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Abstract 

The development of efficient models for predicting specific properties through 
machine learning is of great importance for the innovation of chemistry and material 
science. However, predicting global electronic structure properties like frontier 
molecular orbital HOMO and LUMO energy levels and their HOMO-LUMO gaps 
from the small-sized molecule data to larger molecules remains a challenge. Here we 
develop a multi-level attention neural network, named DeepMoleNet, to enable 
chemical interpretable insights being fused into multi-task learning through (1) 
weighting contributions from various atoms and (2) taking the atom-centered 
symmetry functions (ACSFs) as the teacher descriptor. The efficient prediction of 12 
properties including dipole moment, HOMO, and Gibbs free energy within chemical 

accuracy is achieved by using multiple benchmarks, both at the equilibrium and 
non-equilibrium geometries, including up to 110,000 records of data in QM9, 400,000 
records in MD17 and 280,000 records in ANI-1ccx for random split evaluation. The 

good transferability for predicting larger molecules outside the training set is 

demonstrated in both equilibrium QM9 and Alchemy datasets at density functional 

theory (DFT) level. Additional tests on non-equilibrium molecular conformations 
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from DFT-based MD17 dataset and ANI-1ccx dataset with coupled cluster accuracy 

as well as the public test sets of singlet fission molecules, biomolecules, long 

oligomers, and protein with up to 140 atoms show reasonable predictions for 

thermodynamics and electronic structure properties. The proposed multi-level 
attention neural network is applicable to high-throughput screening of numerous 
chemical species in both equilibrium and non-equilibrium molecular spaces to 
accelerate rational designs of drug-like molecules, material candidates, and chemical 
reactions. 
 

 

1. Introduction 

Chemistry is indispensable in human daily life as well as the research and 

development of clothing, drugs, and materials, etc. Nowadays, the powerful quantum 

chemical calculations in combination with big databases and artificial intelligence are 

changing the painstaking “try and error” works to rational discovery of novel 

molecules and materials with the desired properties. 1-8 Computational cost of 

quantum chemistry calculation increases rapidly as the sizes of systems increase. To 

facilitate the discovery process, quantum chemistry calculations based on density 

functional theory (DFT) have been widely used in various chemical systems with the 

computational scaling of O(Nb
3), where Nb is the number of basis sets. The gold 

standard CCSD(T)/CBS is even more expensive with the cost of O(Nb
7). Development 

of lower and even linear scaling methods has aroused great interest in the past decade. 
9-16 In spite of these advances in the quantum chemical methods, the quick prediction 

of various electronic structure properties is highly desired in high-throughput 

searching of large chemical spaces with all possible combinations of functional 

groups, towards the material or drug design. 4,17, 18  

Many machine learning methods have been introduced in quantum chemical 

study for the rapid predictions of atomic forces, molecular energy, and electronic 

structure properties, which are of great importance for the construction of accurate 

force fields and complicated potential energy surfaces as well as rational design of 

various materials and drug-like candidates. 1, 19-37 If the data-driven model is trained 

properly, it could remarkably reduce computational costs but with similar accuracy to 

quantum chemical calculation. High-throughput computational screening hence 
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becomes possible, outputting the properties of millions of compounds with broad 

applications in a fast and accurate way. For example, functions of novel optical 

materials and electronic devices are correlated with the descriptors of dipole moment, 

polarizability, energy levels of the highest occupied molecular orbital (HOMO) and 

the lowest unoccupied molecular orbital (LUMO), and so on. 38, 39 Drug-like 

molecules can be screened with cohesive Gibbs free energy and other descriptors. 8 

The term of electronic spatial extent, <R2>, may be useful for the design of batteries. 

40 Heat capacity is an important descriptor in predicting the properties of ionic liquids 

and many thermal materials. 41, 42 However, it is still a big challenge to accurately 

predict some electronic structure properties such as the HOMO and LUMO energy 

levels, and furthermore, the HOMO-LUMO energy gap, of much larger molecules 

that beyond the training set with good transferability. 43-45  

To improve the prediction accuracy of HOMO and LUMO energy levels, we 

propose in this paper an efficient multi-level attention neural network, named as 

DeepMoleNet, for the molecular systems. Our target is to establish an implicit 

relationship between the molecular structural information and 12 electronic structure 

properties including dipole moment, polarizability, HOMO, LUMO, HOMO-LUMO 

gap, zero point vibration energy (ZPVE), electronic spatial extent (<R2>), internal 

energy at zero and room temperature (U0, U), enthalpy (H), free energy (G), and heat 

capacity (Cv). It may be illustrative to draw an analogy between the language learning 

and property prediction from quantum chemical datasets. In the machine learning and 

translation of a sentence in a certain kind of language, the meaning of the translated 

word is associated with specific words and phrases in the context in neural machine 

translation. For a certain molecule in chemistry realm, every atom node is affected by 

its chemical environment adjacent to it with different weights, like that an oxygen 

atom always behaviors differently in tetrahydrofuran and tetrahydro-2H-pyran; 

nitrogen atom in pyridine versus pyrimidine. The weights to address the different 

impacts from ‘environment’ atoms on the ‘center’ atom are called ‘attention’. In the 

present work, we apply multi-level attention in every message passing step which 

would gradually capture the influence of different atomic nodes at each ‘time step’, T, 
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and the attention weight varies as the node representation changes in a dynamic 

manner. Such a multi-level attention strategy differs significantly from some other 

attention algorithms, in which attention is used once at the defined step. 46-48 To help 

the neural network learn a richer representation from atomic structural information, 

we use the multi-task learning (MTL), combining different known information of 

input data sample as the related auxiliary tasks to improve the predictive power of our 

main targets. 49-51 In addition to the pursuit of 12 quantum chemistry properties as the 

learning targets, the atom-centered symmetry functions (ACSFs) 52 descriptor is 

selected as the auxiliary prediction targets.  ACSFs have been widely applied as the 

input in many chemistry applications such as predictions of organic reactions, phase 

transition, surface catalysis, etc. 53-58 In the proposed DeepMoleNet model, we obtain 

the final node feature after T step multi-level attention cycle to predict the auxiliary 

ACSFs task. In other words, chemistry knowledge underlying the ACSFs descriptor is 

combined with multi-task learning to improve the generalizability and transferability 

of the deep learning model. As shown in Figure 1, we train with small molecules in 

QM959 (70,000 record with the number of atoms in the molecule, Natom <19) and 

Alchemy44 (72,000 with Natom <22) datasets, respectively, to predict the 12 quantum 

chemistry properties of larger molecules with up to Natom = 29 in QM9 and Natom = 38 

in Alchemy. The present DeepMoleNet model could simultaneously predict 12 

properties with better performance, accuracy, and robustness compared with other 

single-target training models. We even get better results by using the early epoch of 

multi-targets model as model initialization to train the single-target training model. 

Furthermore, this multi-task model is transferable to larger molecules with broad 

application scopes of drug-like molecules, peptides, macrocyclic molecules, 

oligomers, protein, and singlet fission molecules than those Natom  29 used for 

training in the QM9 dataset. This indicates the potential of our model in predicting the 

electronic structure properties of complex quantum chemical systems with 

satisfactory generalizability and transferability. 
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Figure 1. Illustration of the multi-level attention neural network, DeepMoleNet, which was 
subjected to extensive tests on quantum chemistry datasets at both equilibrium and 
non-equilibrium conformations as well as multiple public test sets with different applications. 
Each dataset is split into 2 different groups, the small sized training group (for examples, 
QM9: Natom  18 ; Alchemy: Natom  22) and the large test group (for QM9: 19  Natom  29; 
Alchemy: 23  Natom  38). Multi-level attention is applied to the message passing phase, and 
then after T steps, the auxiliary task is achieved. Finally, after the readout phase, the main 
tasks are done to test the transferability of the model.  

 

 

2. Method 

Shown in Figure 2 is an illustrative flowchart for the implementation of the 

proposed DeepMoleNet model, which has three steps, i.e., input, message passing, 

and readout. In this section, we will introduce details of the learning method, 

databases, and error analysis of our predicted results. 
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Figure 2. Implementation steps of DeepMoleNet. Representation of each node is generated at 
first through multi-linear perceptron, and subsequently, the attention coefficient is initialized 
to make Hadamard product with each node. Then the node hidden states are aggregated with 
edge hidden states. Hidden states of LSTM are used for multi-level attention generation. After 
T steps, ACSFs are predicted by each node representation. Finally, each node hidden state is 
used in set2set and atomwise neural network to predict the 12 quantum properties. 

 

2.1 DeepMoleNet architecture 

Input. In our DeepMoleNet model, each molecule (labeled as M) in QM9 and 

Alchemy datasets is input as a set of atom types (also called nodes), 𝑎i, and atom 

pairs (edge types), 𝑏ij, as shown in Figure 2. The selected features of nodes (𝑎i) and 

edges (𝑏ij) inputs are given in Table 1. For nodes, we use atom types, chirality, atomic 

number, hybridization, etc., which were generated by using RDkit code60. Gasteiger 

partial charge, as embedded in RDKit, was used for calculating atomic charges. The 

selected edges include descriptors of bond type, same ring, topological path length, 

shortest path bonds, graph distance, extended distance, geometric distance, in which 

the position information is implicitly encoded in atom pair features through Gaussian 

expansion 61 in equation (1). 
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 FGaussian expansion =  𝑒−(𝑟−𝑟0)2σ2                      (1) 

where r is the distance between 2 nodes. The Gaussian functions are centered at 20 

locations with the peak center parameters, 𝑟0, which are linearly placed between 0 

and 4. We set the peak width parameter σ = 0.5. 

In this work, we aim to design a neural network algorithm to map the relation 

between molecule, M (𝑎i, 𝑏ij), and their 12 quantum chemical properties, P, through f: 

{𝑀i}→ P𝑖=112 . It is noticed that extended-connectivity fingerprints (ECFP4) 61 were 

applied as inputs for quantum chemical property predictions.  

In Table 1, we also list the input features of other machine learning methods for 

quantum chemical applications. The ACSFs were widely used in the construction of 

high-dimensional neural network potential-energy surfaces. The kernel-based 

machine learning of molecular properties is realized by transforming fingerprints and 

representations non-linearly with kernel functions. 25, 34, 62-66 There are also some 

descriptors, such as the smooth overlap of atomic positions (SOAP) 67 method, the 

bag of bonds25, 68 approach and Fourier series of atomic radial distribution functions69. 

However, deep learning70 can directly learn from low-level molecular structure 

information (e.g., atom types and bond types), and then gradually extract high-level 

representation through deep multiple neural network layers to predict targets. 43, 61, 

71-86 Since we can generally achieve acceptable performance in deep learning by 

‘focusing’ on our target tasks, the information of ACSFs could be excluded from the 

input, instead we set ACSFs as one of the targets in the present DeepMoleNet model. 

Such ACSFs information could come from the training signals of the related tasks in 

the multi-task learning (MTL), which has been successfully used in many fields 

ranging from natural language processing and speech recognition, computer vision, 

and drug discovery. 49-51 MTL is able to improve generalization by parallel training 

tasks with the shared representations between the related tasks. 87 
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Table 1. Comparisons between various neural network methods 

Section  DeepMoleNet  

this work 

SchNet77 enn-s2s73 MGCN74 DimeNet43 AIMNet 

Input 
 

Node 𝑎i Atom type, 

Chirality, 

Atomic 

number, 

Acceptor, 

Donor, 

Aromatic, 

Hybridization, 

Number of 

Hydrogens, 

Forcefield 

charge, 

Valence, van 

der Waals 

radius, Node 

degree 

Element 

Embedding 

Atom type, 

Atomic 

number, 

Acceptor, 

Donor, 

Aromatic, 

Hybridizati

on, 

Number of 

Hydrogens 

Element 

embedding 

Element 

embedding 

atom-cente

red 

environme

nt vectors 

(AEVs) 

Edge 𝑏ij Bond type, 

Same ring, 

Topological 

path length, 

Shortest path 

bonds, Graph 

distance, 

Extended 

distance, 

Geometric 

distance 

Radial  

basis 

functions 

Bond type, 

distance 

Radial 

basis 

functions 

Fourier-bes

sel basis 

functions 

 

Message 
passing 

 Multi-level 
attention 

Continuousl
y filter 

convolution
al layers 

based 
interaction 

Gated 
graph 
neural 

networks 

Multi-level 
interaction 
(atom-wise
, atom-pair, 
triple-wise 

atom 
interaction, 

etc.) 

Directional 
message 
passing 

(message 
passed 
through 
angle for 

triple-wise 
atom 

interaction) 

Atomic 
interactions 

in 
molecules 

Readout  Atomwise layer 
Neural 

Network and 
Set2Set 

Atomwise 
layer Neural 

Network 

Set2Set Atomwise 
layer 

Neural 
Network 

Elemental 
wise layer 

Neural 
Network 

Atomwise 
layer 

Neural 
Network 

 

 

Message passing neural networks with multi-level attention. After the input 

section, DeepMoleNet will subsequently run message passing and readout processes. 

Message passing neural networks (MPNN) 73 have been used to learn features from 

molecular graphs through abstracting the commonalities between several existing 
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neural models for graph structured data. It is useful to solve molecular systems on 

molecular graphs M with node and edge features. Several kinds of graph neural 

networks have been developed with the emphasis laid on the dynamically updating 

the node features in response to its neighboring node features and edge information. 

When performing message passing, every node is connected to all its neighbors. In 

addition, the edges between two nodes act as a modulator to transmit these messages. 

We can exemplify the message passing by energy prediction of a molecule, which 

consists of several atoms, and there are various interactions among these atoms. If the 

two atoms are too far away from each other, their atomic interaction may be very 

weak and the edges in the graph would reduce messages; but if two atoms are close to 

each other, the edges in the graph would enlarge the messages due to the significant 

atom-pair interaction. 

We can give a mathematic expression for the message passing phase, in which 

node features xv are fed into a node network to obtain a hidden feature of dimension d, 

and edge features evw are fed into an edge network to obtain a dd matrix, respectively. 

Then hidden states of each node are aggregated with message function 𝑀𝑡  to 

generate the node hidden message, 𝑚𝑣𝑡+1, where 𝑁(𝑣) denotes the neighbors of node 

, as shown in equation (2).  𝑚𝑣𝑡+1 = ∑ 𝑀𝑡(ℎ𝑣𝑡 , ℎ𝑤𝑡 , 𝑒𝑣𝑤) 𝑤∈𝑁(𝑣)                                  (2) 

Here, 𝑀𝑡 is defined as follows. 

𝑀𝑡(ℎ𝑣𝑡 , ℎ𝑤𝑡 , 𝑒𝑣𝑤) = 𝐴(𝑒𝑣𝑤)ℎ𝑤                                    (3), 

where 𝐴(𝑒𝑣𝑤) is the edge network. 

The message function is followed by the update function. The update process can 

be described by analogy of molecular system. The chemically active atoms would 

strongly affect the surrounding atom; in return, the adjacent active atoms are more 

likely to surround an active atom. 

In the present work, we extend the MPNN framework with the multi-level 

‘attention mechanism’ in the update function of the message passing stage to capture 
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the long ranged interaction information in quantum chemistry calculation data. 

Attention is similar to the way of observing an object. Our visual system tends to pay 

attention to some parts of the image selectively, while ignoring other irrelevant 

information. Therefore, attention mechanisms assign different weights to different 

parts of the inputs, allowing the extraction of more critical and important information 

with modest computational costs. In such a way, attention enables the model to 

distinguish different input information and explain what the model has learned, so as 

to give an interpretable view for the ‘black box’ deep learning systems.  

The update process is presented as follows. 

𝑋𝑣𝑡+1, 𝑞𝑣𝑡+1 = 𝑈𝑡(ℎ𝑣𝑡 , 𝑚𝑣𝑡+1)                             (4) 

When there is no attention mechanism applied, 𝑋𝑣𝑡+1, the output of Ut, goes back to ℎ𝑣𝑡+1 in the update function of the traditional MPNN73. The 𝑞𝑣𝑡+1 term in equation (4) 

is the hidden state of time-dependent update function, similar to that used in Long 

Short Term Memory Network (LSTM)88. LSTM is used to update the node state for 

further aggregation in an order free manner. As shown in equation (5), the sigmoid 

activation function is used to obtain the attention score, Z, which indicates the 

importance of this atom in the molecule.  

 𝑍 = 𝜎(𝑀𝐿𝑃(𝑞𝑣𝑡+1) ∙ 𝑋𝑣𝑡+1)                             (5) 

Then, ℎ𝑣𝑡+1 is the weighted information of 𝑋𝑣𝑡+1 with the broadcast of the 

attention score Z, as shown in equation (6).  

ℎ𝑣𝑡+1 = 𝑋𝑣𝑡+1𝑍                                      (6) where  is the Hadamard operator. 
We utilize information extracted from message passing phase and the LSTM hidden 

state to generate attention vector through multiplying this vector by the coefficient 

generated by the attention mechanism, and feed it to the LSTM block. Therefore, the 

whole model could be viewed as a model with the embedded pooling layer MPNN 
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and attention mechanism. 

Node features, xv, and edge features, evw, run with both message function and 

update function for T time steps in this message passing phase. After the multi-level 

attentional node message aggregation, the final node representation at T step is used 

to predict the ACSFs and the outputs of readout function are used for the main target 

prediction of 12 quantum chemistry properties. 

Read Out. In the present work, two readout functions, Set-to-set (Set2Set) and 

atom-wise summation neural networks, are used to simultaneously predict the 12 

targets in a neural network. In the readout phase, a graph level representation is 

calculated with defined readout function R according to the following equation. �̂� = 𝑅({ℎ𝑣𝑇, |𝑣 ∈ 𝑀).                                         (7), 

where, ℎ𝑣𝑇 means the final node representation of message passing in the T step, 𝑣 

is the node of the molecular graph, 𝑀. The selection of two kinds of readout 

functions is judged by the intensive or extensive nature of the 12 predicted molecular 

properties. Among them, HOMO, LUMO, HOMO-LUMO gap, dipole moment, and 

heat capacity belong to the intensive properties, for which the Set2Set is used in the 

multi-task training progress to make predictions. In contrast, the energy-related 

properties, G, H, U, and U0, are extensive properties, whose prediction is completed 

by using the atom-wise summation neural networks. The remaining three kinds of 

properties, i.e., polarizability, <R2>, and ZPVE are predicted by using the Set2Set 

readout for convergence consideration. 

Set-to-set (Set2Set) framework has been used in enn-s2s73 model, which 

produces graph-level embedded representation with global attention, instead of 

summing up the final node states. The atom-wise summation neural networks are 

applied with atom-wise layers for each node separately to the node hidden 

representations hi with shared weights Wl and biases bl on layer l as follows.  ℎ𝑣𝑇,𝑙+1 = 𝑊𝑙ℎ𝑣𝑇,𝑙 + 𝑏𝑙                                  (8), 
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where the ℎ𝑣𝑇,𝑙 is the final T step output of the message passing phase at layer l. 

The atom-wise neural network produces an output on each node representation for 

each node, and then predicts the target properties by simply summing up or averaging 

the final node states. In the DeepMoleNet, the message passing steps is set as 6 by 

trial and error. The learning rate is 1  10-5. Adam89 is used as the optimization model, 

and the batch size is 32. Our model is run in 400 epochs, in which 20 epochs are used 

for warm-up. More details are shown in Table S1.  

In addition, DeepMoleNet is featured as the combination of feature engineering 

and the deep learning approach within the framework of multi-task learning (MTL) 

theory. Feature engineering could gain knowledge from dataset, so we introduce an 

auxiliary task to predict ACSFs at the end of the message passing phase. Outputs of 

the readout function are used for the main targets of 12 properties prediction with the 

predicting loss, L, defined as follows. 𝐿 = 𝐿𝑚𝑎𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 + 𝐿𝐴𝐶𝑆𝐹𝑠                           (9), 

where 𝐿𝑚𝑎𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 represents the loss of 12 predicted molecular properties (main 

targets), as shown in equation (10). 𝐿𝐴𝐶𝑆𝐹𝑠 is the loss of the predicted ACSFs values, 

shown in equation (10). Here,  is the loss weight of 𝐿𝐴𝐶𝑆𝐹𝑠. It is set to be 16 by trial 

and error. 

𝐿𝑚𝑎𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 =           ∑ ∑ |𝑃𝑖𝐷𝑒𝑒𝑝𝑀𝑜𝑙𝑒𝑁𝑒𝑡 − 𝑃𝑖𝐷𝐹𝑇|𝑎𝑙𝑙𝑖8 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑖𝑛 𝑆𝑒𝑡2𝑆𝑒𝑡𝑃 𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
+  𝜌 ∑ ∑ |𝑃𝑖𝐷𝑒𝑒𝑝𝑀𝑜𝑙𝑒𝑁𝑒𝑡 − 𝑃𝑖𝐷𝐹𝑇|𝑎𝑙𝑙𝑖4 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑖𝑛 𝐴𝑡𝑜𝑚−𝑤𝑖𝑠𝑒 𝑁𝑁𝑃 𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠       

                                                              (10), 

where the first term is set for the readout 8 properties, including dipole, polarizability, 

HOMO, LUMO, HOMO-LUMO gap, <R2>, ZPVE, and heat capacity. For those 

properties using Set2Set, they are normalized, and for extensive properties, the weight 

is 0.5. In the second term of equation (10), ρ=0.5, which is the weight for all 4 
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energy-related properties, U0, U, H, and G, in Atom-wise NN.  

         𝐿𝐴𝐶𝑆𝐹𝑠 = ∑ |𝑃𝑖𝐷𝑒𝑒𝑝𝑀𝑜𝑙𝑒𝑁𝑒𝑡−𝑃𝑖𝐴𝐶𝑆𝐹𝑠|𝑎𝑙𝑙𝑖 𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠                                     (11) 

During the message passing phase, the hidden state of node is aggregated by the 

influence of its neighbors. However, the spatial information is lost in this way of 

topological information aggregation. There are many efforts devoted to MTL. One 

way is to combine Coulomb matrix with neural network 90. Another is using 

atom-centered environment vectors (AEVs) as input like AIMNet91. Instead of using 

AEVs as input attributes in the deep learning approach like AIMNet91, DeepMoleNet 

sets the ACSFs descriptors as the predicting targets at the end of message passing 

phase to help every node get the spatial information fused with the learned 

representations. For spatially sensitive properties such as molecular dipole moment, 

the auxiliary ACSFs prediction tasks may be helpful to fuse spatial information with 

the representation learned in the data-driven way. In subsection 3.4, we will further 

elaborate the performance of using ACSFs as both descriptor and prediction task. 

To summarize, our model has features of (1) introducing more detailed 

description of atom and atom pair information in the input section; (2) using 

multi-level attention for node message aggregation; (3) employing the auxiliary target, 

ACSFs, to help the graph convolution model obtain better learned representation; and 

(4) adopting both set2set readout function and atomwise neural network in 

simultaneously predicting the 12 quantum properties, which are the main targets of 

this work.  

2.2 Comparison with other methods 

It is useful to make comparison between various deep learning methods for molecular 

property predictions in Table 1. In this work, the inclusion of the complete edge 

feature vector (bond type, spatial distance) and treating hydrogen atoms as explicit 

nodes in the graph are found to be crucial to get good predictions for a number of 

targets in multi-task learning. The enn-s2s73 selected less descriptors of node and bond 
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features in message passing. The difference between the Set2Set73 and the multi-level 

attention we used lies in the node information aggregation. We made attention on 

local chemical environment of each atom to extract the final node representation, 

while Set2Set73 further made attention with the final node representation to produce 

the final global graph representation. In addition, SchNet77 used element embedding 

for node feature and radial basis functions to incorporate the continuously filter 

convolutional layers in message passing and atom-wise layers for final prediction. 

MGCN74 developed the multi-level interaction (atom-wise, atom-pair, triple-wise 

atom interaction, etc.) in message passing; and DimeNet43 used directional message of 

angle to pass information of the surrounding atoms with Fourier-bessel basis 

functions. AIMNet91 used node embedding from both atomic coordinates and atomic 

numbers to form the atom-centered environment vectors, then obtained atomic feature 

vectors (AFVs) in the iterative message passing for downstream tasks (Table 1). 

2.3 Datasets 

In the application of DeepMoleNet, we employed multiple public datasets 

including QM959, Alchemy44, MD1792, ANI-1ccx93, 94 quantum chemistry 

computation results, as shown in Table 2. Some typical molecules with potential 

applications in drug and material design were also studied using DeepMoleNet. 

Table 2. Dataset details and error analysis of the predicted data 

Dataset Computation level Tasks Data Sizea Rec-split Rec-metric 

DFT data @ equilibrium geometries 

QM959 B3LYP/6-31G(2df,p) 12 133,885/129,428 Random MAE, stdMAE 

Alchemy44 B3LYP/6-31G(2df,p) 12 202,579/183,051 Random MAE 

DFT or CCSD data @ sampled conformations 

MD1792 PBE+vdW-TS 1 3,611,115/560,000 Random MAE 

ANI-1ccx CCSD(T)/CBS 1 489,571/332,196 Random MAE, RMSE 

Transferability test sets 

Drug-like molecules95 All the test molecules 
were re-optimized 

with 
B3LYP/6-31G(2df,p) 

2 24/17  MAE, MAE 

MPCONF19696 2 192/11  MAE, MAE 

Singlet fission molecules37 2 262/9  MAE, MAE 

oligomers37 2 12  MAE, MAE 

protein37 2 2/1  MAE, MAE 
 

a The amount of data in the public dataset is given before the slash, and the number of 
data used in this work is shown after the slash. 
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2.3.1 Chemical equilibrium datasets 

QM9. The QM959 dataset contains about 130,000 organic molecules composed 

of 9 heavy atoms including C, O, N, and F, etc. within the GDB-17 database. Various 

molecular properties were calculated at the theoretical level of 

DFT/B3LYP/6-31G(2df,p). The collected molecules in QM9 cover a wide range 

including (hetero-) alkane, amide, amine, alcohol, epoxy, ether, ester, chloride, 

aliphatic, and aromatic groups. In this work, the 110,000 QM9 data are randomly 

selected as the training set, 10,000 data for validation, and the rest for test set, with the 

molecular size, Natom, varying from 3 to 29 atoms (Figure S1). 

Alchemy. Alchemy44 includes 202,579 molecules with a maximum of 14 heavy 

atoms (including C, O, N, F, S, Cl, etc.) and Natom = 11 ~ 38 sampled from GDB 

MedChem dataset. All the 12 properties were obtained with Python-based Simulations 

of Chemistry Framework (PySCF) 97. All geometries were calculated with the density 

fitting approximation for electron repulsion integrals using the B3LYP/6-31G(2df,p). 

Unlike the QM9 dataset, the auxiliary basis cc-pVDZ-jkfit was used in density fitting 

to build the Coulomb matrix and the HF exchange matrix. The meta-Lowdin 

population analysis was employed to obtain the atomic charges. It should be 

mentioned that some of the quantum chemistry results obtained from Alchemy and 

QM9 datasets are somewhat different from each other44 due to the different biased 

generation routines used in these two datasets despite the same computation level of 

B3LYP/6-31G(2df,p) was used. We find that both Alchemy and QM9 datasets give 

nearly identical results for Gibbs free energy with the pearson correlation coefficient 

of 1.0. However, the pearson correlation coefficient is just about 0.63 for the predicted 

dipole moments and 0.85 for HOMO results in Alchemy with the QM9-trained 

DeepMoleNet model (Table S2).  

2.3.2 Non-equilibrium conformation datasets  

MD17. The MD1792 contains eight organic molecules with up to 21 atoms 

composed of heavy atoms like C, N, O, F. For each molecule, ab initio molecular 

dynamics simulation was performed to obtain the energy and forces using PBE + 
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vdW-TS electronic structure method. At each time step, the energy and forces 

together with its coordination were recorded. Here, we focus on the relative 

conformational energies of a certain molecule in potential energy surface (PES). 

ANI-1ccx. ANN-1ccx 93 is a high-quality and diverse data set which contains 

500,000 molecules in both wide chemical and conformer spaces in the benchmark 

calculations at CCSD(T)/CBS level for isomerization energies, reaction energies, 

molecular torsion profiles, and energies and forces at non-equilibrium geometries 

with molecule size Natom ranging from 2 to 54. The ANI-1ccx dataset is intelligently 

selected 10% sub-sample of the ANI-1x dataset, in which the molecular 

conformations were derived from 57,000 distinct molecular configurations containing 

the C, H, N and O elements computed with DFT through an active learning algorithm 

with four kinds of sampling methods, namely, molecular dynamics simulations, 

normal mode analysis, dimer sampling, and torsion sampling.  

 

2.3.3 Other test sets 

    Some typical molecules, which are of great importance in drug or material 

design, were selected as external data set for the transferability test (Figure S2) based 

on the model trained with 110,000 QM9 data.  

Drug-like molecules data set 37. There are 24 drug molecules like aspirin, 

abacavir, vitamins, and drug-like molecules in this data set. All of them are natural 

products with pharmacological activity. They all contain rings with rotatable bonds 

and certain amount of hydrogen bond donors and acceptors in the spatial structure. 

The Natom of these molecules ranges from 14 to 73. In this work, 17 molecules, 

including vitamin B3, vitamin C, aspirin, amphetamine, vitamin B5, abiraterone, 

cocaine, amitriptyline, testosterone, vitamin A1, vitamin B12, progesterone, abacavir, 

glucosepane, cholic acid, vitamin D3, and vitamin D2 were randomly selected for the 

test. 

    MPCONF196 96. This dataset with the data size of 196 selects 13 acyclic and 

cyclic model peptides and several macrocyclic compounds, with 15 or 16 conformers 

(in both high- and low-energy regions) for each compound, whose conformation 



 

17 

 

energies were computed by DFT(-D3) and CCSD(T)/CBS methods. The selected 

macrocycles are also collected in the Cambridge Structural Database (CSD) and are 

further denoted by their CSD codes. In this work, 5 peptides (FGG, GGF, WG, WGG, 

and GFA) and 6 macrocyclic molecules (with CSD codes of POXTRD, CAMVES, 

COHVAW, CHPSAR, Gpd_A, and Gpd_B) were randomly selected from the 

MPCONF196 dataset for the transferability test of the proposed DeepMoleNet 

method in prediction of Gibbs free energy and HOMO properties.  

Singlet fission molecules data set 95. This dataset includes 262 singlet fission 

molecule candidates. The dataset was screened out through a procedure of exploiting 

quantum chemical calculations of excitation energies, which were calibrated against 

experimental data. The candidate molecules were stored into different chemical 

families, enabling the design of further singlet fission materials using the hits as lead 

compounds for further exploration. For simplified, the selected 9 test molecules are 

also named by their CSD codes, AFZPYM, OXTPTZ, BATWUO, FEFLEK, 

EVAWON, LULLOT04, DIFQEP, TOSYAD, and QELNOK, in our transferability test 

of the Gibbs free energy and some other properties. 

Oligomers data set 37. The originally reported data set selects 5 classes of 

oligomers, i.e., polyethylene (PE, n=28), polyacetylene (PA, n=15), polylactic acid 

(PLA, n=10), and alanine peptide (ala, n=10), quaternary ammonium polysulphon 

(bQAPS, n=3). Here, we adopt 4 kinds of oligomers with different polymerization 

degrees, including polyethylene (PE, n=3, 7, 14), polyacetylene (PA, n=6, 8, 15), 

polylactic acid (PLA, 3, 5, 10), and alanine peptide (ala, n=2, 4, 10), as our test sets. 

 

2.4 Error analysis of predicted results  

DeepMoleNet features regression tasks among 12 different electronic properties at 

DFT level and energy prediction at CCSD(T)/CBS calculation level. Similar to other 

publications, MAE and RMSE metrics were calculated for evaluating the prediction 

error. To further reflect the average error compared to the standard deviation of each 

target, we report the standardized MAE, std.MAE, of different properties. For each 

target, the std. MAE is defined as follows.  
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std.MAE =  1𝑁 ∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑚𝑖 −𝐷𝐹𝑇𝑚𝑖 |
𝑚𝑁𝑖=1                               (12), 

where 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑚𝑖  and 𝐷𝐹𝑇𝑚𝑖  are the machine learning predicted and actual DFT 

values for the property m (e.g., the dipole moment) of the i-th molecule, respectively. 

The term 𝑚 is the standard deviation from DFT result of property m. N is the 

number of data for the test set. In some cases, for example, to reflect the relative 

deviation of HOMO prediction, we also calculate the relative MAE error, MAE, which 

comes from the division of MAE by the real DFT value, as shown below.  

MAE = | 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑚𝑖 −𝐷𝐹𝑇𝑚𝑖𝐷𝐹𝑇𝑚𝑖 |                                  (13). 

 

3. Results and Discussion 

3.1. Learning QM9/Alchemy molecular properties 

In the first step, the 110,000 QM9 data are randomly selected as the training set, 

10,000 data for validation and the rest for test set, with the molecular size, Natom, 

varying from 3 to 29 atoms (Figure S1). The transferability test is then done on the 

randomly split 60,000 molecules in Alchemy, which contains the computational data 

of the 12 electronic structure properties (dipole moment, polarizability, HOMO, 

LUMO, HOMO-LUMO gap, ZPVE, <R2>, U0, U, H, G, and Cv) at the same 

B3LYP/6-31G(2df,p) level but with different calculation workflow from those data in 

QM9. As mentioned above, it is not practical to use QM9 trained model to directly 

predict the corresponding Alchemy properties. 44 Instead, we used the Pearson 

correlation coefficient to test the relative trends between the 12 properties for 

Alchemy molecules predicted by the model trained with QM9 and the real values 

reported in Alchemy data set (Table S2). 

Our model can predict 12 molecular properties with satisfactory accuracy, as 

shown in Table 3 (for single-task) and Tables S3 (multi-task). Most of MAEs of our 

simultaneous predictions of 12 properties relative to DFT results are slightly lower 

than those of other multi-target models trained on MoleculeNet 84 and multi-target 

model of DimeNet (Table S3). Among all the 12 properties, the present model works 

very well for the energy-related properties, U0, U, H, and G, with MAEs of 7.7 meV, 

7.8 meV, 7.8 meV, and 8.6 meV, respectively. The performance of the prediction of 
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electronic structure properties, such as HOMO (MAE: 23.9 meV), LUMO (MAE: 

22.7 meV), and HOMO-LUMO gap (MAE: 33.2 meV), is also satisfactory. For each 

target, we also calculated the mean standardized MAE, std. MAE. As shown in Table S4 

and Table S5, the calculated std. MAE values of the present model are about 1%, 

approaching the chemical accuracy. It is still a big challenge to achieve the balanced 

and accurate predictions for all those 12 targets simultaneously. In fact, the MAEs of 

our multi-target model (Table S3) is even smaller than those of other single-target 

models for the predictions of dipole, HOMO, HOMO-LUMO gap, U0, U, H, and G 

(Table 3), which is perhaps the first report for the multi-task model to have such a 

performance to the best of our knowledge. The single-target prediction accuracy of 12 

targets using our DeepMoleNet model is the best with small MAEs of HOMO (21.8 

meV), LUMO (18.5 meV), and HOMO-LUMO gap (32.1 meV). To illustrate the 

statistic performance, the error bars of dipole moment, HOMO energy level, and free 

energy in single-target prediction and those 12 properties in multi-target task on QM9 

are calculated in Table S6 and Table S7, respectively. 

 

Table 3. MAEs of DeepMoleNet single-target training and other single-target training 

methods using QM9 dataset.  

Property  
Unit  SchNet77  

enn-s2s73 MEGNET61 

 
Cormorant71  MGCN74  DimeNet43  DeepMoleNet  

µ D 0.033 0.03 0.05 0.13 0.056 0.0286 0.01780.0000 

α a0
3 0.235 0.318 0.081 0.092 0.03 0.0469 0.0475 

HOMO meV 41 43 43 36 42.1 27.8 21.90.1 

LUMO meV 34 37 44 36 57.4 19.7 18.5 

 meV 63 69 66 60 64.2 34.8 a 32.1  

<R2> a0
2 0.073 1.8 0.302 0.673 0.11 0.331 0.115 

ZPVE meV 1.7 1.5 1.43 1.43 1.12 1.29 1.22 

U0 meV 14 19 12 28 12.9 8.02 6.1 

U meV 19 19 13 21 14.4 7.89 6.1 

H meV 14 17 12 21 14.6 8.11 6.1 

G meV 14 19 12 20 16.2 8.98 7.10.0 

Cv cal /mol K 0.033 0.040 0.029 0.031 0.038 0.025 0.0241 

std. MAE % 1.76 - 1.37 2.14 - 1.05 0.84 

a The  is predicted simply by taking LUMO −HOMO in DimeNet. 43  

 



 

20 

 

We apply the multi-target DeepMoleNet model, which was trained on 110,000 

QM9 data, to predict the 12 properties of the molecules in the whole QM9 dataset. 

The prediction MAEs of the energy-related properties, U0, U, H, and G, for all 

130,000 molecules are just about 2.5-4.0 meV (0.058-0.092 kcal mol-1). However, 

predictions of HOMO, LUMO, and HOMO-LUMO gap are relatively more difficult 

with MAEs of about 6.3-9.3 meV (Figure S3).  

The difficulty in predicting HOMO and LUMO energy levels probably lies in 

the complexity of modulation of frontier molecular orbitals and their energy levels by 

different molecular topology and substitution groups. As shown in Figure S4 and 

Table S8, there is no evident correlation between the substituent groups and the 

frontier orbitals for the substituted furans at -position (also called 2-position in this 

work). According to our chemical intuition, the electron-donating or accepting ability 

of the substituted groups may be closely related to the upshift or down shift of the 

HOMO and LUMO energy levels. For this purpose, we calculated the group charge, 

sub, of substituent, X= H, NH2, OCH3, CH3, OCHO by summation of the atomic 

charges (Table S9) in the substituted group. However, different population analysis 

methods, Hirshfeld98 and Mulliken99-101 population, give different group charges, as 

shown in Figure S4. Accordingly, these two different the population analysis methods 

exhibit different relationship between the group charges and the frontier molecular 

orbital energy levels. Therefore, the factors that affecting the HOMO and LUMO 

energy levels are rather complicated, leading to the difficulty in the accurate 

prediction of frontier molecular orbitals. More examples, with or without the 

molecular rings, are given in Table 4. It can be seen that our method is able to 

accurately predict molecular properties for various systems with different topology 

and molecular sizes (Table 4 and Table S10).  

We further tested model predictivity with model trained on 110,000 data in 

QM9 to make predictions on molecules in Alchemy. As mentioned above, we used the 

Pearson correlation coefficient to make an indirect comparison between our predicted 

results on the randomly sampled 60,000 molecules and the original values given in 

Alchemy, as shown in Table S2. Good correlations were obtained for most of the 
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predicted molecular properties, except for the dipole moment and polarizability 

properties. 

 

 

Table 4. The randomly selected test sets of QM9 dataset and their absolute errors of 
the predicted properties with the proposed deep learning method 

absolute 
error  

CCC(=N)OC(=O)CC 

 

CCC(=O)OCC1CC1 

 

COC(=O)C1(C)NC1C 

 

OC1CCCC1OC=N 
 

CC1COC2C=CCC12 

µ(D) 0.03 0.02 0.03 0.02 0.01 

α(a03) 0.07 0.00 0.06 0.02 0.00 

HOMO (meV) 22.8 4.9 4.5 13.5 2.2 

LUMO (meV) 6.2 14.5 29.6 16.8 15.8 

 (meV) 29.0 9.5 22.4 30.0 13.7 

U (meV) 2.0 4.9 3.0 8.8 18.5 

G (meV) 0.0 3.9 2.9 12.7 17.5 

Cv (cal/mol K) 0.02 0.01 0.02 0.01 0.01 

 

 

3.2. Learning non-equilibrium conformation energies 

 

In most cases, especially when the molecules aggregate in the condensed phase or 
take place chemical reactions at room or even higher temperature, molecules are not 
always staying in their lowest energy states with the equilibrium geometry. As shown 
in Table 5, we adopt eight organic molecules, i.e., aspirin, benzene, ethanol, 
malonaldehyde, naphthalene, salicylic acid, tolunene, and uracil, with up to Natom = 21 
collected in the MD1792 dataset to test the predicting ability of DeepMoleNet toward 
conformational energies in the non-equilibrium molecular configuration space. For 
each molecule, a training, validation, and test split scheme is set as 50,000, 10,000, 
and 10,000 molecules, respectively. A satisfactory prediction was achieved by using 
our DeepMoleNet model with MAE values of less than 0.08 kcal/mol for the selected 
molecules in MD1771, 92 dataset. The MAE values of other models using the same 
training numbers of 50,000 points are also listed in Table 5. It should be mentioned 
that different models were trained with different training set numbers as well as 
different approaches to get the energies. The SchNet77 was trained on energies, and 
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both energies and forces with 50k for training and 1k for validation, respectively. Both 
DTNN78 and DeepMoleNet were only trained with energies on 50,000 points with 1k 
for DTNN as validation set and 10k for DeepMoleNet, respectively. Some models 
were trained only on a small number of configurations. For example, sGDML71, 92 was 
trained with 1,000 point (validation was part of the training set) on forces. But some 
other model like the DeepMD102 used a much larger training set of 95,000 points 
(validation was part of the training set) for the training on both energies and forces. In 
other words, one can get low error with 1k points used for sGDML which is 
comparable to errors obtained with other models trained on 50k+ points. 

 

We choose one molecule, aspirin, of the MD17 collected molecules, to draw the PES 

of the AIMD sampled conformers, which were characterized by two flexible dihedral 

angles, ϕ, and , shown in Figure 3. The AIMD potential energy surface is well 

reproduced by DeepMoleNet predictions, indicating the applicability of deep learning 

method to predict reaction barriers of chemical reactions. We carried out three 

independent calculations with the MAE values of 0.662, 0.665, 0.661, respectively. 

The MAE with the standard error of aspirin is thus presented as 0.07  0.00 (Table 5). 

However, DeepMoleNet was trained only with energies, without force. Thus, the 

present model is not able to perform dynamics simulations. Further work is desired to 

extend the DeepMoleNet to the force predictions of non-equilibrium configurations.  

 

Table 5. MAE values of various machine learning methods using the different training 
numbers points for the conformation energies (in units of kcal/mol) of the selected 
organic molecules in MD17 dataset. 

Test species (Natom) sGDML71, 92, 103 

trained with 
force 

SchNet77 

trained with force 
and energy 

DeepMD102 

trained with 
force and 

energy 

SchNet77 

trained with 
energy 

DTNN78 

trained with 
energy 

DeepMoleNet 
trained with 

energy 

Training size/validation size 1k 50k/1k 95k 50k/1k 50k/1k 50k/10k 

Aspirin (21) 0.19 0.12 0.20 0.25 -     0.07  0.00 

Benzene (12) 0.10 0.07 0.07 0.08 0.04 0.02 

Ethanol (9) 0.07 0.05 0.06 0.07 - 0.02 

Malonaldehyde (9) 0.10 0.08 0.09 0.13 0.19 0.03 

Naphthalene (18) 0.12 0.10 0.10 0.20 - 0.08 

Salicylic Acid (15) 0.12 0.11 0.11 0.25 0.41 0.07 

Tolunene (15) 0.10 0.09 0.09 0.16 0.18 0.05 

Uracil (12) 0.11 0.10 0.09 0.14 - 0.06 
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Figure 3. (a) AIMD calculated versus (b) DeepMoleNet predicted potential energy 
surfaces of aspirin, whose conformations are characterized by two flexible dihedral 
angles, ϕ, and , shown in inset. 
 

To further test DeepMoleNet at a more accurate theoretical level like CCDS(T)/CBS, 

the molecules in ANN-1ccx 93, 94 with molecular size, Natom, ranging from 2 to 54 were 

also studied, with the prediction errors shown in Table 6. DeepMoleNet achieves 

comparable accuracy in comparison with ANI-1ccx results. Being limited by the 

computational costs and some really challenging conformations for DeepMoleNet 

model, we only use 280,000 data (about half of the whole ANI-1ccx dataset) to train 

our model. The well and poorly predicted systems by our DeepMoleNet model are 

presented in Figure S5, from which one can find that the MAE values of the most of 

the acyclic or aromatic cyclic systems are close to 0.0 kcal/mol but the 

nitrogen-containing five or seven membered ring (5-MR, 7-MR) heterocyclic 

molecules are not predicted well. Improving the predictive performance of molecules 

with complex chemical environments will be an important direction in our future 

works. 

 

Table 6. Prediction errors, in units of kcal/mol, on ANI-1ccx dataset with different 

ANI models (ANI-1ccx model and ANI-1ccx-R model) and our DeepMoleNet model.  
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 ANI-1ccx 94,a ANI-1ccx-R 94,b DeepMoleNetc 

MAE 1.8 2.3 2.3 

RMSE 2.6 3.3 3.3 

a training based on ANI-1x 5 M data points and 500,000 ANI-1ccx data points through transfer 

learning and only considers conformations from 8x model ensemble. 

b training with ANI-1ccx 500,000 data points and only considers conformations from 8x model 

ensemble. The data were taken from literature. 94 

c training with ANI-1ccx 280,000 data points 

 

 

3.3. Transferability test to the larger sized molecules 

It is very useful to use small data samples for training to predict the data of larger 

sized molecules. We know that the DFT computation time increases with the scaling 

of O(Nb
3), while the increase in prediction time for the machine learning model is 

modest. The scaling of DeepMoleNet is O(Natom
2). The QM9 data set only contains 

molecules with the size ranging from 3  Natom  29, so the Alchemy dataset which 

contains relatively larger molecules (with up to 38 atoms) was introduced for further 

transferability test. A series of tests were conducted with small molecules in the 

training dataset while big molecules for tests on these two datasets, respectively. In 

the first step, we sampled all molecules with Natom  18 (about 72,000 data) for 

training. Then we made tests on molecules with larger Natom, as shown in Figure 4 and 

Figure S6. The MAE is satisfactory with the training on 18-atoms molecules and 

testing on 29-atom ones, although the error slightly accumulates with the size 

increasing. Due to the data sparsity, we could use all 72,000 data for training. 

Accuracy could be improved if the training data size is big enough. Even though, it is 

still a big challenge for realizing good transferability. 

In Alchemy dataset, molecules with Natom less than 23 (instead of Natom  18 in 

QM9) were used for training to make sure that same percentage of about 50% training 

samples in each dataset is used as QM9 to make fair comparison of DeepMoleNet. As 

shown in Figure 5, a good transferability is still held on prediction of free energy G, 
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HOMO, LUMO, and HOMO-LUMO gap. Predictions of all 12 properties could be 

found in Table S11 and Table S12. It should be mentioned that the chemical space of 

the medium sized molecules in Alchemy is not as rich as QM9 so the prediction errors 

are larger than those test for QM9. 

 

 

 

 

Figure 4. Data distribution of dipole moment, HOMO, and Gibbs free energy, G, 

with training set of 72,367 molecules, validation set of 8,000 molecules, and test 

data of 49,061 molecules in QM9 on transferability test. 
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Figure 5. Transferability on QM9 trained with Natom <19 and Alchemy with Natom 

< 23 to predict larger molecules in each dataset, respectively. 

 

In the next step, we carried out more transferability tests on many other 

molecules including drug molecules, peptides and macrocycles, oligomers, protein, 

and singlet fission molecules, using deep learning model trained with 110,000 

samples of Natom  29 in QM9, as shown in Figure 6. All the selected test 

molecules were optimized under the B3LYP/6-31G(2df,p) level. Among those test 

molecules, the largest one, chignolin protein has 140 atoms, much larger than the 

biggest trained molecule which only consists of 29 atoms in the training set. Good 

correlations are indicated for all the studied chemical systems between the 

calculated DFT Gibbs free energies and the DeepMoleNet predicted results 
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(Figure 6, Figure S2, and Figure S7). The MAE for the whole test set is about 0.11 

eV/atom. 

 

 

Figure 6. (a) Transferability test on Gibbs free energy of a wide range of functional 
molecules, including (b) drug-like species, (c) peptides and macrocycles, (d) 

chignolin protein, (e) medium-sized oligomers, and (e) singlet fission molecules based 
on the model trained with 110,000 QM9 data (Natom  29) 

 

 

The prediction of HOMO remains a big challenge for the test molecules. 
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Among them, some natural products and PLA oligomers have relatively small 

prediction errors within 5%, as exemplified in Figure 7. In fact, the relationship 

between MAE and Natom is not evident for the prediction of electronic structure 

property such as the HOMO energy level. However, for some -conjugated 

systems, such as, semiconducting PA oligomers (n=15), vitamin B12, and singlet 

fission molecule, TOSYAD, the prediction power of DeepMoleNet is significantly 

decreased (Figure S8). The difficulty in the prediction of the electron delocalized 

systems containing the naphthalene or anthracene ring and long -conjugated 

chain in PA may be caused by the sparse in the chemical space of delocalized 

systems in the training set. On the other hand, DeepMoleNet uses the one-hot 

encoding to represent the molecular path length. In this case, if the molecules have 

larger sized ring structure than the trained molecules, these systems cannot be 

accurately described even in the input. 

 

 

Figure 7. Transferability test on HOMO energy levels of some well predicted 
molecules based on the model trained with 110,000 QM9 data (Natom  29) 

 

 

 

 

3.4. Factors that influence the performance of deep learning model 
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Steps of message passing. Multi-level attention mechanism has been widely 

used in many areas including urban computing, computer vision, and natural language 

processing 104-106. In this work, the T steps of message passing local attention were 

performed after each aggregation of different node feature levels, leading to the 

importance variance after each step. At the different T steps, the node is affected by 

the neighbors, as exemplified by the - and -substituted furans with T=4 and T=6, 

respectively, in Figure 8. The attention tends to give large weights (labelled in red 

color) to non-hydrogen heavy atoms at the beginning, and then gradually diffuses to 

the surrounding H atoms. The weights of the seemingly ‘less-important’ H atoms 

gradually increase, and finally climb to 1. These coefficients are learned by the neural 

network itself. It can be found that the setting of T=6 is sufficient to get satisfactory 

prediction results. 
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Figure 8. Illustration of multi-level attention mechanism in different message passing 
phase. The color indicates the relative importance. The red color corresponds to the 
importance of 1 and the blue color indicates the importance of 0, respectively.  
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ACSFs as the auxiliary teaching descriptor. For the i-th atom, ACSFs are composed 

of three types of radial functions, 𝐺𝑖1,𝑧1 , 𝐺𝑖2,𝑧1 , 𝐺𝑖3,𝑧1 , as shown in equation (14), 

equation (15), equation (16), and two types of angular functions, 𝐺𝑖4,𝑧1,𝑧2𝑎𝑛𝑑 𝐺𝑖5,𝑧1,𝑧2, 

in equation (17) and equation (18), respectively. ACSFs of the i-th atom are presented 

as follows, where the summation for j runs over all atoms with atomic number 𝑧1 in 

two-body term, and for the three-body term, summations for j and k run over all atoms 

with atomic number 𝑧1 and 𝑧2, respectively. 𝐺𝑖1,𝑧1 = ∑ 𝑓𝑐(𝑅𝑖𝑗)𝑧1𝑗                                             (14) 𝐺𝑖2,𝑧1 = ∑ 𝑒−𝜂(𝑅𝑖𝑗−𝑅𝑠)2𝑓𝑐(𝑅𝑖𝑗)𝑧1𝑗                                   (15) 𝐺𝑖3,𝑧1 = ∑ cos (𝜅𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑗)𝑧1𝑗                                    (16) 𝐺𝑖4,𝑧1,𝑧2 = 21− ∑ ∑ (1 +𝑧2𝑘≠𝑖,𝑧1𝑗≠𝑖
 cos 𝑖𝑗𝑘) 

𝑒−𝜂(𝑅𝑖𝑗2 +𝑅𝑖𝑘2 +𝑅𝑗𝑘2 )2𝑓𝑐 (𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘)𝑓𝑐(𝑅𝑗𝑘)   (17) 𝐺𝑖5,𝑧1,𝑧2 = 21− ∑ ∑ (1 +  cos 𝑖𝑗𝑘) 

𝑒−𝜂(𝑅𝑖𝑗2 +𝑅𝑖𝑘2 )2𝑓𝑐𝑧2𝑘≠𝑖 (𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘),𝑧1𝑗≠𝑖  (18) 

In the above equations, the Rij is inter-atom distance between atoms i and j. In the 

three-body angular function, the angle 𝑖𝑗𝑘 between the three atoms (with the i-th 

atom in the center) is calculated by 

𝑖𝑗𝑘 = 𝑎𝑐𝑜𝑠 𝑹𝒊𝒋𝑹𝒊𝒌𝑅𝑖𝑗𝑅𝑗𝑘                                            (19). 

 

The inter-atom distance related term, fc, is the cutoff symmetry function, which is 

defined as, 

𝑓𝑐(𝑅𝑖𝑗) = {12 [cos (𝜋 𝑅𝑖𝑗𝑅𝑐 ) + 1]        𝑖𝑓 𝑅𝑖𝑗 ≤ 𝑅𝑐0                     𝑖𝑓 𝑅𝑖𝑗 > 𝑅𝑐                            (20),     

where 𝑅𝑐 is a cutoff radius, which is set to be 6.0 here.  

In the functions of  𝐺𝑖2,𝑧1 , 𝐺𝑖3,𝑧1 , 𝐺𝑖4,𝑧1,𝑧2𝑎𝑛𝑑 𝐺𝑖5,𝑧1,𝑧2 , 𝜂 ,  𝑅𝑠,  𝜅,  , and   are 

user-defined parameters. We applied 𝐺𝑖2,𝑧1 and 𝐺𝑖4,𝑧1,𝑧2 functions in the following 

calculations. Two − body  𝐺𝑖2,𝑧1  values are calculated by using different (𝜂, 𝑅𝑠 ) 
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parameters, (1,1), (1,2), and (1,3).  Three-body 𝐺𝑖4,𝑧1,𝑧2 is obtained by triplet (𝜂, , ) 

parameter sets of (1,1,1), (1,2,1), (1,1,-1), and (1,2,-1).  

To figure out which operation is important in improving the accuracy of 

molecular property predictions, in Table 7 we made comparison between ‘level A’, i.e., 

DeepMoleNet with ACSFs as learning input descriptors with both multi-level 

attention and auxiliary learn ACSFs target (not as input), and those cases with 

multi-level attention but without the auxiliary ACSFs target (level B) and without 

both multi-level attention and the auxiliary ACSFs target (level C), respectively. As 

expected, the knowledge of attention mapping to the atoms in level A and level B 

could improve the prediction accuracy for HOMO and LUMO energy levels, relative 

to those obtained at level C without attention.  

Specifically, the use of auxiliary target ACSFs in level A is crucial to get good 

predictions for the dipole moment, HOMO, LUMO, HOMO-LUMO gap, U0, U, H, 

and G. ACSFs have wide applications in constructing potential energy surfaces (PESs) 

and properties prediction including catalysis, reactions, phase transition, etc. 53-58 The 

main idea of ACSFs is to represent a chemical system's geometry with symmetrized 

invariant functions as input descriptors. To the best of our knowledge, it is the first 

attempt to set the ACSFs to be one of the prediction targets in this work. Ablation 

studies are further carried out to find out which information of ACSFs is helpful for 

the final node hidden states to learn better representation. We make comparisons 

among different combination of various test cases, including that only applying 

two-body radial functions (learn 𝐺𝑖2,𝑧1  without using the angular functions 𝐺𝑖4,𝑧1,𝑧2), 

only three-body angular functions (learn 𝐺𝑖4,𝑧1,𝑧2 without using radial functions 𝐺𝑖2,𝑧1), 

and both radial and angular functions (learn both 𝐺𝑖2,𝑧1 and 𝐺𝑖4,𝑧1,𝑧2) as the auxiliary 

targets, respectively. This ablation study indicates that ACSFs information could not 

be learned by the data-driven manner of the topological message passing. Instead, it 

can be obtained by predicting ACSFs. Directly using ACSFs as input in the message 

passing phase obtains the unsatisfactory prediction results. This suggests that in deep 

learning, ACSFs may be not necessarily needed to function as the input descriptors. 



 

33 

 

Instead, When ACSFs are taken as one of the prediction targets, a boost in the model 

performance is observed in Table 7. 

One can also find from Table 7 that using either the radial functions (𝐺𝑖2,𝑧1) or 

the angular functions (𝐺𝑖4,𝑧1,𝑧2) in ACSFs could achieve better performance than that 

without using ACSFs. Especially for the prediction of the dipole moments, the 

employment of radial or angular functions is crucial to greatly improve the accuracy, 

implying that the structural information is important for predicting properties sensitive 

to structural distance. Moreover, the introduction of three-body angular functions 

(𝐺𝑖4,𝑧1,𝑧2) is able to give better predictions than that only using the two-body radial 

functions (𝐺𝑖2,𝑧1). For the most challenging prediction tasks of the HOMO, LUMO, 

and HOMO-LUMO gap, the solely use of two-body radial functions is insufficient. 

Fortunately, the combination of radial and three-body angular functions in level A 

could greatly improve the prediction accuracy for HOMO, LUMO, and 

HOMO-LUMO gap. This displays the importance of the many-body interactions in 

learning better node representations, and hence, properly predicting electronic 

structure properties. It is still not clear why level A scheme would work. Further 

exploration is going on in our laboratory. The error bars of the estimated properties in 

Table 7 were obtained from three independent calculations, which were listed in Table 

S7.  
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Table 7. The MAE values of QM9 predictions made by DeepMoleNet multi-target 

training with both multi-level attention and auxiliary target ACSFs (level A), in 

comparison between those cases with ACSFS as inputs (level B), without multi-level 

attention and auxiliary target ACSFs (level C), and without auxiliary target ACSFs, 

respectively. 
  

Property 

 

 

 

Unit 

Without  

using 

attention 

and ACSFs 

(level C) 

Using attention 

without 

using 

ACSFs 

ACSFs as 

inputs 

(level B) 

Using ACSFs as prediction task (level A)a learn 𝐺𝑖2,𝑧1   
w/o 𝐺𝑖4,𝑧1,𝑧2 

learn 𝐺𝑖4,𝑧1,𝑧2   
w/o 𝐺𝑖2,𝑧1 

DeepMoleNet  𝐺𝑖4,𝑧1,𝑧2  & 𝐺𝑖2,𝑧1 

µ D 0.061 0.0438 0.499 0.0265 0.0256 0.02670.0014 

α a0
3 0.109 0.0802 0.476 0.0731 0.0706 0.06830.0002 

HOMO meV 32.1 25.4 146.4 26.1 24.5 24.00.1 

LUMO meV 31.8 24.7 153.6 24.6 22.9 22.80.1 

 meV 44.5 35.4 204.8 35.7 33.6 33.20.0 

<R2> a0
2 1.86 1.58 6.03 0.91 0.86 0.690.01 

ZPVE meV 3.2 4.0 13.1 2.5 2.4 1.90.0 

U0 meV 12.8 11.0 65.7 8.6 8.2 7.60.1 

U meV 12.9 11.1 66.1 8.6 8.3 7.70.1 

H meV 12.9 11.0 66.1 8.7 8.3 7.70.1 

G meV 13.4 11.7 65.8 9.7 9.2 8.50.1 

Cv cal /mol K 0.0459 0.0376 0.1583 0.0313 0.0299 0.02930.0002 

std. MAE % 1.55 1.22 8.24 1.09 1.03 1.010.01 

a We investigated three cases, i.e., only applying two-body radial functions (learn 𝐺𝑖2,𝑧1  without 
using the angular functions 𝐺𝑖4,𝑧1,𝑧2), only three-body angular functions (learn 𝐺𝑖4,𝑧1,𝑧2  without 
using radial functions 𝐺𝑖2,𝑧1), and both radial and angular functions (learn both 𝐺𝑖2,𝑧1 and 𝐺𝑖4,𝑧1,𝑧2) 
as the auxiliary targets, respectively. 

 

As mentioned above, the using of ACSFs has an advantage in representing the local 

neighboring environment of an atom by using a fingerprint, which is composed of the 

output of several two-body and three-body functions that can be customized to detect 

specific structural features. Surprisingly, we found that its prediction error is closely 

sensitive to the number of atoms, Natom, and the square of the number of atoms, 

(Natom)2, with the Pearson correlation coefficients of 0.93 and 0.87, respectively 

(Figure S9). In the process of message passing, every added atom will affect other 

atoms and increase prediction errors through many-body interactions, which should 

be considered in our future work. 
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4. Conclusion  

In summary, the DeepMoleNet model provides an efficient way to generate node 

representation that could feel chemical environments with multi-level attention and 

auxiliary target ACSFs. Source codes107,108 were available on both 

https://github.com/Frank-LIU-520/DeepMoleNet and http://106.15.196.160:5659 for 

academic use. The website of DeepMoleNet and login page are illustrated in Figures 

S10-S14. DeepMoleNet can accurately predict electronic structure properties. 

Furthermore, the DeepMoleNet model can be generalized to larger sized molecules 

than the training molecules. It should be mentioned that QM9 is just used as the 

dataset to test the graph neural network model performance. We will do more 

calculations in our future work for making comparisons including confidence 

intervals, tests for significance, etc.  

Indeed, the HOMO/LUMO prediction is still a challenge for the large-sized 

molecules. DeepMoleNet could be improved in some aspects. The present model 

needs to calculate the ACSFs for each atom. The combination of ACSFs knowledge 

with deep multi-level attention is crucial to get good accuracy. In addition, choosing 

the appropriate chemical descriptors as the auxiliary task requires a deep 

understanding of the problem. It is also a pity that when the information of atomic 

nodes is aggregated, the surrounding structure cannot be well touched. What is 

learned is an isolated node embedding information. Further improvement is 

anticipated to use less sample data with the goal of reaching similar prediction ability. 

The multi-level attention neural network will become an efficient tool to accelerate 

rational designs of functional molecules and chemical reactions.  
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