
J. Chem. Phys. 154, 051101 (2021); https://doi.org/10.1063/5.0035438 154, 051101

© 2021 Author(s).

Transferability of machine learning
potentials: Protonated water neural
network potential applied to the
protonated water hexamer
Cite as: J. Chem. Phys. 154, 051101 (2021); https://doi.org/10.1063/5.0035438
Submitted: 28 October 2020 • Accepted: 08 January 2021 • Published Online: 01 February 2021

 Christoph Schran, Fabien Brieuc and Dominik Marx

ARTICLES YOU MAY BE INTERESTED IN

When do short-range atomistic machine-learning models fall short?
The Journal of Chemical Physics 154, 034111 (2021); https://doi.org/10.1063/5.0031215

-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES
to CCSD(T) level of theory
The Journal of Chemical Physics 154, 051102 (2021); https://doi.org/10.1063/5.0038301

Machine learning for interatomic potential models
The Journal of Chemical Physics 152, 050902 (2020); https://doi.org/10.1063/1.5126336

https://images.scitation.org/redirect.spark?MID=176720&plid=1857434&setID=378408&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=56129c2c6549691b74cdb6aedd7be016bc03f88d&location=
https://doi.org/10.1063/5.0035438
https://doi.org/10.1063/5.0035438
http://orcid.org/0000-0003-4595-5073
https://aip.scitation.org/author/Schran%2C+Christoph
https://aip.scitation.org/author/Brieuc%2C+Fabien
https://aip.scitation.org/author/Marx%2C+Dominik
https://doi.org/10.1063/5.0035438
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0035438
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0035438&domain=aip.scitation.org&date_stamp=2021-02-01
https://aip.scitation.org/doi/10.1063/5.0031215
https://doi.org/10.1063/5.0031215
https://aip.scitation.org/doi/10.1063/5.0038301
https://aip.scitation.org/doi/10.1063/5.0038301
https://doi.org/10.1063/5.0038301
https://aip.scitation.org/doi/10.1063/1.5126336
https://doi.org/10.1063/1.5126336


The Journal
of Chemical Physics

COMMUNICATION scitation.org/journal/jcp

Transferability of machine learning potentials:
Protonated water neural network potential
applied to the protonated water hexamer

Cite as: J. Chem. Phys. 154, 051101 (2021); doi: 10.1063/5.0035438

Submitted: 28 October 2020 • Accepted: 8 January 2021 •

Published Online: 1 February 2021

Christoph Schran,1,2,a) Fabien Brieuc,1 and Dominik Marx1,b)

AFFILIATIONS

1Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
2Department of Physics and Astronomy, University College London, LondonWC1E 6BT, United Kingdom

a)Author to whom correspondence should be addressed: christoph.schran@rub.de. Present address: Department of Chemistry,

University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
b)Electronic mail: dominik.marx@rub.de

ABSTRACT

A previously published neural network potential for the description of protonated water clusters up to the protonated water tetramer,
H+(H2O)4, at an essentially converged coupled cluster accuracy [C. Schran, J. Behler, and D. Marx, J. Chem. Theory Comput. 16, 88 (2020)] is
applied to the protonated water hexamer, H+(H2O)6—a system that the neural network has never seen before. Although being in the extrap-
olation regime, it is shown that the potential not only allows for quantum simulations from ultra-low temperatures ∼1 K up to 300 K but
is also able to describe the new system very accurately compared to explicit coupled cluster calculations. This transferability of the model is
rationalized by the similarity of the atomic environments encountered for the larger cluster compared to the environments in the training
set of the model. Compared to the interpolation regime, the quality of the model is reduced by roughly one order of magnitude, but most
of the difference to the coupled cluster reference comes from global shifts of the potential energy surface, while local energy fluctuations are
well recovered. These results suggest that the application of neural network potentials in extrapolation regimes can provide useful results and
might be more general than usually thought.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035438., s

I. INTRODUCTION

In recent years, machine learning has become a compelling tool
for the representation of potential energy surfaces.1–6 The first fam-
ily of such machine learning potentials based on artificial neural
networks that scale to arbitrary system sizes were high-dimensional
neural network potentials7,8 (NNPs). Since then, many distinctly dif-
ferent approaches either also based on artificial neural networks9–15

or on kernel methods16–21 have been introduced over the years, while
recent development following the principles of deep learning has
allowed one to incorporate parts of the description of the chemi-
cal environments in the architecture of the model.22,23 While there
is usually agreement in the community that these models can only
be used in order to interpolate between a meaningful set of train-
ing points, there have been recent examples that show a broader

transferability of such machine learning approaches than those pre-
viously assumed. This includes the application of NNPs7,8 for alka-
nes to larger chains24 and for liquid water to various ice phases25 as
well as a Gaussian approximation potential16 for carbon to random
structure searches26 that explored quite different configurations than
the diverse carbon phases used to train the model.

In this communication, we show that such a generalization
capability can also be obtained for protonated water clusters of larger
size than the clusters used in the training set of the machine learn-
ing model. For that purpose, we use our previously published NNP
(exactly as reported in the supplementary material of Ref. 27) for
the description of protonated water clusters, which has been devel-
oped in an automated and adaptive workflow. It has been trained
on essentially converged coupled cluster reference data for pro-
tonated water clusters up to H+(H2O)4—including also the water
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monomer itself. This implies that the very same model is able to
describe the potential energy surface of all differently sized clusters
H+(H2O)n (here from n = 1 up to 4) on equal footing by virtue of
including all of them explicitly and simultaneously in the training.
In contrast, conventional many-body expansions, which have also
been successfully applied to protonated water clusters,28 expand the
potential energy as a sum of many-body corrections to the previous
terms.

Here, we apply our model to path integral molecular
dynamics (PIMD) quantum simulations of the protonated water
hexamer, H+(H2O)6, in its extended Zundel conformation (i.e., the
hydrated protonated water dimer), a system that was not included
in training the NNP. The structures generated by these stable quan-
tum simulations are afterward validated with respect to single-point
coupled cluster calculations of the same quality as those used to
generate the NNP up to n = 4 only. We show that this particular
model is able to provide meaningful and accurate predictions in this
extrapolation regime. These promising results are rationalized by the
similarity of the atomic environments encountered in this extrapo-
lation regime to the ones obtained for the smaller protonated water
clusters present in the training set of the model.

II. RESULTS AND DISCUSSION

In order to test the application of the previously published NNP
for the description of protonated water clusters beyond what was
considered in the original development,27 we ran path integral sim-
ulations at various temperatures starting from the optimized mini-
mum energy structure of the extended Zundel cation. The compu-
tational details of these simulation are described in the Appendix.
All tested quantum simulations from close to the ground state at
1.67 K up to 100 K were stable—although all being evidently in the
extrapolation regime of the NNP. The model was indeed exclusively
extrapolating since for each and every configuration encountered
during the simulations, the associated values of the atom-centered
symmetry functions,30 used here as descriptors of the atomic envi-
ronments, were outside the range of values present during train-
ing. In particular, we mainly observe the extrapolation of the two
broadest radial symmetry functions: one centered around oxygen
atoms and the other one centered around hydrogen atoms, both of
which involve distant oxygen atoms in their pairs. This indicates that
exclusively unknown configurations were encountered in all steps
of these simulations. While simulations up to 100 K sampled only
the extended Zundel isomer, H5O2

+(H2O)4, we applied the model
also at temperatures of 200 K, 250 K, and 300 K, which resulted in
occasional rearrangements of the cluster to other known minima.
Out of the 12 simulations at higher temperatures, two runs rear-
ranged into strained four-membered ring structures for which the
NNP provided unphysical predictions after about a 200 ps simula-
tion time, a phenomenon we analyze in more detail toward the end
of this communication. This mostly stable application of the NNP
in an extrapolation regime is a first promising indication that the
potential could be applied beyond the originally considered cluster
sizes.

In Fig. 1, we show the probability distribution functions of three
main structural properties of the hydrogen bond31 from the simula-
tion of (H5O2

+)(H2O)4 at 1.67 K and compare them to the respective

FIG. 1. Normalized probability distributions of the heavy atom donor–acceptor
distance rOO (top), the proton-sharing coordinate δ (middle) defined as δ = rOH

− rH⋯O, and the hydrogen bond angle ∠HOO (bottom) from PIMD simulations at
1.67 K for the central ultra-strong hydrogen bond (blue) and the additional four
hydrogen bonds to the dangling water molecules (gray) in the extended Zundel
cation, (H5O2

+)(H2O)4, as well as for the smaller bare Zundel cluster, H5O2
+, (red)

for comparison. The average of the distributions is marked with vertical lines using
the same color code. Only hydrogen bonded configurations are considered in this

analysis based on a standard hydrogen bond criterion.29 The optimized minimum
energy structures of the two considered systems are displayed on top of the figure.

distributions of the much smaller bare Zundel cation, H5O2
+. As

shown therein, the model provides the expected bimodal distribu-
tions of the donor–acceptor distance rOO and the proton-sharing
coordinate δ for the extended Zundel cation, caused by the two dis-
tinctly different types of hydrogen bonds in the system: the central
ultra-strong hydrogen bond (shown in blue) and the four additional
hydrogen bonds to the dangling water molecules (shown in gray).
In comparison, the bare Zundel complex has qualitatively similar
distributions in the case of the central hydrogen bond but features
a distinct shift toward shorter donor–acceptor distances as well as a
slightlymore localized proton-sharing coordinate. Finally, the distri-
bution of the HOO angle for the central ultra-strong hydrogen bond
in the extended Zundel cation is again close to the one in the bare
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FIG. 2. Correlation of the energy per atom from explicit CCSD(T∗)-F12a/aug-cc-pVTZ calculations (CC) and the NNP predictions for 300 randomly selected configurations
of the protonated water hexamer (left panels) and the protonated water tetramer in its Eigen-conformation (right panels) at 1.67 K (blue), 100 K (black), and 300 K (red),
respectively. The mean absolute differences (MAD) for all temperatures are reported in their respective color. In the upper left panel, we also include the shifted MAD values
(see text), for which the systematic bias (as quantified in the upper left inset) is removed from the NNP prediction by shifting the energies by the MAD at the respective
temperature (but without showing the underlying shifted data themselves). The lower panels show the energy differences between CC reference and NNP prediction over
the whole range of reference energies, while the inset in the upper panels shows the histograms of the energy differences including the corresponding standard deviations σ
in the respective color.

Zundel complex, while the four weaker hydrogen bonds to the dan-
gling water molecules feature the expected broader distribution that
is shifted to larger angles. These results are in substantial agreement
with the previous studies on the extended Zundel cation32–37 regard-
ing the symmetric nature of the central ultra-strong hydrogen bond
and its close match with that in the smaller bare Zundel cation. This
highlights the physically meaningful nature of the quantum struc-
tures generated with our model operating here in the extrapolation
mode, even close to the quantum ground state at 1.67 K.

In a next step, the quality of the NNP prediction during the
simulations is validated by explicitly evaluating the coupled cluster
reference method [namely, CCSD(T∗)-F12a/aug-cc-pVTZ; see the
Appendix for details] for 300 randomly selected configurations at
1.67 K, 100 K, and 300 K. We note that due to the system size, such
coupled cluster calculations are increasingly demanding in view of
their steep scaling not only in terms of computation time but also
when it comes to memory resources. This growth is such that it
would have been challenging to explicitly include the protonated

FIG. 3. Potential energy along one replica of quantum PIMD trajectories at 1.67 K of the extended Zundel cation (left) and the protonated water tetramer in the Eigen-
conformation (right) using the original and shifted (see the text) neural network potentials (NNP, NNPshifted only in the left panel). The CCSD(T∗)-F12a/aug-cc-pVTZ reference
(CC) is obtained by recomputing the energies for each configuration along the NNP trajectories and is shown as red dotted lines (with only a few circles added since the CC
energies mostly superimpose the NNP data). These energies are reported relative to the respective equilibrium structure. The bottom panels highlight the respective energy
differences in the NNP predictions to the CC reference method.
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water hexamer when training the NNP in the first place. The result-
ing correlation of the NNP prediction and the actual coupled clus-
ter reference for H+(H2O)6 is shown in the left panels of Fig. 2.
In the same figure, we include in the right panels the equiva-
lent test for the largest cluster considered during the development
of that NNP, namely, the protonated water tetramer, H+(H2O)4,
in its Eigen structure (corresponding to the hydrated hydronium
cation/protonated water monomer H3O

+). Note that the same
energy scales are used for all axes to allow for one-to-one com-
parisons. Overall, a high correlation between reference and NNP
is obtained, which is especially remarkable for a NNP that operates
exclusively in the extrapolation regime as is the case for the proto-
nated water hexamer (left panels). The application of NNPs in inter-
polation regimes, as demonstrated here for H+(H2O)4 (right panels),
is evidently yielding better results, but the quality of the NNP for the
larger and thus fully extrapolating system is only reduced by about
one order of magnitude and—most importantly—does not feature
strong outliers for all 300 configurations considered in this cross-
check. In addition, it can be seen that the prediction of the NNP
in the extrapolation regime is affected by a systematic bias as evi-
dent from the shift of the histogram of the energy differences with
respect to zero shown in the inset of the upper left panel. If this bias
is removed from the prediction of the NNP by uniformly shifting
all energies by the respective mean absolute difference (here 0.30
kJ/mol, 0.33 kJ/mol, and 0.29 kJ/mol per atom at 300 K, 100 K,
and 1.67 K, respectively), the precision of the prediction is improved
roughly by a factor of three at no additional cost. We note in passing
that we observe essentially the same quality for the low temperature
simulations that sample exclusively the extended Zundel conformer,
as for the configurations at 300 K, although rearrangements to other
known minima occur under these conditions.

To further validate the application of the NNP for the extended
Zundel cation when used in realistic simulations, we additionally
re-evaluated a short segment of the trajectory associated with one
replica, or bead, of the quantum path integral molecular dynamics
simulations at 1.67 Kwith the coupled cluster referencemethod. The
resulting potential energy profile along these 25 fs of the simulation
is shown in the left panel of Fig. 3.We also carried out the same anal-
ysis for the largest cluster explicitly considered in the construction of
the NNP, the protonated water tetramer, in the right panel to allow
for one-to-one comparison to the interpolation regime. As before,
the NNP yields surprisingly good results for the extended Zundel
cation, although working exclusively in its extrapolation mode. The
NNP is found to be able to recover the overall energy profile along
the short segment of the trajectory and correctly reproduces the
energy fluctuations (black line). As already seen for the randomly
selected structures, the NNP is affected by an overall bias that shifts
the prediction to slightly larger energies. However, if we use the
mean absolute difference of the 300 random structures from the sim-
ulation at 1.67 K to shift the energy prediction according to the NNP,
the coupled cluster reference energy profile is recovered perfectly by
the NNPshifted on the physically relevant scale as set by the poten-
tial energy fluctuations (blue line with squares). As known from the
originally published benchmarking of the NNP,27 the Eigen cation
does not suffer from such a bias since it has been used explicitly to
train that NNP, as shown in the right panel of Fig. 3. Overall, this
analysis reveals that the fully extrapolating NNP is able to almost
perfectly recover the correct energy fluctuations of the extended

Zundel cation even in the deep quantum regime at 1.67 K close to the
ground state after correcting for the global energy shift. Even with-
out any such shift of the energies, the NNP performs unexpectedly
well in such an extrapolation regime, which suggests that there can
be great potential in exploiting extrapolation capabilities for building
more complex machine learning potentials.

Let us finally provide some insight into the unexpected trans-
ferability of the model to the protonated water hexamer. In order to
check whether the predictive power of our model is the sole result
of the similarity to the protonated water tetramer, we have trained
a separate NNP only to the tetramer configurations present in the
training set. This model could not be successfully applied in PIMD
simulations as rearrangements into unphysical configurations are

FIG. 4. Two dimensional projection based on the principle component analysis of
the hydrogen (a) and oxygen (b) atomic environments as encoded by the atom
centered symmetry functions of the training set of the NNP model. The differ-
ently sized clusters for a subset of the atomic environments in the training set
are marked by different colors, while the contour lines show the probability density
of the PCA projection for all atomic environments in the training set in equidis-
tant steps on a logarithmic scale. The same projection, shown in dark blue, is
also applied to the configurations of the protonated water hexamer as generated
by PIMD simulations at various temperatures. Red crosses mark the atomic envi-
ronments of two configurations of the protonated water hexamer, which feature
unphysical predictions of the NNP model.
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observed at all temperatures after some short initial period. We thus
conclude that the smaller clusters grant additional robustness to the
model and contribute to its transferability.

To further understand this behavior, we have analyzed the sim-
ilarity of the atomic environments encountered in the extrapolation
regime, as encoded by the atom centered symmetry functions, to
the environments in the training set of the model. For that purpose,
we performed a principle component analysis (PCA), separately for
the oxygen and hydrogen environments, and projected the descrip-
tors onto the two most relevant components. These two compo-
nents together account for 72% and 82% of the variance in the full
dimensional feature space of oxygen and hydrogen environments,
respectively. Subsequently, the same projection is applied to the con-
figurations of the protonated water hexamer, as depicted in Fig. 4.
As shown by the dark blue points in this figure, the configurations
of the protonated water hexamer remain within the boundaries of
the training set for the most relevant components of the descriptor
space, although we have observed extrapolation for a subset of the
descriptors. This observation is in line with other recent studies that
have reported on the generalization capabilities in machine learning
models for various systems.24–26

In addition, we have also included the projection of the atomic
environments in the two higher temperature conformers that fea-
ture strained four-membered rings and were observed to lead to
unphysical predictions of the model (see the red crosses in Fig. 4).
Clearly, the main components of these atomic environments leave
the region spanned by the training set, which thus can be associ-
ated with the missing predictive power of the model. This points
toward the limitations of the application of machine learning mod-
els in extrapolation regimes, as sufficient similarity to the training
set is required to provide meaningful results. We note that these
limitations can, in principle, be overcome by continuing the auto-
mated fitting process of the model and explicitly targeting the larger
cluster by selecting the most representative configurations from our
exhaustive simulations.

III. CONCLUSION AND OUTLOOK

In summary, our previously published neural network poten-
tial, trained for simulations up to the protonated water tetramer,
performs unexpectedly well for the extended Zundel cation, a con-
former of the protonated water hexamer. This is notable since these
simulations are carried out entirely in the extrapolation regime,
which means that only unknown configurations are encountered in
each and every simulation step. This NNP does not only allow one
to run stable path integral quantum simulations but also recovers
correctly the quantum-thermal energy fluctuations in direct com-
parison to the coupled cluster reference data of the extended Zun-
del complex. Yet, the NNP suffers from a slight global shift of the
potential energy, which, however, does not influence the relative
fluctuations. Moreover, we show how this shift can be systemati-
cally corrected a posteriori based on rather few additional reference
calculations of the extended complex.

These promising results are explained by the similarity of the
atomic environments encountered in the present application with
the environments of the smaller clusters that composed the train-
ing set of the model, which accurately treats a class of molecular
complexes consisting of three up to 13 constituting atoms. Since the

training set of the neural network potential is composed of clusters
from the hydronium cation up to the protonated water tetramer and
does include the water monomer as well, sufficient local environ-
ments are considered in its construction to yield these reassuring
results.

Still, we would like to stress that these promising results should
not be taken for granted and using machine learning models beyond
their considered scope of application during their construction and
parameterization requires great care and sufficient validation. Evi-
dently, in most cases that are too far away from the chemical space
spanned by the training set, machine learning models will pro-
vide unphysical results. We observed this in the present case at
higher temperatures, where significant topological rearrangements
can occur that generate distinctly different atomic environments
in the protonated water clusters compared to those covered by
our training set. At the same time, our results reveal that there
can be cases where carefully constructed machine learning models
are applicable much beyond interpolation regimes. This could be
a promising route to the development of more complex machine
learning models. Thus, we hope that our short report will stimulate
methodological work to explore systematically and fundamentally
the power of machine learning models to safely conquer unknown
territory.
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APPENDIX: COMPUTATIONAL DETAILS

Path integral molecular dynamics simulations of the extended
Zundel cation down to 1.67 K have been performed with the CP2k
program package.38,39 The potential energy surface was described
using a recently developed and published NNP fitted to coupled
cluster reference calculations.27 This NNP describes all protonated
water clusters, from the protonated water monomer (hydronium
cation) up to the protonated water tetramer considered in the devel-
opment, on equal footing and, in particular, also explicitly includes
the water monomer. It has been shown to not only match the refer-
ence coupled cluster theory with very high precision but also able to
accurately describe proton transfer in the considered clusters.31 We
apply this NNP27 in the present study to the larger protonated water
hexamer in its extended Zundel structures, which is thus entirely in
the extrapolation regime of the model.

The extended Zundel cation was simulated at temperatures
of 300 K, 250 K, 200 K, 100 K, 20 K, 10 K, and 1.67 K,
including the quantum nature of the nuclei using the path inte-
gral quantum thermal bath (PIQTB) thermostat,40 which has
been recently extended to and validated at ultra-low tempera-
tures.41 In order to reach convergence, the path integral was
discretized using P = 6, 8, 12, 16, 64, 128, and 256 replica at
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T = 300 K, 250 K, 200 K, 100 K, 20 K, 10 K, and 1.67 K, respectively.
The convergence of these path integral discretizations was chosen
according to previous explicit benchmarking results41 for the proto-
typical hydrogen bond in the bare Zundel cation. For comparison,
we also performed simulations using exactly the same settings for
the Eigen and bare Zundel clusters, which were explicitly considered
in the construction of the model.27 All reported simulations were
propagated in four independent runs for, in total, 1 ns using a formal
molecular dynamics time step of 0.25 fs, while 10 ps at the beginning
of each simulation were discarded as equilibration.

Explicit validations of the predictive power of the NNP, which
is used here exclusively in its extrapolation regime, was achieved by
reevaluating the energies of many configurations of the extended
Zundel complex with the same coupled cluster method as used for
the development of that NNP. These calculations of the coupled
cluster singles, doubles, and perturbative triples [CCSD(T)] refer-
ence energies were performed with the Molpro program package42

by employing the explicitly correlated F12a method43,44 to correct
for the basis set incompleteness error. As suggested,44 we addition-
ally employed the size-consistent scaling of the perturbative triples,
(T∗), together with the aug-cc-pVTZ basis set.45,46 This so-called
CCSD(T∗)-F12a/aug-cc-pVTZ electronic structure setup has been
shown to provide energies very close to the complete basis set (CBS)
limit.44

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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