73, p-value=0.01), higher 9 LDL-C (OR=1.55 p-value=4x10⁻⁴) and lower HDL-C levels (OR=0.75, p-value=8x10⁻³) were causally associated with increased risk of CAD in G&H. The OR for LDL-C was larger than 10 11 the one in eMERGE (OR=1.15) although with overlapping confidence intervals (CI: 1.03-1.29 in eMERGE, CI: 1.22-2.00 in G&H). The effects for SBP and DBP were not statistically 12 13 significant in G&H. However, both had relatively small numbers of loci as instruments and 14 confidence intervals of the effect estimates were wide.

1

2 Figure 5. Estimates of causal effects of risk factors on coronary artery disease in European 3 (eMERGE) and British South Asian (G&H) ancestry individuals. Two-sample Mendelian 4 randomisation (MR) estimates for the causal effects are presented based on genetic instrument 5 variables identified from EUR discovery GWAS for each risk factor. All independent genome-wide 6 significant loci were used as instruments for eMERGE and only the transferable loci for G&H. Effect 7 estimates are presented as odds ratios with 95% confidence intervals per standard deviation increase 8 in the reported unit of the trait: triglycerides (TG), systolic blood pressure (SBP), low-density lipoprotein 9 cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), diastolic blood pressure (DBP), body 10 mass index (BMI). The p-value (P) and number of single nucleotide polymorphism instruments (N 11 SNPs) included in the MR analysis are shown for each exposure.

12

13

We also assessed different strategies for instrument selection in G&H, such as using all loci associated at genome-wide significance in EUR GWAS for the risk factors (**Figure S11**). When following the standard approach of using an independent ancestry-matched sample (UKBB

SAS) to derive the instruments, an insufficient number of genome-wide significant instruments
(p<5x10⁻⁸) were identified (Figure S10). To address this, we also tested a less stringent pvalue threshold (p<5x10⁻⁵) for selecting instruments. For the lipid biomarkers, the results were
consistent regardless of which loci were chosen as instruments (Figure S11). However, the
association of BMI with CAD was significant only for transferable loci (Figure S11).
We found evidence of heterogeneity between causal estimates based on Cochran's Q statistic
for DBP when using the established loci as instruments (p-value=0.04), LDL-C when using the

9 UKBB SAS-ascertained loci (p-value=0.02) and HDL-C for transferable loci (p-value=1x10⁻³).

10 However, the results of the weighted median and weighted mode models were consistent with

11 those obtained by the inverse-variance weighted MR model (**Table S12**).

12

13 Discussion

14

15 We conducted the first study to systematically assess the transferability of genetic loci and 16 PGSs for cardiometabolic traits in SAS individuals with real-world clinical data, using ~22,000 17 individuals from the G&H cohort. For lipids and blood pressure, we found evidence that causal 18 genetic variants at known loci and beyond are widely shared with EUR. The prediction 19 accuracy of PGSs derived from EUR GWASs for these traits was similar between G&H and 20 EUR samples. However, the predictive performance of BMI and CAD PGS was reduced by 21 22 and 58%, respectively (for the PGS Catalog scores), in G&H, and CAD also had fewer 22 transferable loci. A CAD PGS optimised for South Asians nonetheless yielded an appreciable 23 improvement in risk reclassification when combined with the QRISK3 clinical risk score. 24

25 Other genetic studies of CAD and related traits that have evaluated reproducibility of 26 established loci in SAS populations have either been limited by small sample sizes or have

1 restricted their comparisons to the index SNP identified in the GWAS, which does not take LD 2 into account ^{34–36}. A recent study compared genetic determinants of >200 lipid metabolites in 3 5.000 South Asians from Pakistan and 13.000 Europeans and found high overlap in the detected associations ⁵⁷. Using a new method, our paper goes further by empirically 4 5 demonstrating that, in most cases where loci do not replicate, it is due to lack of power. These 6 findings suggest that, in large part, the genes and pathways that influence risk of CAD are 7 shared between these ancestrally divergent populations. One surprising finding was that the 8 major LDL-C locus at CETP was not associated with this biomarker in G&H but exhibited 9 pleiotropic effects particularly on HDL-C. Abnormalities in CETP are linked to accelerated atherosclerosis and might play an important role in increasing risk in SAS ⁵⁸. 10

11

12 Of those previously reported cardiometabolic loci that contained variants significantly 13 associated in G&H, 30–74% did not show evidence of shared causal variants. This suggests 14 that, although the genes and pathways are likely to be shared between ancestral groups, there 15 is heterogeneity with respect to the causal alleles. BMI had the lowest proportion of 16 transferable loci with shared causal variants as well as lower transferability of the PGS in G&H 17 and a genetic correlation significantly lower than one. SAS individuals are known to have 18 higher visceral fat at the same BMI compared to EUR individuals in Western countries ^{59,60}. 19 Consistent with this, the causal effect of BMI was significant only when using the transferable 20 loci as instruments in the Mendelian randomisation analysis. Visceral adiposity is a strong risk 21 factor for cardiometabolic diseases, independent of total fat mass; these findings warrant further study and may suggest that BMI may not be an optimal biomarker of adiposity in SAS⁶¹. 22

23

Mendelian randomisation has emerged as a powerful tool to explore the causal effects of risk factors on disease outcomes. Statistical power can be the limiting factor when extending these analyses to non-EUR populations because independent ancestry-matched GWAS for risk factors of interest may not be sufficiently large. To increase power to estimate the causal effects of risk factor traits on CAD in BPB, we used genetic instruments derived from large

EUR GWAS. Some of the loci may be invalid instruments for other populations. However, restricting the established loci to the ones that were transferable in this population successfully addressed this issue for BMI and shows promise as a new approach for trans-ancestry Mendelian randomisation. An assumption that requires further study is whether the effect sizes of transferable loci are the same for each ancestry group.

6

7 We observed variable levels of PGS transferability from EUR into BPB individuals for the 8 cardiometabolic traits that were investigated in this work, with relative accuracy in G&H versus eMERGE ranging from 131% for DBP to 42% for CAD. Consistent with previous studies ^{37,62}, 9 10 PGSs for HDL-C and triglycerides had similar predictive accuracy between the two ancestry 11 groups. We explored the factors that may impact relative accuracy of PGSs. Based on a 12 recently proposed theory, relative accuracy is proportional to the product of the trans-ethnic 13 genetic correlation and the ratio of heritability estimates ⁷. We considered the effect on the 14 relative accuracy of the trans-ethnic genetic correlation, ratio of heritability estimates in G&H 15 versus eMERGE, as well as the product of the previous two terms. However, none of them 16 showed a significant association with the relative PGS performance (Figure S12). This may 17 be because the theory was derived for PGSs based on genome-wide significant SNPs (whereas our PGSs include many SNPs with less significant p-values), and because the 18 19 relative accuracy also depends on differences in allele frequencies and LD patterns at these 20 SNPs between populations, which we have not factored in and may differ between traits.

21

Based on findings in lipid traits, the Global Lipids Genetics Consortium recently claimed that GWASs with high enough sample sizes could lead to PGSs with equally high accuracy across ancestry populations, even if the GWASs were conducted in predominantly EUR samples ⁶². However, we do not fully agree that this claim can be generalised beyond lipid traits, since it depends on the extent to which the causal variants are shared across ancestry groups. For example, the accuracy of C+T PGS for BMI decreased by 38% in G&H, whereas that for TG decreased by only 17% and that for HDL-C did not decrease, although the sample size of the

input GWAS for BMI was much larger than that for lipids (about 700,000 versus 300,000; **Table S4**). This is likely due to the relatively lower fraction of shared causal variants (26%) at
transferable loci for BMI and the relatively lower genetic correlation (significantly lower than 1
for BMI while close to 1 for lipids), which will not be ameliorated with larger sample sizes of
Europeans.

6

7 Several groups have shown improvements in PGS performance in non-Europeans when incorporating summary statistics from ancestry-matched samples ^{41,63}. Incorporating UKBB 8 SAS GWAS data in meta-PGSs proposed by Marquez-Luna et al. ^{41,63} did not show large 9 10 improvement in G&H. A likely reason is the limited sample size of the SAS samples in UKBB 11 for some of the traits. Larger samples of SAS individuals are needed to examine if ancestry-12 matched GWAS data can improve prediction accuracy over and above what would be 13 expected from the increased sample size. For traits for which the causal variants are shared, 14 there is more to be gained from more powerful EUR GWASs, even without adding samples of 15 the target ancestry. However, increasing diversity in GWASs will greatly improve the resolution 16 of fine-mapping and the power to identify the causal variants by leveraging the LD differences across ancestries ⁶⁴. 17

18

19 We assessed the clinical value of the PGS for CAD on top of the traditional clinical risk factors 20 captured in the QRISK3 algorithm. Similar work has been done previously in research cohorts 21 ^{9–12}; our study represents an important addition since it captures the noise with which QRISK3 22 is actually measured within a real-world clinical setting (as opposed to using comprehensive 23 measures taken for research purposes), which may affect performance of integrated risk 24 models combining these factors with PGSs. We note that only about 4% of the ~8 million 25 individuals used for developing QRISK3 were of South Asian ancestry ²⁶, and the weights for 26 each conventional risk factor might not be optimal for SAS individuals. QRISK3 was developed to predict cardiovascular disease (CVD), which is a composite outcome of CAD and stroke. 27 28 However, our analysis focused on CAD, which is an important component of CVD and the

1 main focus in GWASs and genetic prediction studies. The PGS for CAD developed by Wang 2 et al. showed robust association with CAD in G&H, with a similar OR per SD in PGS (1.63, 95% CI: 1.51–1.76) as in their study (1.60, 95% CI: 1.32–1.94) ⁴². The integrated score 3 combining PGS and QRISK3 showed significant reclassification improvement against QRISK3 4 5 alone (NRI 3.9% (95% CI: 0.9-7.0%)). Previous studies in UKBB EUR samples reported similar improvement, with NRI estimates of 3.5% (95% CI: 2.4–4.5%)¹⁰ and 3.7% (95% CI: 6 7 3.0-4.4%)⁹ in two different analyses using CAD as the outcome. However, these NRI 8 estimates are probably inflated by using UKBB samples that are healthier than the general UK population without recalibrating risk to a primary care setting¹¹. In G&H, the PGS improved 9 10 identification of high-risk individuals in people younger than 55 years, and correctly down-11 classified low-risk individuals in people older than 55 years, both of which are important in a clinical setting. We anticipate that, like EUR individuals 9-11, the British Pakistani and 12 13 Bangladeshi community (and potentially other SAS populations) would also benefit from the 14 use of integrating PGS in primary prevention settings.

15

16 Our study has several limitations. Firstly, due to the limited sample size in each age-by-sex 17 subgroup, we could not recalibrate risk prediction models in G&H to what would be expected in an unbiased primary care setting ¹¹. Secondly, while the G&H cohort has enabled us to 18 19 assess the potential utility of genetics in an under-represented population using data from 20 electronic records, each of the cohorts examined here is unique. Differences in ascertainment 21 (including the age distribution) and clinical measurements within different cohorts and 22 healthcare systems may have impacted the genetic associations. Ideally future studies would 23 compare populations with different ancestries collected in the same real-world healthcare 24 setting, but with sufficient sample sizes in each ancestry group to enable well-powered 25 comparisons. The BioMe biobank in New York contains individuals from multiple ancestries 26 with linked EHR data, but the number of self-reported SAS individuals is very limited (N=622) 65. 27

28

1 In conclusion, our work provides the first comprehensive assessment of the transferability of 2 cardiometabolic loci to a non-EUR population and its impact on two key applications of 3 genetics, causal inference and risk prediction. Our protocol and our new approach for 4 transferability can serve as methodological standards in this developing field. We have shown 5 high transferability of GWAS loci across several cardiometabolic traits between EUR and BPB 6 populations. The transferability of PGSs is trait-specific. Our results suggested there would be 7 clinical value in adding PGS to conventional risk factors in the prediction of CAD in primary 8 care settings to improve the more efficient use of preventive interventions, such as lipid-9 lowering medications. Our investigation contributes to the increasing representation of 10 individuals of non-European ancestry and lower socio-economic status in research studies, 11 which we hope will help to decrease health disparities.

12

13 Acknowledgements

14 We thank Social Action for Health, Centre of The Cell, members of our Community Advisory 15 Group, and staff who have recruited and collected data from volunteers. We thank the NIHR 16 National Biosample Centre (UK Biocentre), the Social Genetic & Developmental Psychiatry 17 Centre (King's College London), Wellcome Sanger Institute, and Broad Institute for sample 18 processing, genotyping, sequencing and variant annotation. We thank Barts Health NHS Trust, NHS Clinical Commissioning Groups (Hackney, Waltham Forest, Tower Hamlets, 19 20 Newham), East London NHS Foundation Trust, Bradford Teaching Hospitals NHS Foundation 21 Trust, and Public Health England (especially David Wyllie) for GDPR-compliant data sharing. 22 We also thank Sally Hull and Martin Sharp from the primary care data team at QMUL for their 23 help in estimating population prevalence of CAD. Most of all we thank all of the volunteers 24 participating in Genes & Health.

1 Sources of Funding

2	Genes & Health is/has recently been core-funded by Wellcome (WT102627, WT210561), the
3	Medical Research Council (UK) (M009017), Higher Education Funding Council for England
4	Catalyst, Barts Charity (845/1796), Health Data Research UK (for London substantive site),
5	and research delivery support from the NHS National Institute for Health Research Clinical
6	Research Network (North Thames). This research was funded in part by the Wellcome Trust
7	Grant 206194 to the Wellcome Sanger Institute. CG is supported by the National Institute for
8	Health Research ARC North Thames. RTL and NS are supported by the BigData@Heart
9	Consortium funded by the Innovative Medicines Initiative-2 Joint Undertaking under grant
10	agreement No. 116074 and RTL is supported by a UK Research and Innovation Rutherford
11	Fellowship hosted by Health Data Research UK (MR/S003754/1).
12	

For the purpose of Open Access, the author has applied a CC BY public copyright licence toany Author Accepted Manuscript version arising from this submission.

15

16 Disclosures

17 NS is now employed by GlaxoSmithKline. Other authors report no disclosures.

18

19 Supplementary Materials

- 20 Supplementary Figures 1–12
- 21 Supplementary Tables 1–12

References 1

2

1.

Barnett AH, Dixon AN, Bellary S, Hanif MW, O'hare JP, Raymond NT, Kumar S. Type 2 3 diabetes and cardiovascular risk in the UK south Asian community. Diabetologia. 4 2006;49:2234-2246. 5 Gurdasani D, Barroso I, Zeggini E, Sandhu MS. Genomics of disease risk in globally 2. 6 diverse populations. Nat Rev Genet. 2019;20:520-535. 7 3. Morales J, Welter D, Bowler EH, Cerezo M, Harris LW, McMahon AC, Hall P, Junkins 8 HA, Milano A, Hastings E, Malangone C, Buniello A, Burdett T, Flicek P, Parkinson H, 9 Cunningham F, Hindorff LA, MacArthur JAL. A standardized framework for 10 representation of ancestry data in genomics studies, with application to the NHGRI-EBI 11 GWAS Catalog. Genome Biol. 2018;19:21. 12 4. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current 13 polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584-591. 14 5. Duncan L, Shen H, Gelave B, Meijsen J, Ressler K, Feldman M, Peterson R, Domingue 15 B. Analysis of polygenic risk score usage and performance in diverse human 16 populations. Nat Commun. 2019;10:3328. 17 6. Majara L, Kalungi A, Koen N, Zar H, Stein DJ, Kinyanda E, Atkinson EG, Martin AR. 18 Low generalizability of polygenic scores in African populations due to genetic and 19 environmental diversity [Internet]. Cold Spring Harbor Laboratory. 2021 [cited 2021 Feb 20 23];2021.01.12.426453. Available from: 21 https://www.biorxiv.org/content/10.1101/2021.01.12.426453v1 22 7. Wang Y, Guo J, Ni G, Yang J, Visscher PM, Yengo L. Theoretical and empirical 23 quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat 24 Commun. 2020;11:3865.

1	8.	Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE.
2		Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank
3		Participants With Those of the General Population. Am J Epidemiol. 2017;186:1026-
4		1034.
5	9.	Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons KGM, Dehghan
6		A, Muller DC, Elliott P, Tzoulaki I. Predictive Accuracy of a Polygenic Risk Score-
7		Enhanced Prediction Model vs a Clinical Risk Score for Coronary Artery Disease.
8		<i>JAMA</i> . 2020;323:636–645.
9	10.	Riveros-Mckay F, Weale ME, Moore R, Selzam S, Krapohl E, Sivley RM, Tarran WA,
10		Sørensen P, Lachapelle AS, Griffiths JA, Saffari A, Deanfield J, Spencer CCA,
11		Hippisley-Cox J, Hunter DJ, O'Sullivan JW, Ashley EA, Plagnol V, Donnelly P. An
12		Integrated Polygenic Tool Substantially Enhances Coronary Artery Disease Prediction.
13		Circ Genom Precis Med [Internet]. 2021;Available from:
14		http://dx.doi.org/10.1161/CIRCGEN.120.003304
15	11.	Sun L, Pennells L, Kaptoge S, Nelson CP, Ritchie SC, Abraham G, Arnold M, Bell S,
16		Bolton T, Burgess S, Dudbridge F, Guo Q, Sofianopoulou E, Stevens D, Thompson JR,
17		Butterworth AS, Wood A, Danesh J, Samani NJ, Inouye M, Di Angelantonio E.
18		Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling
19		analyses. <i>PLoS Med</i> . 2021;18:e1003498.
20	12.	Weale ME, Riveros-Mckay F, Selzam S, Seth P, Moore R, Tarran WA, Gradovich E,
21		Giner-Delgado C, Palmer D, Wells D, Saffari A, Sivley RM, Lachapelle AS, Wand H,
22		Clarke SL, Knowles JW, O'Sullivan JW, Ashley EA, McVean G, Plagnol V, Donnelly P.
23		Validation of an Integrated Risk Tool, Including Polygenic Risk Score, for Atherosclerotic
24		Cardiovascular Disease in Multiple Ethnicities and Ancestries. Am J Cardiol [Internet].
25		2021;Available from: http://dx.doi.org/10.1016/j.amjcard.2021.02.032

1	13.	Finer S, Martin HC, Khan A, Hunt KA, MacLaughlin B, Ahmed Z, Ashcroft R, Durham C,
2		MacArthur DG, McCarthy MI, Robson J, Trivedi B, Griffiths C, Wright J, Trembath RC,
3		van Heel DA. Cohort Profile: East London Genes & Health (ELGH), a community-based
4		population genomics and health study in British Bangladeshi and British Pakistani
5		people. Int J Epidemiol. 2020;49:20–21i.
6	14.	Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust
7		relationship inference in genome-wide association studies. Bioinformatics.
8		2010;26:2867–2873.
9	15.	Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet.
10		2006;2:e190.
11	16	Das S. Forer L. Schönberr S. Sidore C. Locke AF. Kwong A. Vrieze SI. Chew FY. Levy
10	10.	C. McCus M. Schlessinger D. Stembolier D. Leb D.D. Jacons W.C. Sugreen A. Seett
12		S, MCGue M, Schlessinger D, Stambolian D, Lon P-R, Iacono WG, Swaroop A, Scott
13		LJ, Cucca F, Kronenberg F, Boehnke M, Abecasis GR, Fuchsberger C. Next-generation
14		genotype imputation service and methods. <i>Nat Genet</i> . 2016;48:1284–1287.
15	17.	GenomeAsia100K Consortium. The GenomeAsia 100K Project enables genetic
16		discoveries across Asia. Nature. 2019;576:106–111.
17	18.	Stanaway IB, Hall TO, Rosenthal EA, Palmer M, Naranbhai V, Knevel R, Namjou-
18		Khales B, Carroll RJ, Kiryluk K, Gordon AS, Linder J, Howell KM, Mapes BM, Lin FTJ,
19		Joo YY, Hayes MG, Gharavi AG, Pendergrass SA, Ritchie MD, de Andrade M, Croteau-
20		Chonka DC, Raychaudhuri S, Weiss ST, Lebo M, Amr SS, Carrell D, Larson EB, Chute
21		CG, Rasmussen-Torvik LJ, Roy-Puckelwartz MJ, Sleiman P, Hakonarson H, Li R,
22		Karlson EW, Peterson JF, Kullo IJ, Chisholm R, Denny JC, Jarvik GP, eMERGE
23		Network, Crosslin DR. The eMERGE genotype set of 83,717 subjects imputed to ~40
24		million variants genome wide and association with the herpes zoster medical record
25		phenotype. Genet Epidemiol. 2019;43:63–81.

1	19.	McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection
2		for Dimension Reduction [Internet]. arXiv [stat.ML]. 2018;Available from:
3		http://arxiv.org/abs/1802.03426
4	20.	Discovery Data Service [Internet]. [cited 2021 Apr 7]; Available from:
5		https://wiki.discoverydataservice.org/index.php?title=Welcome_to_the_Discovery_Data_
6		Service_knowledge_base
7	21.	NHS UK Read Codes · TRUD [Internet]. [cited 2021 Apr 7];Available from:
8		https://isd.digital.nhs.uk/trud3/user/guest/group/0/pack/9
9	22.	Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, Lander
10		ES, Lubitz SA, Ellinor PT, Kathiresan S. Genome-wide polygenic scores for common
11		diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet.
12		2018;50:1219–1224.
13	23.	Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, Zeng L, Ntalla I,
14		Lai FY, Hopewell JC, Giannakopoulou O, Jiang T, Hamby SE, Di Angelantonio E,
15		Assimes TL, Bottinger EP, Chambers JC, Clarke R, Palmer CNA, Cubbon RM, Ellinor
16		P, Ermel R, Evangelou E, Franks PW, Grace C, Gu D, Hingorani AD, Howson JMM,
17		Ingelsson E, Kastrati A, Kessler T, Kyriakou T, Lehtimäki T, Lu X, Lu Y, März W,
18		McPherson R, Metspalu A, Pujades-Rodriguez M, Ruusalepp A, Schadt EE, Schmidt
19		AF, Sweeting MJ, Zalloua PA, AlGhalayini K, Keavney BD, Kooner JS, Loos RJF, Patel
20		RS, Rutter MK, Tomaszewski M, Tzoulaki I, Zeggini E, Erdmann J, Dedoussis G,
21		Björkegren JLM, EPIC-CVD Consortium, CARDIoGRAMplusC4D, UK Biobank
22		CardioMetabolic Consortium CHD working group, Schunkert H, Farrall M, Danesh J,
23		Samani NJ, Watkins H, Deloukas P. Association analyses based on false discovery rate
24		implicate new loci for coronary artery disease. Nat Genet. 2017;49:1385–1391.

1		Alam D, Alves AC, Amouyel P, Di Angelantonio E, Arveiler D, Assimes TL, Auer PL,
2		Baber U, Ballantyne CM, Bang LE, Benn M, Bis JC, Boehnke M, Boerwinkle E, Bork-
3		Jensen J, Bottinger EP, Brandslund I, Brown M, Busonero F, Caulfield MJ, Chambers
4		JC, Chasman DI, Chen YE, Chen Y-DI, Chowdhury R, Christensen C, Chu AY, Connell
5		JM, Cucca F, Cupples LA, Damrauer SM, Davies G, Deary IJ, Dedoussis G, Denny JC,
6		Dominiczak A, Dubé M-P, Ebeling T, Eiriksdottir G, Esko T, Farmaki A-E, Feitosa MF,
7		Ferrario M, Ferrieres J, Ford I, Fornage M, Franks PW, Frayling TM, Frikke-Schmidt R,
8		Fritsche LG, Frossard P, Fuster V, Ganesh SK, Gao W, Garcia ME, Gieger C, Giulianini
9		F, Goodarzi MO, Grallert H, Grarup N, Groop L, Grove ML, Gudnason V, Hansen T,
10		Harris TB, Hayward C, Hirschhorn JN, Holmen OL, Huffman J, Huo Y, Hveem K,
11		Jabeen S, Jackson AU, Jakobsdottir J, Jarvelin M-R, Jensen GB, Jørgensen ME,
12		Jukema JW, Justesen JM, Kamstrup PR, Kanoni S, Karpe F, Kee F, Khera AV, Klarin
13		D, Koistinen HA, Kooner JS, Kooperberg C, Kuulasmaa K, Kuusisto J, et al. Exome-
14		wide association study of plasma lipids in >300,000 individuals. Nat Genet.
15		2017;49:1758–1766.
16	25.	Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G,
17		Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E,
18		Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, Wilson PWF,
19		Tsao PS, Kovesdy CP, Esko T, Mägi R, Milani L, Almgren P, Boutin T, Debette S, Ding
20		J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin W-Y, Luan J 'an, Mangino M,
21		Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Thériault S,
22		Verweij N, Willems SM, Zhao J-H, Amouyel P, Connell J, de Mutsert R, Doney ASF,
23		Farrall M, Menni C, Morris AD, Noordam R, Paré G, Poulter NR, Shields DC, Stanton A,
24		Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC,
25		Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS,
26		Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo
27		M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ,

1		Deelen J, Del Greco M F, Demirkale CY, Dörr M, Ehret GB, Elosua R, Enroth S,
2		Erzurumluoglu AM, Ferreira T, Frånberg M, et al. Genetic analysis of over 1 million
3		people identifies 535 new loci associated with blood pressure traits. Nat Genet.
4		2018;50:1412–1425.
5	26.	Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk
6		prediction algorithms to estimate future risk of cardiovascular disease: prospective
7		cohort study. <i>BMJ</i> . 2017;357:j2099.
8	27.	Li Y, Sperrin M, van Staa T. R package "QRISK3": an unofficial research purposed
9		implementation of ClinRisk's QRISK3 algorithm into R [Internet]. F1000Research.
10		2019;8:2139. Available from: http://dx.doi.org/10.12688/f1000research.21679.1
11	28.	Yousaf S, Bonsall A. UK Townsend Deprivation Scores from 2011 census data.
12		Colchester, UK: UK Data Service [Internet]. 2017;Available from:
13		http://statistics.digitalresources.jisc.ac.uk.s3.amazonaws.com/dkan/files/Townsend_Dep
14		rivation_Scores/UK%20Townsend%20Deprivation%20Scores%20from%202011%20ce
15		nsus%20data.pdf
16	29.	Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J,
17		VandeHaar P, Gagliano SA, Gifford A, Bastarache LA, Wei W-Q, Denny JC, Lin M,
18		Hveem K, Kang HM, Abecasis GR, Willer CJ, Lee S. Efficiently controlling for case-
19		control imbalance and sample relatedness in large-scale genetic association studies.
20		Nat Genet. 2018;50:1335–1341.
21	30.	Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi R, Ferreira T,
22		Fall T, Graff M, Justice AE, Luan J 'an, Gustafsson S, Randall JC, Vedantam S,
23		Workalemahu T, Kilpeläinen TO, Scherag A, Esko T, Kutalik Z, Heid IM, Loos RJF,
24		Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Quality control and
25		conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192–1212.

1	31.	Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex
2		trait analysis. Am J Hum Genet. 2011;88:76–82.
3	32.	Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP,
4		Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson
5		JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT,
6		Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran
7		AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM,
8		Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner
9		LB, Tsao CW, American Heart Association Council on Epidemiology and Prevention
10		Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke
11		Statistics-2020 Update: A Report From the American Heart Association. Circulation.
12		2020;141:e139–e596.
13	33.	Brown BC, Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye CJ,
14		Price AL, Zaitlen N. Transethnic Genetic-Correlation Estimates from Summary
15		Statistics. <i>Am J Hum Genet</i> . 2016;99:76–88.
16	34.	Braun TR, Been LF, Singhal A, Worsham J, Ralhan S, Wander GS, Chambers JC,
17		Kooner JS, Aston CE, Sanghera DK. A replication study of GWAS-derived lipid genes in
18		Asian Indians: the chromosomal region 11q23.3 harbors loci contributing to
19		triglycerides. PLoS One. 2012;7:e37056.
20	35.	Shahid SU, Shabana NA, Rehman A, Humphries S. GWAS implicated risk variants in
21		different genes contribute additively to increase the risk of coronary artery disease
22		(CAD) in the Pakistani subjects. <i>Lipids Health Dis.</i> 2018;17:89.
23	36.	Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P, Balding D, Scott J,
24		Kooner JS. Common genetic variation near MC4R is associated with waist
25		circumference and insulin resistance. Nat Genet. 2008;40:716–718.

1	37.	Kuchenbaecker K, Telkar N, Reiker T, Walters RG, Lin K, Eriksson A, Gurdasani D,
2		Gilly A, Southam L, Tsafantakis E, Karaleftheri M, Seeley J, Kamali A, Asiki G, Millwood
3		IY, Holmes M, Du H, Guo Y, Kumari M, Dedoussis G, Li L, Chen Z, Sandhu MS, Zeggini
4		E, Understanding Society Scientific Group. The transferability of lipid loci across African,
5		Asian and European cohorts. Nat Commun. 2019;10:4330.
6	38.	Chun S, Casparino A, Patsopoulos NA, Croteau-Chonka DC, Raby BA, De Jager PL,
7		Sunyaev SR, Cotsapas C. Limited statistical evidence for shared genetic effects of
8		eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat
9		Genet. 2017;49:600–605.
10	39.	Lambert SA, Gil L, Jupp S, Ritchie SC, Xu Y, Buniello A, McMahon A, Abraham G,
11		Chapman M, Parkinson H, Danesh J, MacArthur JAL, Inouye M. The Polygenic Score
12		Catalog as an open database for reproducibility and systematic evaluation. Nat Genet
13		[Internet]. 2021;Available from: https://doi.org/10.1038/s41588-021-00783-5
14	40.	Choi SW, O'Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data.
15		Gigascience [Internet]. 2019;8. Available from:
16		http://dx.doi.org/10.1093/gigascience/giz082
17	41.	Márquez-Luna C, Loh P-R, South Asian Type 2 Diabetes (SAT2D) Consortium, SIGMA
18		Type 2 Diabetes Consortium, Price AL. Multiethnic polygenic risk scores improve risk
19		prediction in diverse populations. <i>Genet Epidemiol</i> . 2017;41:811–823.
20	42.	Wang M, Menon R, Mishra S, Patel AP, Chaffin M, Tanneeru D, Deshmukh M, Mathew
21		O, Apte S, Devanboo CS, Sundaram S, Lakshmipathy P, Murugan S, Sharma KK,
22		Rajendran K, Santhosh S, Thachathodiyl R, Ahamed H, Balegadde AV, Alexander T,
23		Swaminathan K, Gupta R, Mullasari AS, Sigamani A, Kanchi M, Peterson AS,
24		Butterworth AS, Danesh J, Di Angelantonio E, Naheed A, Inouye M, Chowdhury R,
25		Vedam RL, Kathiresan S, Gupta R, Khera AV. Validation of a Genome-Wide Polygenic

Score for Coronary Artery Disease in South Asians. J Am Coll Cardiol. 2020;76:703-1

2 714.

3	43.	Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP,
4		Holmes MV, Minelli C, Relton CL, Theodoratou E. Guidelines for performing Mendelian
5		randomization investigations. Wellcome Open Res. 2019;4:186.
6	44.	Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S,
7		Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM,
8		Relton C, Martin RM, Smith GD, Gaunt TR, Haycock PC. The MR-Base platform
9		supports systematic causal inference across the human phenome [Internet]. eLife.
10		2018;7. Available from: http://dx.doi.org/10.7554/elife.34408
11	45.	Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity Analyses for
12		Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic
13		Variants. <i>Epidemiology</i> . 2017;28:30–42.
14	46.	Bowden J, Smith GD, Haycock PC, Burgess S. Consistent Estimation in Mendelian
15		Randomization with Some Invalid Instruments Using a Weighted Median Estimator
16		[Internet]. Genetic Epidemiology. 2016;40:304–314. Available from:
17		http://dx.doi.org/10.1002/gepi.21965
18	47.	Hartwig FP, Smith GD, Bowden J. Robust inference in summary data Mendelian
19		randomization via the zero modal pleiotropy assumption [Internet]. International Journal
20		of Epidemiology. 2017;46:1985–1998. Available from:
21		http://dx.doi.org/10.1093/ije/dyx102
22	48.	High cholesterol - Cholesterol levels [Internet]. [cited 2021 May 10];Available from:
23		https://www.nhs.uk/conditions/high-cholesterol/cholesterol-levels/
24	49.	Gelernter J, Sun N, Polimanti R, Pietrzak RH, Levey DF, Lu Q, Hu Y, Li B,
25		Radhakrishnan K, Aslan M, Cheung K-H, Li Y, Rajeevan N, Sayward F, Harrington K,

1		Chen Q, Cho K, Honerlaw J, Pyarajan S, Lencz T, Quaden R, Shi Y, Hunter-Zinck H,
2		Gaziano JM, Kranzler HR, Concato J, Zhao H, Stein MB, Department of Veterans
3		Affairs Cooperative Studies Program (No. 575B), Million Veteran Program. Genome-
4		wide Association Study of Maximum Habitual Alcohol Intake in >140,000 U.S. European
5		and African American Veterans Yields Novel Risk Loci. Biol Psychiatry. 2019;86:365-
6		376.
7	50.	Ganna A, Magnusson PKE, Pedersen NL, de Faire U, Reilly M, Arnlöv J, Sundström J,
8		Hamsten A, Ingelsson E. Multilocus genetic risk scores for coronary heart disease
9		prediction. Arterioscler Thromb Vasc Biol. 2013;33:2267–2272.
10	51.	Abraham G, Havulinna AS, Bhalala OG, Byars SG, De Livera AM, Yetukuri L, Tikkanen
11		E, Perola M, Schunkert H, Sijbrands EJ, Palotie A, Samani NJ, Salomaa V, Ripatti S,
12		Inouye M. Genomic prediction of coronary heart disease. Eur Heart J. 2016;37:3267-
13		3278.
14	52.	Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, Devlin JJ, Kathiresan S,
15		Shiffman D. Risk prediction by genetic risk scores for coronary heart disease is
16		independent of self-reported family history. <i>Eur Heart J</i> . 2016;37:561–567.
17	53.	Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, Lai FY,
18		Kaptoge S, Brozynska M, Wang T, Ye S, Webb TR, Rutter MK, Tzoulaki I, Patel RS,
19		Loos RJF, Keavney B, Hemingway H, Thompson J, Watkins H, Deloukas P, Di
20		Angelantonio E, Butterworth AS, Danesh J, Samani NJ, UK Biobank CardioMetabolic
21		Consortium CHD Working Group. Genomic Risk Prediction of Coronary Artery Disease
22		in 480,000 Adults: Implications for Primary Prevention. J Am Coll Cardiol.
23		2018;72:1883–1893.
24	54.	Mars N, Koskela JT, Ripatti P, Kiiskinen TTJ, Havulinna AS, Lindbohm JV, Ahola-Olli A,

25 Kurki M, Karjalainen J, Palta P, FinnGen, Neale BM, Daly M, Salomaa V, Palotie A,

1		Widén E, Ripatti S. Polygenic and clinical risk scores and their impact on age at onset
2		and prediction of cardiometabolic diseases and common cancers. Nat Med.
3		2020;26:549–557.
4	55.	Homer K, Boomla K, Hull S, Dostal I, Mathur R, Robson J. Statin prescribing for primary
5		prevention of cardiovascular disease: a cross-sectional, observational study. Br J Gen
6		<i>Pract.</i> 2015;65:e538–44.
7	56.	Overview Cardiovascular disease: risk assessment and reduction, including lipid
8		modification Guidance NICE. [cited 2021 May 10];Available from:
9		https://www.nice.org.uk/guidance/cg181
10	57.	Harshfield EL, Fauman EB, Stacey D, Paul DS, Ziemek D, Ong RMY, Danesh J,
11		Butterworth AS, Rasheed A, Sattar T, Zameer-ul-Asar, Saleem I, Hina Z, Ishtiaq U,
12		Qamar N, Mallick NH, Yaqub Z, Saghir T, Hasan Rizvi SN, Memon A, Ishaq M,
13		Rasheed SZ, Memon F-U-R, Jalal A, Abbas S, Frossard P, Saleheen D, Wood AM,
14		Griffin JL, Koulman A. Genome-wide analysis of blood lipid metabolites in over 5,000
15		South Asians reveals biological insights at cardiometabolic disease loci [Internet].
16		bioRxiv. 2020;Available from:
17		http://medrxiv.org/lookup/doi/10.1101/2020.10.16.20213520
18	58.	Rashid S, Sniderman A, Melone M, Brown PE, Otvos JD, Mente A, Schulze K,
19		McQueen MJ, Anand SS, Yusuf S. Elevated cholesteryl ester transfer protein (CETP)
20		activity, a major determinant of the atherogenic dyslipidemia, and atherosclerotic
21		cardiovascular disease in South Asians. Eur J Prev Cardiol. 2015;22:468–477.
22	59.	Sniderman AD, Bhopal R, Prabhakaran D, Sarrafzadegan N, Tchernof A. Why might
23		South Asians be so susceptible to central obesity and its atherogenic consequences?
24		The adipose tissue overflow hypothesis. <i>Int J Epidemiol</i> . 2007;36:220–225.
25	60.	Shah AD, Kandula NR, Lin F, Allison MA, Carr J, Herrington D, Liu K, Kanaya AM. Less

1		favorable body composition and adipokines in South Asians compared with other US
2		ethnic groups: results from the MASALA and MESA studies. Int J Obes . 2016;40:639-
3		645.
4	61.	Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, Vasan RS,
5		Murabito JM, Meigs JB, Cupples LA, D'Agostino RB Sr, O'Donnell CJ. Abdominal
6		visceral and subcutaneous adipose tissue compartments: association with metabolic
7		risk factors in the Framingham Heart Study. <i>Circulation</i> . 2007;116:39–48.
8	62.	Graham SE, Clarke SL, Wu K-HH. The power of genetically diverse individuals in
9		genome-wide association studies of blood lipid levels. under review.
10	63.	Weissbrod O, Kanai M, Shi H, Gazal S, Peyrot W, Khera A, Okada Y, Martin A,
11		Finucane H, Price AL. Leveraging fine-mapping and non-European training data to
12		improve trans-ethnic polygenic risk scores. medRxiv [Internet]. 2021;Available from:
13		https://www.medrxiv.org/content/10.1101/2021.01.19.21249483v1.abstract
14	64.	Zaitlen N, Paşaniuc B, Gur T, Ziv E, Halperin E. Leveraging genetic variability across
15		populations for the identification of causal variants. Am J Hum Genet. 2010;86:23–33.
16	65.	Belbin GM, Cullina S, Wenric S, Glicksberg BS, Soper ER, Glicksberg BS, Torre D,
17		Moscati A, Wojcik GL, Shemirani R, Beckmann ND, Cohain A, Sorokin EP, Park DS,
18		Ambite J-L, Ellis S, Auton A, CBIPM Genomics Team, Regeneron Genetics Center,
19		Bottinger EP, Cho JH, Loos RJF, Abul-Husn NS, Zaitlen NA, Gignoux CR, Kenny EE.
20		Towards a fine-scale population health monitoring system. Cell. 2021;184:2068–
21		2083.e11.