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Abstract

One of the great open challenges in visual recognition

is the ability to cope with unexpected stimuli. In this work,

we present a technique to interpret detected anomalies and

update the existing knowledge of normal situations. The ad-

dressed context is the analysis of human behavior in indoor

surveillance scenarios, where new activities might need to

be learned, once the system is already in operation. Our

approach is based on human tracking with multiple activ-

ity trackers. The main contribution is to integrate a learn-

ing stage, where labeled and unlabeled information is col-

lected and analyzed. To this end we develop a new multi-

class version of transfer learning which requires minimal

human interaction but still provides semantic labels of the

new classes. The activity model is then updated with the

new activities. Experiments show promising results.

1. Introduction

Biological cognitive systems have the great capability to

recognize and interpret unknown situations. Equally, they

can integrate new observations easily within their existing

knowledge base. Autonomous artificial agents to a large

extent still lack such capacities. In this paper, we work

towards this direction, as we do not only detect abnormal

situations, but are also able to learn new concepts during

runtime.

From the multiple application domains, we aim at the in-

terpretation of human behavior in indoor environments. The

goal is to monitor elderly or handicapped people in their

homes in order to ensure their well-being. This setting trig-

gers interesting issues, such as the adaptation of pre-trained

knowledge to a particular living-room scene filmed with a

different camera or to an unknown person with an individ-
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ual behavior style, whereas real abnormalities must still be

detected.

One main limitation of automated surveillance ap-

proaches is their need for an offline prior training with many

labeled data. Furthermore, no training sequence contains

a comprehensive set of all the situations to expect and any

surprising new event can appear in only a few frames. In or-

der to overcome these limitations, we propose to start from

an initially trained set of basic activities and incorporate an

on-line update mechanism. Minimal human annotation, i.e.,

labeling one sample per new activity is required to include

semantic meaning. Hence, we are able to incorporate new

activity concepts during runtime and recognize them in the

future.

In the rest of the paper we review related work in Sec. 2

and present our approach in Sec. 3. The employed tech-

niques for human activity tracking and transfer learning are

discussed respectively in Sec. 4 and Sec. 5. Sec. 6 reports on

our experimental results, while Sec. 7 concludes the paper.

2. Related Work

The detection of abnormal events is a popular field of

research, many techniques detect abnormalities as outliers

to previously trained models of normality. Successes in-

clude surveillance scenarios (e.g., [26, 1]) or human behav-

ior analysis (e.g., [4, 22]). On the other hand, abnormalities

can also be modeled explicitly. This is often done in our

target scenario, the visual detection of a fall (e.g., [2, 21]),

possibly integrated in a human posture classification sys-

tem [9].

In order to interpret human motion, the person in the

scene usually has to be tracked first. This means that the

persons motion is followed throughout the video, and var-

ious appearance and scale changes are accounted for. To

this end, methods reach from generic blob-trackers [7] to

sophisticated articulated body motion trackers in tracking-

by-detection frameworks [3]. One step further, the recog-



Figure 1. Schematic overview of our approach to combine activity tracking with transfer learning. In surveillance videos, an initial model

recognizes familiar activities (1) or detects abnormalities (2). Together with minimal human interaction (3), the transfer learning algorithm

returns labels (4) such that the activity model can be extended with new classes.

nition of human actions often refers to the classification

of tracked motion patterns into multiple action categories

(e.g., [10, 18]).In order to learn these action classes, a vast

amount of labelled training data is required in most cases

and it is thus hard to model very specific or unexpected ac-

tivities that only occur rarely.

Transfer learning can help in this context, as it focuses

on storing knowledge gained while solving some tasks and

exploiting it when solving a new but related task [24].

This approach has been successfully used in several pa-

pers where action recognition was based on observations

from state-change sensors [30, 14]. Some recent publica-

tion reports the application of transfer learning for cross

view action recognition [19] and visual domain adaptation

[31, 32]. However none of these consider the possibility to

update the set of class knowledge models when the newly

acquired information contains actions which were not seen

before. More in general, in object classification, knowl-

edge transfer has been applied to solve a N ′ class problem

when N objects are already known, with N ′ and N disjoint

groups [16, 15]. On the other hand, training to discrimi-

nate (N+N ′) classes when the model for an N -class prob-

lem was previously learned, is known as class-incremental

learning and only few attempts have been made to deter-

mine a principled technique for this process [20, 33].

3. Proposed Approach

In order to recognize the activities of a person in an in-

house scenario, we propose to use a set of activity track-

ers. Each tracker is trained to one specific activity class.

Known concepts can be recognized and labeled, while ab-

normal events are detected as unknown activities.

For an increased flexibility and to learn the unknown ac-

tivities, we propose to augment this static model with an up-

date procedure, based on transfer learning. To classify the

unknown samples, we build a multiclass model which ex-

ploits prior knowledge of known classes and incrementally

learns the new actions. The procedure is outlined in Fig. 1.

The central block receives labeled (Arrow 1) and unknown

(Arrow 2) samples from the activity trackers. Based on min-

imal human annotation (Arrow 3), it labels the previously

unknown activities (Arrow 4). In a final step, the newly la-

beled activities are integrated in the previous model besides

the initial trackers. In this sense, the transfer learning algo-

rithm acts as an artificial expert.

The interaction of the two techniques is useful due to

their complementary nature:

• Generative tracking with multiple activity trackers pro-

vides labels for familiar activities and detects abnormal

situations. In both cases, the location of the person is

determined as bounding box. (Sec. 4)

• Discriminative classification interprets the abnormal

situations in order to label new activities. Knowledge

transfer uses prior information from known classes for

a more efficient and accurate labeling of new ones. Hu-

man annotation of at least one frame is necessary to

provide the desired semantic label. (Sec. 5)

The approach has several application-specific advan-

tages. Firstly, if only few labeled samples of some actions

are available, we can exploit prior knowledge acquired un-

der different conditions in terms of location, observed per-

son and employed recording camera. Furthermore, human

annotation of one sample per class enables the semantic in-

terpretation of the activities. For example, it is now desir-

able to include a fall in the model, in order to automatically

take appropriate action in case it is detected again, i.e., call

an ambulance. Besides that, the model continuously be-

comes richer in what it knows, such that diverse activity

concepts can be recognized and the performance increases

over time. Finally, a shift in an activity concept, e.g., a per-

son gradually starts to limp, can also be integrated.

In the following two sections we provide details for the

activity tracking and the transfer learning and show how the

two parts interact.

4. Activity Tracking for Unusual Event Detec-

tion

In tracking, the aim is to follow the motion of the person

throughout the video and account for various appearance



Figure 3. Schematic overview of the tracking technique: In a particle filter approach, samples live both, the image space and the manifold

space. Comparison and likelihood estimation is performed on the silhouettes, and a posterior probability density is obtained.

Figure 2. Simultaneous tracking and activity spotting: A person in

the scene is always tracked by the foreground blob tracker in black.

This tracker provides unlabeled samples (Arrow (2) in Fig. 1). The

more specific activity trackers simultaneously track the person and

determine his activity. If one is active (picking up in green), it

overrules the blob tracker and provides labeled bounding boxes

(Arrow (1) in Fig. 1).

and scale changes.

We follow the work of Nater et. al. [23] where simul-

taneously a person is tracked and the action is determined.

Multiple activity trackers are used to interpret the behav-

ior of a person. Each of the trackers is trained to a spe-

cific aspect of human motion. As long as the person in the

scene behaves according to the expectations, there will be

one specific tracker which recognizes the activity, as shown

in Fig. 2. However, if none of the generative activity track-

ers can explain the situation, but a less informed foreground

blob tracker still tracks the target, this performance reversal

signals an abnormal event.

In the following we briefly review the employed meth-

ods.

Activity modeling and tracking. In the same way as

in [23], we create a low dimensional model in order to de-

scribe the observed training data. To this end, silhouettes

of a human person are extracted from the training video se-

quences and are represented on a three-dimensional mani-

fold. Isomap [28] is used as the dimensionality reduction

technique, because it ensures that local distances remain

similar as in the original data. To be able to infer the orig-

inal silhouette space from the model, we learn a Gaussian

Process regression [25, 17] on the training data. One model

is learned for each activity. Initially, walking, sitting down

and picking up are learned from training data in a lab setup.

Typically, several hundred frames are required per activity

to train non-overfitting models.

The models are subsequently applied to new sequences

in living-room settings. After background subtraction, the

binary observation image and the low dimensional mani-

fold are sampled with a particle filter. From frame to frame,

particles are propagated and re-weighted with respect to the

likelihood between model prediction and observation. This

is sketched in Fig. 3. At each time step, a posterior proba-

bility is available which gives an indication of how well the

tracker explains the observation.

All available trackers are run in parallel. A user-defined

threshold, applied on the activity trackers’ posterior proba-

bilities, determines active and inactive trackers. Of all the

active trackers, the one with the maximal posterior prob-

ability determines the activity label the current frame and

the bounding box of the person. The cropped and labeled

frames are delivered to the transfer learning stage (Arrow

(1) in Fig. 1).

Blob tracking. A foreground blob tracker (CamShift

in our implementation [6, 7]), initialized by a person detec-

tor [11], tracks the human target as long as it is in the scene.

In case of an abnormal event, this tracker determines the

bounding box of the person, which is handed over (Arrow

(2) in Fig. 1).

Update. Given the frames first labeled as abnormal and

the new semantic activity labels obtained from the classifier

stage, a new activity model is learned for each new class.

The new activity trackers are added besides the existing

ones and the initial and the new activities will be detected

and recognized from now on. If a shift in one of the known

concepts is observed, i.e., activity detection with the initial

set of trackers does not match the labeling of the transfer

learning, existing activity models need to be replaced.



Figure 4. Description of the multiclass one-vs-all transfer learning strategy. The activity classes on the left (marked in red) correspond to

prior knowledge. The classes on the right (marked in blue) correspond to the new target task. The new hyperplanes for classes 1,2 and 3

are obtained through transfer learning from the corresponding source knowledge while for classes 4 and 5 a weighted combination of all

the known hyperplanes is used as prior.

5. Knowledge Transfer for Unusual Event

Learning

Transfer learning can help to reduce the labeling effort

which is in general necessary when recognizing a new set

of activities. The idea is to transfer only the useful part of

information from the already known activity classes when

solving the new multiclass problem.

In the following we summarize the binary transfer learn-

ing method presented in [29] and describe how to extend it

to multiclass with the one-vs-all approach.

5.1. Adaptive knowledge transfer

Given a set of l samples {xi, yi}
l
i=1, where xi ∈ X ⊂

R
d and yi ∈ Y = {−1, 1}, we want to learn a linear func-

tion f(x) = w · φ(x) + b which assigns the correct label to

an unseen test sample x. The function φ(x) maps the input

samples to a high dimensional feature space where the inner

product can be easily calculated through a kernel function

K(x,x′) = φ(x) · φ(x′) [8].

In Least-Square Support Vector Machine (LS-SVM) the

model parameters (w, b) are found by solving the following

optimization problem [27]:

min
w,b

1

2
‖w‖2 +

C

2

l
∑

i=1

ζi[yi −w · φ(xi)− b]2 . (1)

The weight ζi is introduced to take care of unbalanced dis-

tributions and it depends on the number of positive and neg-

ative available samples [29]. It can be shown [27] that the

optimal w is expressed by w =
∑l

i=1 αiφ(xi), and (ααα, b)
are obtained from:

[

K+ 1
C
W 1

1T 0

] [

ααα

b

]

=

[

y

0

]

, (2)

where W = diag{ζ−1
1 , ζ−1

2 , . . . , ζ−1
l }. Let us call G the

first term in left-hand side of Eq. (2). Thus the optimization

problem in Eq. (1) can be solved by simply inverting G.

By slightly changing the classical LS-SVM regulariza-

tion term, it is possible to define a learning method based

on adaptation [29]. The idea is to constrain a new model to

be close to a set of k pre-trained models:

min
w,b

1

2
‖w−

k
∑

j=1

βjw
′

j‖
2+

C

2

l
∑

i=1

ζi[yi−w·φ(xi)−b]2, (3)

where w′

j is the parameter describing each old model and βj

is a scaling factor necessary to control the degree to which

the new model is close to the old one. The LS formulation

gives the possibility to write the Leave-One-Out (LOO) pre-

diction for each sample ỹi in closed form:

ỹi = yi −
αi

G−1
ii

−
k

∑

j=1

βj

α′

i(j)

G−1
ii

, (4)

where αi and α′

i(j) are respectively elements of the vectors

ααα = (K + 1
C
W)−1y and αjαjαj

′ = (K + 1
C
W)−1ŷj. y is

the vector of the yi and ŷj is the vector of the predictions of

the jth known model ŷi(j) = (w′

j · φ(xi)). Thus the LOO

error can be easily evaluated as r
(−i)
i = yi − ỹi. It is an

unbiased estimator of the classifier generalization error and

can be used to find the best value of βββ.To define a convex

formulation, it is possible to use the following loss function:

loss(yi, ỹi) = ζi max [1− yiỹi, 0]

= max



yiζi





αi

G−1
ii

−

k
∑

j=1

βj

α′

i(j)

G−1
ii



 , 0





(5)

Then the objective function is:

J =

l
∑

i=1

loss(yi, ỹi) s.t. ‖βββ‖2 ≤ 1 . (6)



5.2. One­vs­All multiclass extension

Let’s start from a prior knowledge problem with N dif-

ferent activities and train a multiclass SVM classifier with

the one-vs-all approach. Only the parameters that describe

the hyperplanes {w′

j}
N
j=1 are memorized while the data are

not stored. As target task we consider to solve a (N +N ′)
multiclass problem where N categories are the same as in

the original source task and N ′ classes are new. However,

now only very few samples for each class are available.

The binary transfer approach described previously can

be used separately to learn each of the (N + N ′) one-vs-

all hyperplanes (see Fig. 4). The N hyperplanes associated

to the same classes considered in prior knowledge, are now

trained to separate some new positive samples against a dif-

ferent negative set due to the presence of N ′ new classes. In

these cases the βββ vector reduces to one single value ranging

in [0, 1]. The method also exploits a linear combination of

prior knowledge hyperplanes to separate each of the N ′ new

categories from all the others. Here the idea is that a com-

bination of visual characteristics which differentiate among

walk, sit and pick up can still be useful to carachterize lie

down and fall and can help when only few samples of the

different actions are available.

6. Experiments

We demonstrate the activity classification via transfer

learning, and show the newly learned classes improve the

performance of the activity model. We use the same data

for both tasks.

6.1. Dataset and setting

In our experiments, we include 5 different activities to

be recognized. These are walk, sit down, pick up, lie down

and fall. We consider different cases that might also appear

in real-life scenarios. As depicted in Fig. 5, we include two

different indoor scenes, two camera types that were used for

recording and three different persons.

Cameras. Camera 1 has V GA resolution and records

at 15 frames per second. The used lens introduces minimal

distortion. Camera 2 has a resolution of 1624 × 1234 pix-

els and records at 12 frames per second. A fish-eye lens

with a large field of view introduces distortion, that needs

to be corrected. To this end, we apply the technique of [13]

and rectify the images cylindrically, i.e. straight, physically

vertical lines are preserved. For visualization purposes, the

relevant image region is cropped out in Fig. 5(c).

Sequences. We dispose of 12 video sequences, which

were recorded as detailed in Tab. 11. They contain between

1000 and 3000 frames and depict a single person who per-

forms all the five activities. We manually provide a frame

1Data available from www.vision.ee.ethz.ch/fnater

(a) Camera 1, Scene 1 (b) Camera 1, Scene 2

(c) Camera 2, Scene 1 (d) Persons 1, 2, 3

Figure 5. Different settings are used for the experiments. We

recorded in two different indoor scenes, with two different cam-

eras and three persons perform the activities.

by frame ground truth annotation for each sequence. Tran-

sitions (e.g., standing up after a fall) are termed with no

activity.

Seq 1a, Seq 1b, Seq1c : {Scene 1, Person 1, Camera 2}
Seq 2a, Seq 2b, Seq2c : {Scene 1, Person 2, Camera 2}
Seq 3a, Seq 3b, Seq3c : {Scene 1, Person 3, Camera 1}
Seq 4a, Seq 4b, Seq4c : {Scene 2, Person 3, Camera 1}

Table 1. Three sequences were recorded for every parameter com-

bination.

Initial processing. We run the three initial activity

trackers (walk, sit down, pick up) and the blob tracker on

all the sequences. The known activities are spotted and ab-

normal events are detected. Each frame is labeled and the

bounding box of the person is obtained. This forms the ba-

sis for further analysis.

6.2. Transfer learning

As explained in Sec. 3 the transfer learning step is used

as an expert exploiting prior knowledge and labeling new

samples that are then used to update the tracking system.

Having an accurate classification process is crucial for the

efficiency of the final action recognition method. We vali-

date the proposed transfer approach with four experiments.

As prior knowledge we used Seq ∗a with the N = 3 ac-

tivities labeled in the initial processing. Seq ∗b is used to

extract randomly 10 frames for each of all the N +N ′ = 5
actions (initial processing and new activities). This defines

the training set for the target task. Finally Seq ∗c is used as

test set.

The PHOG features [5] (histogram bins=9, angle=180,

levels=3) are calculated on the provided bounding box



around the person and they are used together with the RBF

kernel in all the experiments. The learning parameters are

chosen by cross validation on prior knowledge. To im-

plement the multiclass transfer learning method we started

from [29] using the code released by the authors2.

We compare three methods that are applied to the test

sequence:

• Initial Model: The prior knowledge model learned on

the 3 initial activities.

• No Transfer: The model learned on few samples of the

5 activities.

• Transfer: The model learned on few samples of the 5

activities transferring from prior knowledge.

The plotted values correspond to the average recognition

rate on 10 runs of the experiment (the random selection of

training frames from Seq ∗b is repeated 10 times). The

significance of the comparison between Transfer and No

Transfer is evaluated through the sign test [12]: a square

marker is reported on the graph if p < 0.05 (see Fig. 6).

The four experiments differ by the existing relation between

prior knowledge and target task.

Case 1: same person, same camera, same scene. The

acting person, the background scene and the recording cam-

era are the same in prior and new sequence. Specifically

we used Seq 1a, Seq 1b and Seq 1c. Classification results

are reported in Fig. 6 (a): transferring from prior knowl-

edge guarantees a significant advantage compared to learn-

ing from scratch. The same experiment was repeated using

Seq 3a, Seq 3b and Seq 3c, with equal results.

Case 2: different person, same camera, same

scene. The background scene and the recording camera

are fixed, but the acting person in prior knowledge is differ-

ent with respect to the one in the training and test videos.

We used respectively Seq 2a, Seq 1b and Seq 1c. The re-

sults are reported in Fig. 6 (b). Even if the actions in prior

knowledge are performed by a different person, transferring

information still guarantees an advantage in learning. The

same experiment was repeated inverting the role of the two

acting persons and using Seq 1a, Seq 2b and Seq 2c with

analogous results.

Case 3: different person, different camera, same

scene. Prior knowledge and new task involve different per-

sons, they are also recorded with a different camera but the

scene remains the same. Specifically we considered Seq 3a,

Seq 1b and Seq 1c. Fig. 6 (c) shows the results: here Trans-

fer is still significantly better than No Transfer but the gain

in terms of recognition performance is small.

Case 4: different person, different camera, different

scene. Finally we consider a prior knowledge setting where

2http://www.idiap.ch/∼ttommasi/source code.html

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 6. Average recognition rate results on ten runs evaluated

varying the number of samples per class in the training set. The

significance of the comparison between Transfer and No Transfer

is evaluated through the sign test [12]: a square marker is reported

on the graph if p < 0.05. Passing from case 1 to case 4 the prior

knowledge is less and less relevant, consequently the advantage of

Transfer w.r.t. No Transfer decreases.

the person, the camera used and the background scene are

different with respect to the one used in the training and

test videos. We used Seq 4a, Seq 1b and Seq 1c and the

results are reported in Fig. 6 (d). Here the transfer learning

system automatically realizes that the information coming

from prior knowledge is not useful for the new task and

Transfer performs as No Transfer.

Comparing all the four graphs in Fig. 6, the progressively

lower relevance of prior knowledge with respect to the new

target task can be read in the decreasing recognition rate re-

sult for the Initial Model. Globally, the classifiers obtained

with Transfer learning perform better or at least equally to

No transfer. Therefore we use the transfer learning to fix the

activity class labels that are delivered to update the activity

trackers.

6.3. Activity tracking

Given an updated set of activity trackers, we evaluate

how the activity recognition performance increases with re-

spect to the initial processing. The predicted activities are

compared to the ground truth. We use Seq ∗b since it was

not used previously for testing the classification. Activities

are predicted for three cases: (i) the initial tracker set, (ii)

the tracker set after the update with one-shot learning and

(iii) after the update with 10 manually labeled frames.

In Fig. 7 we provide detailed insights for the activity up-

date. The cases 1 (same scene, same person, same camera)

and 4 (different scene, different person, different camera)
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(a) Case 1: ROC, confidence matrices for learning with 1 (left) and 10 (right) annotated samples
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Figure 7. Activity tracking results. ROC curves and confusion matrices for case 1 (top row, corresponding to Fig. 6(a)) and case 4 (bottom

row, corresponding to Fig. 6(d)). In the first row, the performances for one-shot learning and learning with 10 samples match, whereas in

the more difficult case in the bottom row, more annotations improve the performance.

Tracker test sequence 1b 3b 2b

Tracker update sequence 1c 3c 2c

Transfer prior sequence 1a 2a 3a 4a 3a 1a

Corresponds to case 1 2 3 4 1 2

Initial processing
TPR 0.50 0.45 0.44

FPR 0.13 0.17 0.06

Updated (1-shot)
TPR 0.78 0.78 0.78 0.59 0.72 0.62

FPR 0.14 0.14 0.14 0.16 0.17 0.05

Updated (10 samples)
TPR 0.81 0.82 0.81 0.81 0.73 0.66

FPR 0.15 0.17 0.15 0.15 0.22 0.13

Table 2. Results for different sequences, the predicted activity is compared to the ground truth. Different cases are reported in terms of

true positive rate (TPR) and false positive rate (FPR). The updated activity set outperforms the initial one. In most situations, the results

obtained with 10 labeled samples are only marginally better than using one-shot learning.

are depicted. In Fig. 7, ROC curves are shown for the ini-

tial and updated (one-shot and 10 samples) tracker sets. To

this end, the threshold that determines the active trackers,

is gradually increased. This results in different numbers of

true-positives and false-positives. For the confusion matri-

ces in Fig. 7 and all further experiments, the threshold is

kept fix.

One-shot labeling already improves the activity tracking

performance considerably with respect to the initial tracker

set. If the labels provided by the one-shot learning are

correct as in case 1, the benefit of labeling 10 frames is

marginal. If it turns out that one manually labeled sam-

ple is not sufficient for a good classification accuracy, as in

the most difficult case 4, manual annotation of 10 frames

improves the final performance. In the confusion matrices,

the predicted activities are reported vs. the ground truth in

terms of number of frames and underlie this finding. Cases

2 and 3 are very similar to case 1, i.e., the transfer learning

with one manually labeled sample is sufficient.

In Tab. 2, we report the evaluation of the activity recogni-

tion in terms of overall true-positive-rate and false-positive-

rate for different cases of prior knowledge and target tasks.

The first four columns report results obtained on the same

sequences used for the experiments in Fig. 6, the last two

columns contain the results for other test sequences. In all

cases, the augmentation of the tracker set with new track-

ers learned from the transferred labels helps. In five of the

six evaluated cases however, the annotation of ten frames

vs. one frame only improves the performance marginally.

We underline that the number of labelled training samples

needed is in any case two or at least one order of magnitude

smaller than what originally requested to update the activity

tracker in [23].



7. Conclusions

Starting from the output of a method that detects known

activities and unusual events in surveillance videos, we pre-

sented here a strategy to learn these new events. We only

need a very small number of training samples since we

exploit prior knowledge of activities that were known al-

ready. We extended an efficient transfer learning method

from binary to multiclass and we tested it on the realistic

and challenging scenario of learning new human activities.

Finally, we show that the combination of activity tracking

techniques with transfer learning can aid in determining the

behavior of a person in an indoor scene.
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