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Transferred-Substrate InP/GaAsSb
Heterojunction Bipolar Transistor
Technology With fmax ∼ 0.53 THz

Nils G. Weimann , Member, IEEE , Tom K. Johansen, Member, IEEE , Dimitri Stoppel, Matthias Matalla,

Mohamed Brahem, Ksenia Nosaeva, Sebastian Boppel, Nicole Volkmer, Ina Ostermay,

Viktor Krozer, Senior Member, IEEE , Olivier Ostinelli, and Colombo R. Bolognesi , Fellow, IEEE

Abstract— We report on the realization of transferred-
substrate InP/GaAsSb double heterostructure bipolar tran-
sistors in a terahertz monolithic integrated circuit process.
Transistors with 0.4-µm-wide single emitters reached unilat-
eral gain cutoff frequencies of around 530 GHz with simul-
taneous current gain cutoff frequencies above 350 GHz.
Extrinsic collector capacitance is effectively reduced in the
transfer-substrate process. In combination with the high
collector breakdown voltage in the InP/GaAsSb heterobipo-
lar transistor structure of 5 V, this process is amenable
to analog power applications at millimeter (mm-wave) and
sub-mm-wave frequencies. We demonstrate reliable extrac-
tion procedures for unilateral gain and current gain cutoff
frequencies.

Index Terms— Gallium arsenide antimonide, heterojunc-
tion bipolar transistors, indium phosphide, millimeter-
wave (mm-wave) integrated circuits, submillimeter-wave
(sub-mm-wave) integrated circuits.

I. INTRODUCTION

T
HERE has been much recent progress in the realization

of millimeter wave (mm-wave) and terahertz transis-

tors, with the indium-based compound semiconductor devices

demonstrating the highest cutoff frequencies to date. Both

InAs-channel high-electron-mobility transistors (HEMTs) [1]

and InP/InGaAs and InP/GaAsSb heterobipolar transistors

(HBTs) [2], [3] with fmax around 1 THz have been reported.

Manuscript received April 19, 2018; revised June 7, 2018; accepted
July 4, 2018. This work was supported by Leibniz Gemeinschaft at FBH
through SAW Contract InP THz Transistor. The review of this paper was
arranged by Editor P. J. Fay. (Corresponding author: Nils G. Weimann.)

N. G. Weimann is with the Components for High Frequency Electronics
Department (BHE), Faculty of Engineering, University of Duisburg-
Essen, 47057 Duisburg, Germany (e-mail: nils.weimann@ieee.org).

T. K. Johansen is with the Electromagnetic Systems Group, Depart-
ment of Electrical Engineering, Technical University of Denmark,
2800 Kongens Lyngby, Denmark.

D. Stoppel, M. Matalla, M. Brahem, K. Nosaeva, S. Boppel, N. Volkmer,
I. Ostermay, and V. Krozer are with the Ferdinand-Braun-Institut, Leibniz-
Institut für Höchstfrequenztechnik, 12489 Berlin, Germany.

O. Ostinelli and C. R. Bolognesi are with the Millimeter-Wave Electron-
ics Group, ETH Zürich, 8092 Zürich, Switzerland.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TED.2018.2854546

The combination of high electron mobility and high break-

down voltage makes the indium phosphide material system

very suitable for RF power applications at sub-mm-wave

and terahertz frequencies. High breakdown voltage translates

directly into power handling and pulse operation capability.

The open-base breakdown voltage BVCEO of the current

90-nm SiGe HBT generation with fmax ∼ 700 GHz amounts

to less than 2 V [4] and is expected to shrink further with

continued device scaling. In contrast, double heterostruc-

ture bipolar transistors (DHBTs) with InP collector exhibit

BVCEO > 4 V. Owing to the type-II band alignment between

GaAsSb and InP, structures with a GaAsSb/InP base–collector

junction can forgo the collector bandgap grading needed in

InGaAs/InP devices, which is most often realized as a super-

lattice consisting of InGaAs and InAlAs. In an GaAsSb/InP

HBT, the entire collector including the critical region below

the base can be made from InP, leading to further improved

breakdown characteristics and reduced thermal resistance in

the collector by omission of the ternary grading layers.

Suppression of parasitic capacitance becomes ever more

important as critical HBT dimensions are scaled to 100 nm and

below. In traditional top-down triple-mesa device processing,

the collector is processed last, and extrinsic capacitance may

only be reduced through lateral undercut processes that are

difficult to control. The transfer substrate method has been

applied successfully by several research groups to break this

scaling barrier (see [5], [6]). In our approach, the active device

layers are transferred to a host substrate after the processing of

the emitter and base structures is completed [7]. After wafer

bonding and InP substrate release, the collector side of the

device becomes accessible from the top, allowing for realign-

ment and independent lithographic definition of the collector.

This process enables the replacement of extrinsic semicon-

ductor material (�r ∼ 12) by low-k benzocyclobutene (BCB)

with �r = 2.65 in the extrinsic collector region (Fig. 1),

verifiable in a focused ion beam cross section shown

in [8]. Furthermore, the transferred substrate process flow

is amenable to post-CMOS monolithic heterogeneous inte-

gration [8], enabling system-on-chip integration of terahertz

functionality.
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Fig. 1. Schematic of the transferred-substrate HBT process with
indicated extrinsic base–collector capacitance. (a) Traditional top-down
triple mesa HBT. (b) Transferred substrate InP HBT. (c) Cross section of
our THz monolithic integrated circuit stack with interconnect wiring layers
Gd, G1, and G2.

In this paper, we report on the first realization of a mono-

lithically integrated transferred substrate InP/GaAsSb DHBT

process aimed at parasitic capacitance reduction, along with

improved deembedding of measured S-parameters, and reli-

able extraction of the maximum frequency of oscillation fmax.

II. TECHNOLOGY

First, the epitaxial structure was grown at ETHZ by

metal-organic vapor phase epitaxy in a traditional emitter-

up sequence on a 3” diameter semi-insulating h100i InP

substrate, similar to the one described in [9]. The emitter

consisted of 20-nm Ga0.22In0.78P graded to InP with an

n-dopant concentration of 2.5 × 1016 cm−3. The base was

20 nm thick and carbon doped to 8.0 × 1019 cm−3, with a

composition graded from GaAs0.41Sb0.59 to GaAs0.61Sb0.39

at the emitter interface. The InP collector was 125 nm thick

and n-doped to 1.3 × 1017 cm−3.

The HBT device and circuit fabrication were done at

Ferdinand-Braun-Institut. The three critical layers, emitter,

base, and collector, were defined by electron-beam lithography

with a 50 keV shaped-beam system (Vistec SB251). The

remaining layers were patterned with i-line stepper lithogra-

phy. First, single-finger and multifinger emitters with widths

between 300 and 800 nm and lengths of 6 and 10 µm

were defined by e-beam lithography and deposited by electron

beam evaporation followed by conventional bilayer polymethyl

methacrylate (PMMA) liftoff. The emitter mesa was wet-

etched in dilute HCl, stopping on the GaAsSb base. The self-

aligned base metal was e-beam evaporated over the emitter

structures, again lifted off with a bilayer PMMA mask, and

followed by inductively coupled plasma-enhanced chemical

vapor deposition SiNX passivation of the emitter–base diode.

The SiNX passivation layer, deposited at only 80 ◦C, leads

to a significant improvement of device stability as com-

pared to BCB passivation. HBT devices with 0.8 × 6-µm2

emitter area were stressed on-wafer at 250-kA/cm2 current

density for 1000 h, resulting in current gain degradation of

less than 10%.

Following passivation, the surface is planarized with BCB.

A 2.5−µm-thick electroplated gold layer is added, providing

Fig. 2. Comparison of radial PSF with and without gold underground,
for 50-keV incident electron energy. The energy density E∗ is normalized
to one electron.

the first interconnect layer Gd. Then, the structure is bonded

face down on a ceramic AlN carrier substrate in a BCB

waferbond process at 250 ◦C, followed by the wet-chemical

release of the InP substrate in hot HCl. The wafer release etch

stops on a 200-nm-thick sacrificial InGaAs layer between the

InP substrate and the subcollector layer.

Processing continues with the subcollector now being

the topmost layer. In contrast to triple-mesa processing,

the collector contact can be placed here vertically onto the sub-

collector layer. The width of the collector is targeted ∼100 nm

wider than the emitter to account for current spreading in the

structure and marginal collector–emitter misalignment. The

electron-beam lithography of the collector layer takes into

account ∼140 ppm layout expansion during epilayer transfer

in the cooldown cycle of the waferbond process caused mainly

by the difference in a thermal expansion coefficient of the InP

wafer and the ceramic AlN carrier substrate. The layout is

precompensated to take up the bulk of the magnification. The

remaining magnification error was corrected on the fly during

the exposure by utilizing up to six local registration marks

per die, resulting in a placement error of less than ±50 nm.

The e-beam exposure is proximity corrected to account for the

background changing according to the layout. In areas where

the buried gold Gd layer is present, a modified point spread

function (PSF) is used to calculate the dose correction (Fig. 2).

The high Z-contrast of the gold in the 2.5-µm-thick layer

significantly alters the PSF in the critical region around 1 µm.

The PSF was simulated using the TRACER software package

(GeniSys Inc.). The PSF was then used to calculate the dose

assignment for each fractured polygon (Proxecco, Vistec Inc.).

The collector metal was deposited by electron beam evapo-

ration and conventional liftoff, followed by wet chemical etch

of the InGaAs subcollector and the InP collector material. The

collector etch stops with high selectivity at the GaAsSb–InP

interface, leaving only the 20-nm-thick base layer membrane.

Following device mesa isolation by BCl3 reactive ion etch,

the structure is planarized with BCB. Contact holes are etched

in the BCB layer to connect Gd and the base metal layer. The

collector metal is exposed in a planar etchback step, similar

to the connection between emitter metal and Gd.
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Fig. 3. Gummel plot (VCB = 0) and dc current gain β. The collector
current compliance was set at 18 mA.

Fig. 4. Collector ideality factor from differentiated Gummel plot.

The terahertz monolithic integrated circuit process is com-

pleted with 1.5-µm-thick electroplated gold second intercon-

nect metal G1, a further BCB interlayer dielectric, SiNX

thin-film capacitor (0.3 fF/µm2), NiCr resistor (25 �/�),

and 4.5-µm-thick electroplated gold final metal G2. The

vertical distance amounts to 1 µm between Gd and G1 and

5.1 µm between Gd and G2, respectively. In this layer stack,

10-µm-wide microstrip lines in layer G2 over a ground plane

in layer Gd exhibit 50 � impedance. A schematic cross

section of the technology layers is shown in Fig. 1(c). Via V1

connects layers Gd and G1, and V2 connects G1 and G2,

respectively. An additional via V0 is used to thermally connect

RF-grounded areas to the AlN substrate.

III. HBT DEVICE MEASUREMENTS

A. DC Data

The transistors were characterized on-wafer with a

standard coplanar probing. DC data were collected with

50 � terminated coplanar probe heads. The Gummel

plot of a 0.4 × 6 − µm2 device shows a peak current

gain β of more than 40 (see Fig. 3). The collector

ideality factor amounts to 1.06 in the low-injection regime

(Fig. 4). The transistor output curve in Fig. 5 shows a low

turn-ON voltage. The negative output conductance at higher

current is indicative of self-heating. We calculated the

HBT’s thermal impedance to be ∼6 K/mW, higher than in

Fig. 5. Transistor output curve of 0.4 × 6 µm2 emitter area device. The
base current was increased from 20 to 380 µA in steps of 40 µA.

Fig. 6. Breakdown voltage BVCBO distribution (at 1 kA/cm2 reverse
collector current density).

triple-mesa devices of a similar geometry [10], [11]. The

thermal implications of removing the InP substrate have

been recognized before [6], [12], also when employing an

InP/GaAsSb structure [13]: whereas the heat is dissipated

cylindrically in the substrate under a triple-mesa device,

the only heat extraction path in a transferred-substrate HBT is

through the collector and emitter contacts. It can be reduced

with additional heat sinking [6], [13], [14].

The breakdown behavior was assessed by measuring

the base–collector diode reverse current. The base–collector

breakdown voltage of more than 400 transistors was recorded,

defining a breakdown at a reverse current of 1kA/cm2. The

distribution of BVCBO is shown in Fig. 6, with a median

of 5 V. Short term on-wafer dc stress measurement revealed

a stable operation over several days under normal operating

conditions (Fig. 7).

B. RF Data

For RF characterization, the transistors were measured

on-wafer using a 110-GHz setup consisting of a PNA net-

work vector analyzer (Keysight Inc.) with OML frequency

extenders and 100-µm pitch Infinity coplanar probes from

Cascade Microtech. The setup was calibrated to the probe

tips with the augmented line-reflect-match procedure using

an impedance standard substrate (ISS type 104–783) from
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Fig. 7. Current gain β stability at ∼200 kA/cm2 emitter current density,
VCE = 1.8 V.

Cascade Microtech. The bias point for RF extraction was

VCE = 1.3 V, IC = 10.5 mA.

The low loss in the AlN carrier substrate, along with the

elevated ground plane, may result in the propagation of sub-

strate modes. Electromagnetic (EM) energy may be injected

at the location of the RF probe pads, where the ground plane

is not continuous. The calculation of Mason’s unilateral gain

U appears to be easily affected by parallel signal propagation

in the substrate mode, manifesting itself in the observation

of artifacts in the |U( f )|-plot, which occur at multiple frac-

tions of the wavelength and make reliable determination of

fmax from extrapolated values of |U( f )| difficult. Transistors

made in our transferred substrate technology connected with

microstrip lines display strong aberrations of |U | over fre-

quency. In contrast, clean |U( f )| data could be measured on

HBTs connected in a short coplanar test frame (see Fig. 8).

In principle, U is invariant with respect to transformations

as represented by a reactive embedding network [15], which

can be approximated by serial impedances Z i and parallel

admittances Yi surrounding the device-under-test (DUT).

Proper extraction of intrinsic cutoff frequencies requires

deembedding of the external parasitic elements. In general,

the serial impedances are measured with the help of a repre-

sentative SHORT, and the parallel admittances with an OPEN

structure. The sequence of deembedding becomes important

because of the small internal capacitance of scaled-terahertz

devices, being the same magnitude or smaller than the line

and pad capacitance of the RF test frame. In particular,

the maximum frequency of oscillation fmax extrapolated

from Mason’s gain assumes different values for open-first

and short-first deembedding, where the traditional SHORT–

OPEN sequence [16] leads to an overestimation of fmax,

while consecutive OPEN–SHORT deembedding leads to the

opposite [3].

For accurate estimation of Mason’s unilateral power gain

at higher frequencies, a distributed deembedding approach

should be employed. A representation as shown in Fig. 9 is

often sufficient to model the pad configuration in a typical

short coplanar waveguide (CPW) test frame [17]. In this repre-

sentation, the parallel admittances, Yi , are distributed between

the outer pad structure and the transistor terminals according

to a distribution factor α. The lumped-element approximation

Fig. 8. Micrograph of coplanar waveguide HBT test structure. Base is
connected to the top coplanar pad and collector to the bottom. Emitter is
grounded.

follows from a truncated Taylor series expansion of the input

impedance for an open-circuited uniform transmission line

(given as Z in = Z0 coth(γ l) ∼ Z0((1/γ l) + (1/3)γ l), where

Z0 is the characteristic impedance, γ = α + jβ is the

complex propagation constant, and l is the length of the access

line leading from the outer pad to the transistor terminals).

According to the lumped-element approximation, a distrib-

ution factor of α = 2/3 is derived. In practice, however,

the tapering of the pad structures and fringing fields off the

open-ends, lead to a modification of this distribution factor.

The distribution factor can be experimentally determined, e.g.,

if a pad-only deembedding structure is available along with

the standard open and short deembedding structures [17].

Alternatively, the distribution factor can be determined from

EM simulation of the deembedding structures. The corrected

transistor two-port Y-parameters, YDUT, follow from

YDUT =
1

1
YMEAS−α·YOPEN

− 1
YSHORT−α·YOPEN

− (1 − α) · YOPEN

where YMEAS denotes the measured two-port Y-parameters for

the embedded DUT, YOPEN denotes the two-port Y-parameters

measured on the open structure, and YSHORT denotes the

two-port Y-parameters measured on the short structure [18].

Setting α = 1 corresponds to the OPEN–SHORT deembed-

ding technique while α = 0 corresponds to the SHORT–OPEN

deembedding technique. Here, we use an EM simulation

approach to obtain the distribution factor α. Due to the

difference in the layout on the base and collector side shown

in Fig. 8, we obtain values of 0.6 for the base and 0.54 for the

collector. To not overly complicate the extraction procedure,

a value of α of 0.6 is chosen for both base and collector in

the following.

The curves of |h21| and |U | for different deembedding

approaches with α = 0, 0.6, and 1 are shown in Fig. 10.

The unity-gain frequencies fT and fmax are obtained by

extrapolation along a line with a slope of −20 dB/dec between

30 and 90 GHz. The resulting frequencies are summarized

in Table I. For the unity-current-gain frequency fT , the dif-

ferences between the deembedding methods are marginal,

comparable to the uncertainty of the line fit (±0.8 GHz). The
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TABLE I

EXTRACTED UNITY-GAIN FREQUENCIES

Fig. 9. Deembedding network without compensation.

maximum frequency of oscillation fmax, however, shows some

dependence on the parameter α.

The probe-tip calibration followed by deembedding using

on-wafer fabricated standards may lead to a residual cal-

ibration error. The residual calibration error is due to the

differences in substrate permittivities and probe-tip-to-line

geometry between the off-wafer ISS calibration substrate and

the actual measurement wafer [19]. This residual calibration

error is expected to be significant for the CPW test structures

considered here. This is because the electric field of the

coplanar waveguide mode is confined largely to the air–BCB

(�r = 2.65) interface as opposed to the air–alumina (�r = 9.9)

interface on the ISS calibration substrate. The effect of the

residual calibration error can electrically be represented as

admittances (Ycal_offset_1 and Ycal_offset_2) shunting the deem-

bedding network at the location of the probe tips, as shown

in Fig. 11. The distributed deembedding procedure will be

erroneous if this residual calibration error is not compensated.

To correct the residual calibration error, the following two-

step approach is proposed. In the first step, an EM simulation

of the CPW open structure is performed to extract the expected

values of open-structure capacitances. In the second step,

the measurements of the embedded DUT, open structure,

and short structure are all corrected for the calibration offset.

For the EM simulation, an accurate 3-D model of the open

structure was created in Ansys HFSS. Parasitic effects associ-

ated with the excitation of the on-wafer structure is calibrated

out using the L − 2L approach [20]. Comparison with the

extracted open-structure capacitances from the measurement

wafer allows the calibration offset to be compensated. The

employed calibration offset compensation admittances are

Ycal_offset_1 = − j2π f × 7 fF and Ycal_offset_2 = − j2π f ×

7.5 fF, where f is the frequency. The offset capacitances

are negative as the probe-tip calibrated measurements per-

formed on-wafer will actually underestimate the open-structure

capacitances. An improved calibration offset compensated the

Fig. 10. Overlaid plot of |h21| and |U| with the 2×3 different values of α
versus frequency, extrapolated to fT and fmax with −20 dB/dec slope. The
insert shows a closeup of extrapolated small signal gain x -axis intercept,
the values are given in Table I.

Fig. 11. Deembedding network with compensation.

deembedding technique can now be formulated

YDUT

=

[

1

(YMEAS − YCAL_OFFSET) − α(YOPEN − YCAL_OFFSET)

−
1

(YSHORT − YCAL_OFFSET)−α(YOPEN−YCAL_OFFSET)

]−1

− (1 − α)(YOPEN − YCAL_OFFSET)

where YCAL_OFFSET is the diagonal matrix containing the

compensation admittances Ycal_offset_1 and Ycal_offset_2. It is

interesting to note that the above-mentioned deembedding

technique still reduces to the OPEN–SHORT deembedding

technique for α = 1. The improvement due to compensation

is only necessary in the case of distribution of the parallel

admittances, Yi , according to the parameter α.

Table I provides the summary of the extracted unity-gain

frequencies, fT and fmax for a 0.4 × 6 − µm2 InP/GaAsSb

HBT. As observed, the HBT in the short CPW test frame

is relatively robust against the distribution factor regardless

of whether the uncompensated or compensated deembedding

technique is used. The variation range is from 523 to 546 GHz

for the deembedding technique with no calibration offset

compensation applied. For the improved calibration offset

compensation deembedding technique, the variation range is

from 523 to 535 GHz. For a distribution factor of α = 0.6,
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the calibration offset compensation deembedding technique

leads to an extracted fmax = 535 GHz.

As shown in Table I, we compare the results obtained from

the here presented distributed deembedding to the iterative

scheme proposed in [3], which exhibited convergence to the

expected fmax value for a transistor embedded in a pad config-

uration consisting of uniform lossy transmission lines leading

into the DUT. The column “single pole” contains the results

considering the fit of the data spanning the entire frequency

range to a single-pole response. The rightmost column shows

the extrapolated cutoff frequencies using a −20-dB/dec fit

between 30 and 90 GHz. Although the CPW test layout

configuration as shown in Fig. 8 does not well resemble a

uniform transmission line, similar values are obtained when

applying the iterative deembedding approach following [3].

The distributed deembedding scheme can be expressed as

a special case of the iterative algorithm when limiting the

number of iterations to N = 2, and obtaining the weight α

from 3-D EM simulations of the pad and test frame.

Compared to a triple-mesa device with the similar epitaxial

structure [21] and 0.3 × 9.4 − µm2 emitter area, which

displayed peak fT and fmax of 365 and 501 GHz at jE =

500 kA/cm2, the here-reported transferred-substrate device

with 30% wider 0.4 × 6 − µm2 emitter exhibited higher gain

cutoff frequencies at lower current density.

IV. CONCLUSION

An InP/GaAsSb transferred-substrate HBT technology was

demonstrated, with the potential to further sub-100-nm scal-

ability. HBTs with an emitter area of 0.4 × 6 µm2 yielded

fT and fmax of 370 and 535 GHz, respectively, at emitter-

current density jE = 420 kA/cm2. The replacement of

microstrip leads with short-coplanar sections resulted in clean

unilateral gain data, facilitating reliable extraction of fmax.

A distributed deembedding method for terahertz HBTs in

short coplanar test frames was applied, showing a good

agreement with a previously published iterative method. The

base–collector breakdown voltage with open emitter was mea-

sured to BVCBO = 5 V, underscoring the RF power capability

of InP/GaAsSb HBTs at mm-wave and terahertz frequencies.

ACKNOWLEDGMENT

The authors would like to thank the Process Technology

Department, Ferdinand-Braun-Institut (FBH), in particular,

S. Hochheim, D. Rentner, and J.-M. Koch, for wafer fabrica-

tion, S. Schultz of FBH for many detailed dc and RF on-wafer

measurements, as well as W. Quan and A. M. Arabhavi of

ETHZ for aid with the iterative deembedding.

REFERENCES

[1] R. Lai et al., “Sub 50 nm InP HEMT device with fmax greater than
1 THz,” in IEDM Tech. Dig., Dec. 2007, pp. 609–611.

[2] M. Urteaga, R. Pierson, P. Rowell, V. Jain, E. Lobisser, and
M. J. W. Rodwell, “130nm InP DHBTs with fT >0.52THz and
fmax >1.1THz,” in Proc. 69th Annu. Device Res. Conf. (DRC),
Jun. 2011, pp. 281–282.

[3] C. R. Bolognesi, R. Flückiger, M. Alexandrova, W. Quan, R. Lövblom,
and O. Ostinelli, “InP/GaAsSb DHBTs for THz applications and
improved extraction of their cutoff frequencies,” in IEDM Tech. Dig.,
Dec. 2016, pp. 29.5.1–29.5.4.

[4] B. Heinemann et al., “SiGe HBT with fT/fmax of 505 GHz/720 GHz,”
in IEDM Tech. Dig., Dec. 2016, pp. 3.1.1–3.1.4.

[5] Q. Lee et al., “A >400 GHz fmax transferred-substrate heterojunction
bipolar transistor IC technology,” IEEE Electron Device Lett., vol. 19,
no. 3, pp. 77–79, Mar. 1998.

[6] D. W. Scott et al., “InP HBT transferred to higher thermal conductivity
substrate,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 507–509,
Apr. 2012.

[7] T. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle,
“InP DHBT process in transferred-substrate technology with
ft and fmax over 400 GHz,” IEEE Trans. Electron Devices, vol. 56,
no. 9, pp. 1897–1903, Sep. 2009.

[8] N. G. Weimann et al., “SciFab—A wafer-level heterointegrated InP
DHBT/SiGe BiCMOS foundry process for mm-wave applications,”
Phys. Status Solidi A, vol. 213, no. 4, pp. 909–916, 2016.

[9] R. Flückiger, R. Lövblom, M. Alexandrova, O. Ostinelli, and
C. R. Bolognesi, “Type-II InP/GaAsSb double-heterojunction bipolar
transistors with fMAX > 700 GHz,” Appl. Phys. Exp., vol. 7, no. 3,
p. 034105, 2014.

[10] I. Harrison, M. Dahlstrom, S. Krishnan, Z. Griffith, Y. M. Kim,
and M. J. W. Rodwell, “Thermal limitations of InP HBTs in
80- and 160-gb ICs,” IEEE Trans. Electron Devices, vol. 51, no. 4,
pp. 529–534, Apr. 2004.

[11] V. E. Houtsma et al., “Self-heating of submicrometer InP-InGaAs
DHBTs,” IEEE Electron Device Lett., vol. 25, no. 6, pp. 357–359,
Jun. 2004.

[12] K. Nosaeva, N. Weimann, M. Rudolph, W. John, O. Krueger, and
W. Heinrich, “Improved thermal management of InP transistors in
transferred-substrate technology with diamond heat-spreading layer,”
Electron. Lett., vol. 51, no. 13, pp. 1010–1012, Jun. 2015.

[13] Y. Shiratori, T. Hoshi, N. Kashio, K. Kurishima, and H. Matsuzaki,
“Indium phosphide-based heterojunction bipolar transistors with metal
subcollector fabricated using substrate-transfer technique,” NTT Tech.

Rev., vol. 14, no. 11, pp. 1–6, 2016.
[14] K. Nosaeva et al., “Multifinger indium phosphide double-heterostructure

transistor circuit technology with integrated diamond heat sink layer,”
IEEE Trans. Electron Devices, vol. 63, no. 5, pp. 1846–1852, May 2016.

[15] M. S. Gupta, “Power gain in feedback amplifiers, a classic revisited,”
IEEE Trans. Microw. Theory Techn., vol. 40, no. 5, pp. 864–879,
May 1992.

[16] L. F. Tiemeijer and R. J. Havens, “A calibrated lumped-element
de-embedding technique for on-wafer RF characterization of high-
quality inductors and high-speed transistors,” IEEE Trans. Electron

Devices, vol. 50, no. 3, pp. 822–829, Mar. 2003.
[17] T. K. Johansen, R. Leblanc, J. Poulain, and V. Delmouly, “Direct

extraction of inp/gaassb/inp dhbt equivalent-circuit elements from
S-parameters measured at cut-off and normal bias conditions,” IEEE

Trans. Microw. Theory Techn., vol. 64, no. 1, pp. 115–124, Jan. 2016.
[18] M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen,

“An improved de-embedding technique for on-wafer high-frequency
characterization,” in Proc. IEEE Bipolar Circuits Technol. Meeting,
Minneapolis, MN, USA, Sep. 1991, pp. 188–191.

[19] G. Carchon, B. Nauwelaers, W. D. Raedt, D. Schreurs, and
S. Vandenberghe, “Characterising differences between measurement and
calibration wafer in probe-tip calibrations,” Electron. Lett., vol. 35,
no. 13, pp. 1087–1088, Jun. 1999.

[20] T. K. Johansen, C. Jiang, D. Hadziabdic, and V. Krozer, “EM simulation
accuracy enhancement for broadband modeling of on-wafer passive
components,” in Proc. Eur. Microw. Integr. Circuit Conf., Oct. 2007,
pp. 447–450.

[21] R. Lovblom et al., “InP/GaAsSb DHBTs with 500-GHz maximum
oscillation frequency,” IEEE Electron Device Lett., vol. 32, no. 5,
pp. 629–631, May 2011.

Nils G. Weimann (S’96–M’99) received the
Diploma degree (Hons.) in physics from the
University of Stuttgart, Stuttgart, Germany, in
1996, and the Ph.D. degree in electrical engi-
neering from Cornell University, Ithaca, NY, USA,
in 1999.

Since 2017, he has been the Chair Profes-
sor for High Frequency Electronic Components
(BHE), Faculty of Engineering, University of
Duisburg-Essen, Duisburg, Germany. His current
research interests include nanoelectronic and

nanooptoelectronic devices based on InP and GaN.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEIMANN et al.: TRANSFERRED-SUBSTRATE InP/GaAsSb HETEROJUNCTION BIPOLAR TRANSISTOR TECHNOLOGY 7

Tom K. Johansen (S’04–M’04) received the
M.S. and Ph.D. degrees in electrical engineer-
ing from the Technical University of Denmark,
Kongens Lyngby, Denmark, in 1999 and 2003,
respectively.

In 1999, he joined the Electromagnetic Sys-
tems Group, DTU Elektro, Technical Univer-
sity of Denmark, where he is currently an
Associate Professor. His current research inter-
ests include the modeling of high-frequency
solid-state devices and millimeter-wave and

sub-millimeter-wave integrated circuit design.

Dimitri Stoppel received the B.Eng. degree in
microsystems technology and the M.Eng. degree
in systems engineering from the University of
Applied Sciences, Berlin, Germany, in 2012 and
2013, respectively. He is currently pursuing the
Ph.D. degree with the Ferdinand-Braun-Institut,
Berlin, with a focus on process development for
InP-DHBT millimeter-wave monolithic integrated
circuit processes.

Matthias Matalla received the Diploma degree
in physics from Friedrich-Schiller-University
Jena, Jena, Germany, in 1984.

From 1988 to 1991, he was a member of
the Central Institute of Electron Physics (ZIE),
Berlin, Germany. Since 1992, he has been with
the Ferdinand-Braun-Institut, Leibniz-Institut für
Höchstfrequenztechnik, Berlin, Germany, where
he is involved in electron beam lithography, mask
manufacturing, and optical stepper lithography.

Mohamed Brahem received the B.Sc. and
M.Sc. degrees in electronic engineering from
the Polytechnic University of Turin, Turin, Italy,
in 2012 and 2016, respectively. He is currently
pursuing the Ph.D. degree with the Ferdinand-
Braun-Institut, Berlin, Germany, and the Techni-
cal University of Berlin, Berlin.

From 2014 to 2016, he was a member of the
Design for Manufacturing Team, Infineon Tech-
nologies Austria, Villach, Austria.

Ksenia Nosaeva received the B.S. and M.S.
degrees in electronics engineering from the
Tomsk State University of Control Systems and
Radio-Electronics, Tomsk, Russia, in 2007 and
2008, respectively, and the Dr.-Ing. degree in
electrical engineering from the Berlin University
of Technology, Berlin, Germany, in 2016.

She is currently with the Ferdinand-Braun-
Institute, Leibniz Institute für Höchstfrequen-
ztechnik, Berlin.

Sebastian Boppel received the Diploma degree
in physics from the University of Heidelberg,
Heidelberg, Germany, in 2008, and the Ph.D.
degree from Goethe University Frankfurt,
Frankfurt, Germany, in 2013.

From 2008 to 2016, he was a member of the
Ultrafast Spectroscopy and Terahertz Physics
Group, Goethe University Frankfurt. He is
currently the Head of the InP Devices Laboratory,
Ferdinand-Braun-Institut, Leibniz-Institut für
Höchstfrequenztechnik, Berlin Germany.

Nicole Volkmer received the M.Sc. degree in
microsystems technology from the University of
Applied Science, Berlin, Germany. She is cur-
rently pursuing the Ph.D. degree with the Process
Technology and GaN Power Electronics Depart-
ment, Ferdinand-Braun-Institut, Berlin.

Her current research interests include thin-film
technology, especially atomic layer deposition
with a focus on aluminum oxide on vertical
GaN MIS-FETs, as well as electrical device
characterization.

Ina Ostermay received the M.Sc. degree in
ceramic, glass, and construction materials from
TU Freiberg, Freiberg, Germany, in 2006, and
the Ph.D. degree from TU Dresden, Dresden,
Germany.

Since 2013, she has been the Group Leader
for thin-film deposition at the Ferdinand-Braun-
Institut, Berlin, Germany. Her current research
interests include the improvement of semicon-
ductor processing including e-beam evapora-
tion, sputtering, ALD, PECVD, and annealing
processes.

Viktor Krozer (M’91–SM’03) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engi-
neering from Technical University Darmstadt,
Darmstadt, Germany, in 1984 and in 1991,
respectively.

Since 2012, he has been the Head of
the Goethe-Leibniz-Terahertz-Center, Johann
Wolfgang Goethe University Frankfurt, Frankfurt,
Germany. He is also leading the THz Compo-
nents and Systems Group at the Ferdinand-
Braun-Institut, Berlin, Germany.

Olivier Ostinelli received the M.Sc. and Ph.D.
degrees in physics from ETH-Zürich, Zürich,
Switzerland, in 2000 and 2006, respectively, with
a focus on the development of long-wavelength
vertical cavity lasers.

Since 2006, he has been a Senior Scientist
with the MWE-Group, ETH-Zürich, where he is
involved in epitaxial growth of advanced III–V
heterostructure devices by metalorganic vapor
phase and molecular beam epitaxy.

Colombo R. Bolognesi (S’84–M’94–SM’03–
F’08) received the Ph.D. degree in electrical engi-
neering from the University of California at Santa
Barbara, Santa Barbara, CA, USA, in 1993, with
a focus on InAs/AlSb HEMTs.

Since 2006, he has been a Professor of
millimeter-wave electronics with ETH-Zürich,
Zürich, Switzerland, where he leads the InP
DHBT and GaInAs- and GaN-based HEMT
research.


