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Figure 1: We consider the problem of dense pose labelling in animal classes. We show that, for proximal to humans classes

such as chimpanzees (left), we can obtain excellent performance by learning an integrated recognition architecture from

existing data sources, including DensePose for humans as well as detection and segmentation information from other COCO

classes (right). The key is to establish a common reference (middle), which we obtain via alignment of the reference models of

the animals. This enables training a model for the target class without having to label a single example image for it. Source

image credit, on the left: [52, 48, 42, 57, 60, 34], on the right: COCO dataset [29].

Abstract

Recent contributions have demonstrated that it is possi-

ble to recognize the pose of humans densely and accurately

given a large dataset of poses annotated in detail. In prin-

ciple, the same approach could be extended to any animal

class, but the effort required for collecting new annotations

for each case makes this strategy impractical, despite im-

portant applications in natural conservation, science and

business. We show that, at least for proximal animal classes

such as chimpanzees, it is possible to transfer the knowledge

existing in dense pose recognition for humans, as well as in

more general object detectors and segmenters, to the prob-

lem of dense pose recognition in other classes. We do this

by (1) establishing a DensePose model for the new animal

which is also geometrically aligned to humans (2) introduc-

ing a multi-head R-CNN architecture that facilitates transfer

of multiple recognition tasks between classes, (3) finding

which combination of known classes can be transferred most

effectively to the new animal and (4) using self-calibrated

uncertainty heads to generate pseudo-labels graded by qual-

ity for training a model for this class. We also introduce two

benchmark datasets labelled in the manner of DensePose for

the class chimpanzee and use them to evaluate our approach,

showing excellent transfer learning performance.

∗Work done during an internship at Facebook AI Research

1. Introduction

In the past few years, computer vision has made signifi-

cant progress in human pose recognition. Deep networks can

effectively detect and segment humans [17], localize their

sparse 2D keypoints [41], lift these 2D keypoints to 3D [43],

and even fit complex 3D models such as SMPL [22, 23], all

from a single picture or video. DensePose [14] has shown

that it is even possible to estimate a dense parameterization

of pose by mapping individual image pixels to a canonical

embedding space for the human body.

Such advances have been made possible by the introduc-

tion of large human pose datasets manually annotated with

sparse or dense 2D keypoints, or even in 3D by means of

capture systems such as domes. For example, the DensePose-

COCO dataset [14] contains 50K COCO images manually

annotated with more than 5 millions human body points.

Clearly, collecting such data is very tedious, but is amply

justified by the importance of human understanding in ap-

plications. However, the natural world contains much more

than just people. For example, as of today scientists have

identified 6,495 species of mammals, 60k vertebrates and

1.2M invertebrates [1]. The methods that have been devel-

oped for human understanding could likely be applied to

most of these animals as well, provided that one is willing to

incur the data annotation burden. Unfortunately, while the

Project page: https://asanakoy.github.io/densepose-evolution
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applications of animal pose recognition in conservation, nat-

ural sciences, and business are numerous, just learning about

one more animal may be difficult to justify economically, let

alone learning about all animals.

Yet, there is little reason to believe that these challenges

are intrinsic. Humans can understand the pose of most ani-

mals almost immediately, with good accuracy, and without

requiring any data annotations at all. Furthermore, images

and videos of animals are abundant, so the bottleneck is the

inability of machines to learn without external supervision.

In this paper, we thus consider the problem of learning

to recognize the pose of animals with as little supervision

as possible. However, rather than starting from scratch, we

want to make use of the rich annotations that are already

available for several animals, and humans in particular. Thus,

we focus on the problem of taking the existing annotated

data as well as additional unlabelled images and videos of a

target animal species and learn to recognize the pose of the

latter. Furthermore, for this study we restrict our attention

to an animal species that is reasonably close to the available

annotations, and elect to focus on the particular example of

chimpanzees due to their evolutionary closeness to humans.∗

However, the findings in this paper are likely to generalize

to many other classes as well.

We make several contributions in this work. First, we

introduce a dataset for chimpanzees, DensePose-Chimps,

labelled in the DensePose fashion, which we mostly use to

assess quantitatively the performance of our methods. We

carefully design the canonical mapping for chimpanzees

to be compatible with the one for humans in the original

DensePose-COCO, in the sense that points in the two animal

models are in as close a correspondence as possible. This

is important to be able to transfer dense pose recognition

results from humans to chimpanzees while being able to

asses the quality of the obtained results.

Second, we study in detail several strategies to transfer

existing animal detectors, segmenters, and dense pose ex-

tractors from the available annotated data to chimpanzees.

In particular, while dense pose annotations exist only for

humans, bounding box and mask annotations have been

collected for several other object categories as well. As a

representative source dataset we thus consider COCO and

we investigate how the different COCO classes can be com-

bined to train an object detector and segmenter that transfers

optimally to chimpanzees. Surprisingly, we find that transfer

from humans alone is not optimal, nor human is the best

class for training a model for chimpanzees. In addition to the

DensePose-Chimps data, we collect human annotations for

instance masks on the Chimp&See† videos of chimpanzees

∗The idea is to eventually extend pose recognition to more and more

animal species, in an incremental fashion.
†Some of these videos are available at http://www.zooniverse.

org/projects/sassydumbledore/chimp-and-see.

captured with camera traps in the wild to evaluate the detec-

tion performance in the most challenging conditions (with

severe occlusions, low visibility and motion blur).

Finally, we propose a framework for augmenting and

adapting the human DensePose datasets to new species by

self-supervision and pseudo-labeling with zero ground truth

annotations on the target class.

2. Related work

Human pose recognition. There is abundant work on the

recognition of human body pose, both in 2D and in 3D.

Given that our focus is 2D pose recognition, we discuss

primarily the first class of methods. 2D human pose recog-

nition has flourished by the introduction of deep neural

networks [56, 41, 10] trained on large manually-annotated

datasets of images and videos such as COCO [30], MPII [4],

Leeds Sports Pose Dataset (LSP) [20, 21], PennAction [61]

and Posetrack [3]. Furthermore, Dense Pose [14] has intro-

duced a dataset with dense surface point annotations, map-

ping images to a UV representation of a parametric 3D

human model (SMPL) [32].

While all such approaches are strongly-supervised, there

are also methods that attempt to learn pose in a completely

unsupervised manner [6, 50, 8, 51, 47, 49, 33, 62]. Unfortu-

nately, this technology is not sufficiently mature to compete

with strong supervision in the wild.

Animal pose recognition. Also related to our work, sev-

eral authors have learned visual models of animals for the

purpose of detection, segmentation, and pose recognition.

Some animals are included in almost all general-purpose

2D visual recognition datasets, and in COCO in particular.

Hence, all recent detectors and segmenters have been tested

on at least a few animal classes.

For pose recognition, however, the existing body of re-

search is more restricted. Some recent papers have focused

on designing pose estimation systems and benchmarks for

particular animal species such as Amur tigers [28], chee-

tahs [38] or drosophila melanogaster flies [15]. There have

been a number of large efforts on designing annotation tools

for animals, such as DeepLabCut [35] and Anipose [24].

These tools also provide functionality for lifting 2D key-

points to 3D by using multiple views and triangulation. A

more detailed overview on applying computer vision and

machine learning methodology in neuroscience and zoology

is given in [36]. One of the main challenges in this field

remains the narrow focus of existing research on specific

kinds of animals and particular environments.

There have been few works focusing on the problem of

animal understanding from visual data alone and in a more

systematic way. This includes the estimation of facial land-

marks through domain adaptation [59, 45], and very recently

full body pose estimation [9] of four-legged animals by com-
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(a) 3D model charting
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(b) established dense mapping human ⇔ chimpanzee
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Figure 2: 3D shape re-mapping from the SMPL model for humans to new object categories (chimps). Manually defined

semantic charting (a) on both models is used to establish dense correspondences (b) based on continuous semantic descriptors

bining large-scale human datasets with a smaller number

of animal annotations in a cross-domain adaptation frame-

work. Finally, a line of work from Zuffi et al. [65, 64, 63] is

exploring the problem of model-based 3D pose and shape es-

timation for animal classes. Their research is based on para-

metric linear model, Skinned Multi-Animal Linear (SMAL),

obtained from 3D scans of toy animals and having the ca-

pacity to represent multiple classes of mammals. SMAL is

the animal analogous of the popular SMLP [31] model for

humans. It has since been used in other publications [7] for

3D animal reconstruction, but these methods may still be

insufficiently robust for deployment in the wild.

Unsupervised and less supervised pose recognition. Re-

cent methods such as [50, 51, 49, 19, 62, 33] learn sparse and

dense object landmarks for simple classes without making

use of any annotation, but are too fragile to be used in our

application. Also relevant to our work, Slim DensePose [40]

looked at reducing the number of annotations required to

learn a good DensePose model for humans.

Self-training for dense prediction. A recent study [58]

has demonstrated effectiveness of self-training on the task

of image classification when scaled to large amounts of

unlabeled data. Pseudo-labeling by averaging predictions

from multiple transformed versions of unlabeled samples has

been shown effective for keypoint estimation [44]. However,

there has been very little research on self-training in the

context of dense prediction tasks. A recent work [5] explored

the idea of self-training for segmentation of seismic images

and showed promising results on this task for the first time.

3. Method

We wish to develop a methodology to learn Dense Pose

models for new classes with minimal annotation effort. Ex-

isting labelled datasets for object detection, segmentation

and pose estimation, provide a significant source of super-

vision that can be harnessed for this task. For detection and

segmentation, COCO provide extensive annotations for a

variety of object classes, including several animals. For pose

recognition, however, the available supervision is generally

limited to humans, with a few exceptions. Furthermore, for

dense pose recognition only human datasets are available —

the best example of which is DensePose-COCO [14].

In this work, we raise a number of questions most critical

for this setup, namely:

• defining learning and evaluation protocols on new animal

categories allowing for training class-specific or class-

agnostic DensePose models on a variety of species in a

unified way (described in Sect. 3.1);

• improving quality of DensePose models and their robust-

ness to unseen data distributions at test time (discussed in

Sect. 3.2 and 3.3);

• optimally combining the existing variety of data sources

in order to initialize a detection model for a new animal

species (discussed in Sect. 3.4);

• defining strategies for mining dense pseudo-labels for

gradual domain adaptation from humans to chimpanzees

in a teacher-student setting (discussed in Sect. 3.5).

3.1. Annotation through 3D shape re­mapping

While our aim is to learn to reconstruct the dense pose of

chimpanzees with zero supervision, a manually-annotated

dataset for this class is required for evaluation. Here, we

explain how to collect DensePose annotations for a new

category, such as chimpanzees.

Dense Pose model. Recall that DensePose-COCO con-

tains images of people collected ‘in the wild’ and annotated

with dense correspondences. These dense keypoints are iden-

tified as the point p ∈ S of a reference 3D model S ⊂ R
3 of

the object.‡ Furthermore, the keypoints p ∈ S are indexed

by triplets (c, u, v) ∈ {1, . . . , C} × [0, 1]2 where c is the

chart index, corresponding to one of C model parts, and

(u, v) are the coordinates within a chart. The DensePose-

COCO dataset [14] contains bounding boxes, pixel-perfect

foreground-background and part segmentations, and (c, u, v)
annotations for a large number of foreground pixels.

Dense Pose for chimps. We wish to extend the DensePose

annotations to the chimpanzee class. In order to do so, we

‡Dense Pose uses SMPL [32] to define S due to its popularity
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rely on a separate artist-created 3D model§ of a chimpanzee

as a reference for annotators to collect labels for the chim-

panzee images (instead of the human model used by the

original DensePose).

For each object, we use Amazon Mechanical Turk to

collect the object bounding boxes, followed by pixel-perfect

foreground/background segmentation masks, and finally the

(c, u, v) chart coordinates for a certain number of pixels

randomly sampled from the foreground regions. Differently

from the original DensePose, we do not also collect dense

annotations for the body parts as the latter was found to

be very challenging for the annotators. Note however that

the chart index c reveals the part identity for each of the

annotated image pixels.

Semantic alignment. Finally, we wish to align the human

and chimpanzee DensePose models by mapping the collected

annotations back on the surface of the SMPL model using

the mesh re-mapping strategy described below. The latter

step unifies the evaluation protocols across different object

categories and allows to transfer knowledge and annotations

between different species.

In spite of the fact that humans and most mammals share

topology and the skeletal structure, establishing precise se-

mantic dense correspondences between the 3D models of

humans and different animal species is challenging due to

differences in body proportions and local geometry.

As preprocessing, we manually charted the SMPL and

the chimp meshes into L = 32 semantically-corresponding

parts to guide the mapping. Then, for each vertex p of each

mesh S, we extracted an adapted version of the continuous

semantic descriptor d(p) proposed by Léon et al. [27]:

d(p) = (dℓ(p))
L

ℓ=1
, dℓ(p) =

1

|Sℓ|

∑

s∈Sℓ

g(p, s;Sℓ) (1)

where Sℓ ⊂ S is the set of all vertices in part ℓ of the mesh

and g(p, s) is the geodesic distance between two points on

S.¶ With this, the mapping from the human mesh S to the

chimp mesh S′ is obtained by matching nearest descriptors:

S → S′, p 7→ argminq∈S′ ‖dS(p)− dS′(q)‖2.

This simple approach yields satisfactory results both in

terms of alignment and smoothness, as shown in Fig. 2. It

does not require any optimization in 3D space based on

model fitting or mesh deformation and works on meshes of

arbitrary resolutions. Interestingly. exploiting information

about mesh geometry (such as high dimensional SHOT [46]

descriptors or their learned variants [16]) instead or in addi-

tion to semantic features results in noisy mappings. This can

likely be attributed to prominent inconsistencies in local ge-

ometry of some body regions between the object categories.

§Purchased from http://hum3d.com/
¶To partially compensate for differences in proportions across different

categories, we further normalized the descriptors by their part average:

dℓ(p)← dℓ(p)/〈dℓ(q)〉q∈Sℓ
.

Figure 3: Comparison of the original (a) and our (b) Dense-

Pose learning architecture. See Sect. 3.2 for detailed descrip-

tion of the architecture.

3.2. Multi­head R­CNN

Our goal is to develop a DensePose predictor for a new

class. Such a predictor must detect the object via a bounding

box, segment it from the background, and obtain the Dense-

Pose chart and uv-map coordinates for each foreground pixel.

We implement this with a single model with multiple heads,

performing the various tasks on top of the same trunk and

shared image features (Fig.3.b).

The base model is R-CNN [17] modified to include the

following heads. The first head refines the coordinates of

the bounding box. The second head computes a foreground-

background segmentation mask in the same way as Mask

R-CNN. The third and the final head computes a part seg-

mentation mask I , assigning each pixel to one of the 24
Dense Pose charts, and the uv map values for each fore-

ground pixel.

Class-agnostic model. Compared to the standard Mask

R-CNN, our model is class agnostic, i.e. trained for only one

class type. This is true also when we make use of a Mask

R-CNN pre-trained on multiple source classes as the goal is

always to only build a model for the final target chimpanzee

class — we found that merging classes is an effective way

of integrating information.
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Heterogeneous training. Our training data can be hetero-

geneous. In particular, COCO provides segmentation masks

for 80 categories, but DensePose-COCO provides Dense-

Pose annotations only for humans. While we train a single

class-agnostic model, the Dense Pose head is trained only

for the class human for which the necessary ground-truth

data is available.

Note in particular that both the Mask R-CNN head and

the DensePose head contain a foreground-background seg-

mentation component — these are not equivalent, as the

DensePose one is only valid (and trainable) for humans,

while the Mask R-CNN one is generic (and trainable from

all COCO classes). We will see in the experiments that their

combination improves performance.

Fine-tuning. As shown later, for fine-tuning the model

we generate pseudo-label on chimpanzees imagery. The

pseudo-labels are generated for all components of the model

(segmentations, uv maps), including in particular both

foreground-background segmentation heads.

Other architectural improvements. Our model (Fig. 3.a)

has a few mode differences compared to the original Dense

Pose (Fig. 3.b) which we found useful to improved accuracy

and/or data collection efficiency.

First, both the original and our implementations use dense

(pixel-perfect) supervision for the foreground-background

masks. However, in our version we do not use the pixel-

perfect part segmentations in the original DensePose an-

notations — the part prediction head is trained only from

the chart labels for the pixels that are annotated in the data.

This is another reason why we do not collect pixel-perfect

segmentations for the chimpanzee images.

We further improve the DensePose head by implementing

it using Panoptic Feature Pyramid Networks [26], and use

a configuration similar to DeepLab [11] that benefits from

higher resolution.

3.3. Auto­calibrated R­CNN

As suggested above, pseudo-labelling can be used to fine-

tune a pre-trained model on imagery containing the target

class, chimpanzees in our case. The idea is to use a model

pre-trained on a different class or set of classes to gener-

ate labels in the new domain, and then to retrain the model

to fit those labels. Due to the domain gap, however, the

pseudo-labels are somewhat unreliable. In this section, fol-

lowing [25] we develop a principled manner to let the neural

network itself produce a calibrated measure of uncertainty

which we can use to rank pseudo-labels by reliability.

Classification uncertainty. Our model performs categori-

cal classification for two purposes: to associate a class label

to a bounding box, and to classify individual pixels as back-

ground, foreground, or as one of the body parts. In order to

estimate the uncertainty for these categorical predictions, we

Figure 4: Instance Segmentation score (AP) on DensePose-

Chimps for Mask R-CNN models trained using different

COCO categories, ranked by decreasing performance.

adopt the temperature scaling technique of [18].

Thus let zy be the score that the neural network associates

to hypothesis y ∈ {1, . . . ,K} for a given input sample. We

extend the network to compute an additional per-sample

scalar α ≥ 0. With this scalar, the posterior probability of

hypothesis y is given by the scaled softmax

σ̂ (y; z, α) =
exp (αzy)

∑K

k=1
exp (αzk)

(2)

We can interpret the coefficient α = 1/T as an inverse

temperature. A small α means that the model is fairly certain

about the prediction, whereas a large α that it is not.

Note that, since α is also estimated by the neural network,

we require a mechanism to learn it. This is in fact obtained

automatically [18, 39] by simply minimizing the negative

log-likelihood of the model, also known in this case as cross-

entropy loss: ℓ(y, z, α) = − log σ̂ (y; z, α) .

Regression with uncertainty. Our model performs regres-

sion to refine the bounding box proposals (for four scalar

outputs, two for each of the two corners of the box) and to

obtain the DensePose uv-coordinates (for two scalar outputs

for each image pixel in a proposal).

Thus let y ∈ R
D be the vector emitted by one of the

regression heads (where D depends on the head). Similarly

to the classification case, we use the network to also predict

an uncertainty score σ ∈ R
D. This time, however, we have

a different scalar for each element in y (hence, for the uv-

maps, we have two uncertainty scores for each pixel, which

we can visualize as an image). The vector σ is interpreted

as the diagonal variance of the regressed vector y, assuming

the latter to have a Gaussian distribution. The uncertainty

scores σ can thus be trained jointly with the predictor ŷ by

minimizing the negative log-likelihood of the model:

ℓ(y, ŷ, σ)=
D

2
log 2π +

1

2

D
∑

i=1

(

log σ2

i +
(ŷi − yi)

2

σ2

i

)

(3)

For a fixed error |ŷi − yi|, the quantity above is minimized

by setting σi = |ŷi − yi| — hence the model is encouraged

to guess the magnitude of its own prediction error. However,

if |ŷi − yi| = 0, the quantity above diverges to −∞ for

σi → 0. Hence, we clamp σi from below to a minimum

value σmin > 0.
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model AP AP50 AP75

DensePose-RCNN 50.88 80.40 54.80

DensePose-RCNN* 51.44 81.44 55.12

DensePose-RCNN* (σ) 54.13 82.32 58.06

model AP AP50 AP75

DensePose-RCNN 43.84 76.88 45.84

DensePose-RCNN* 43.84 77.52 45.60

DensePose-RCNN* (σ) 45.58 78.79 47.93

Table 1: Detection (left) and instance segmentation (right) performance on DensePose-COCO minival.

model AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

DensePose-RCNN 46.8 84.5 47.7 41.8 48.0 54.7 89.5 58.9 43.3 55.5

DensePose-RCNN* 47.2 85.8 47.3 42.5 48.4 55.2 91.0 59.1 44.0 55.9

DensePose-RCNN* (σ) 53.2 88.3 57.0 48.6 54.6 61.2 92.4 67.2 50.0 61.9

Table 2: DensePose performance on DensePose-COCO minival. * denotes our improved architecture; (σ) denotes the

proposed Auto-calibrated version of the network.

Details. For both classification and regression models, the

uncertainties α and σ must be positive — in the network,

they are obtained via a softplus activation.

3.4. Optimal transfer support

In this section, we investigate which object categories in

the COCO dataset provide the best support for recognizing

a new animal species, chimpanzees in our case. Among the

animals in COCO, chimpanzees are most obviously related

to humans, and we may thus expect that people may be

the most transferable class. However, despite their overall

structural similarity, people’s appearance is fairly different,

also due to the lack of fur and the presence of clothing.

Furthermore, context is also often quite different. It is thus

unclear if a deep network trained to recognise humans can

transfer well at all on chimpanzees, or whether other object

categories might do better.

Class selection. We test what is more important: biological

proximity of the species (as a proxy to morphological simi-

larity) or appearance similarity (as a combination of typical

poses and textures). We also search for a brute force solution

for this particular dataset to back up or disprove our intuition

for class selection. In our experiments, we have tested the

following selections:

• person class only (due to morphological similarity).

• animal classes only (due to higher pose and texture simi-

larity): bear, dog, elephant, cat, horse, cow, bird, sheep,

zebra, giraffe, mouse.

• top-N scoring classes on the new category (brute force so-

lution). In this setting, we first train a set of C single-class

models for each of the C = 90 object classes in the COCO

dataset and rank them according to their instance segmen-

tation performance on the DensePose-Chimps dataset (see

Fig. 4). Then for each combination of S ∈ {1, . . . , C} top

scoring classes we train the same network from scratch.

The solution that have we found optimal corresponds to

Copt = 9, where the top-C scoring classes are: bear, dog,

elephant, cat, horse, cow, bird, person, sheep.

As shown in Tab. 5, the top-N solution produces similar

results compared to combination person+animals. Person

class only is ineffective for training in this setting.

Class fusion. We have also explored the question of class-

agnostic vs multi-class training as a trade-off between the

number of training samples per class vs granularity of pre-

diction modes. For the task of adapting the new model to a

single category (on the given dataset) class-agnostic training

showed convincingly stronger results (see Tab. 5).

3.5. Dense label distillation

Finally, we aim at finding an effective strategy for ex-

ploiting unlabeled data for the target domain in the teacher-

student training setting and performing distillation in dense

prediction tasks. In our setting, the teacher network trained

on the selected classes of the COCO dataset with DensePose

is used to generate pseudo-labels for fine-tuning the student

network on the augmented data. The student network is

initialized with teacher’s weights.

Once teacher predictions on unlabeled data are obtained,

we start by filtering out low confidence detections using

calibrated detection scores. After that, the bounding boxes

and segmentation masks on remaining samples are used for

augmented training. For mining DensePose supervision, we

consider three different dense sampling strategies driven by

each of the tasks solved by the teacher network, in addition

to uniform sampling:

• uniform sampling – all points from the selected detec-

tions are sampled with equal probability;

• coarse classification uncertainty [mask-based] – sam-

pling top k from ranked calibrated posteriors produced by

the mask branch for the task of binary classification;

• fine classification uncertainty [I-based] – selection of

top k from ranked calibrated posteriors from the 24-way

segmentation outputs of the DensePose head;

• regression uncertainty sampling [uv-based] – sam-

pling of top k points based on ranked confidences in the

uv-outputs of the DensePose head.
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DensePose-Chimps Chimp&See

sampling k APDPose APD APS APD APS

– – 33.4 62.1 56.4 50.5 43.5

uniform 5 34.5± .4 63.3± .3 58.0± .3 58.9± .5 49.0± .5
mask-based 5 34.7± .4 63.3± .3 58.0± .2 58.8± .6 49.0± .5
I-based 5 34.9± .6 63.4± .3 58.0± .2 59.2± .4 49.2± .5
uv-based 5 34.6± .3 63.3± .3 58.2± .3 59.0± .1 49.6± .1

Table 3: AP of the student network trained with different

sampling strategies. Optimal number of sampled points k
per detection is reported for each sampling. The first row

corresponds to the teacher network. Mean±std for 20 runs.

In Sect. 4 we provide experimental evidence that sampling

based on confidence estimates from fine-grained tasks (I-

estimation, uv-maps) results in the best student performance.

4. Experiments

We now describe the results of empirical evaluation and

provide detailed descriptions of ablation studies.

4.1. Datasets

We use a combination of human and animal datasets with

different kinds of annotations or no annotations at all. A

brief description of each of them is provided below.

DensePose-COCO dataset [14]. This is the dataset for

human dense pose estimation, that we use for training the

teacher model. It contains 50k annotated instances totalling

to more than 5 million ground truth correspondences. We

also augment the teacher training with other object categories

from the original COCO dataset [30].

Chimp&See dataset. For training our models in a self-

supervised setting, we used unlabeled videos containing

chimpanzees from the Chimp&See project‖. This data is

being collected under the umbrella of The Pan African Pro-

gramme∗∗: The Cultured Chimpanzee (PanAf) by installing

camera traps in more than 40 natural habitats of chimpanzees

on different sites in Africa. In this work, we used a subset

of the collected data consisting of 18,556 video clips, from

10 sec to 1 min long each, captured with cameras in either

standard or night vision mode depending on lighting condi-

tions. These recordings were motion triggered automatically

by passing animals. As a result, some clips may not contain

any chimps beyond first several frames.

For evaluation, we chose videos from one site, sampled

frames at 1 fps, removed the near duplicates and collected hu-

man annotations for instance masks. This resulted into 1054

images containing 1528 annotated instances, that we use to

‖A subset of the videos from the Chimp&See dataset is

publicly available at http://www.zooniverse.org/projects/

sassydumbledore/chimp-and-see.
∗∗http://panafrican.eva.mpg.de

DensePose-Chimps Chimp&See

k APDensePose APD APS APD APS

0 33.8± .2 63.1± .2 57.9± .2 59.0± .3 49.2± .4
1 34.7± .5 63.0± .2 57.9± .3 59.3± .3 49.3± .6
2 34.6± .6 63.4± .3 57.9± .3 59.2± .4 49.3± .4
5 34.9± .5 63.4± .3 58.0± .2 59.2± .4 49.2± .5
10 34.6± .6 63.3± .3 58.0± .3 59.2± .4 49.4± .4
1000 33.1± .6 63.2± .2 57.8± .3 59.2± .5 49.4± .5
10000 27.6± 4.6 60.2± .4 55.7± .5 58.0± .7 49.1± .6

Table 4: DensePose, detection and instance segmentation

AP of the student network trained with I-sampling for dif-

ferent number of sampled points k. Mean±std for 20 runs.

selected COCO object classes AP AP50 AP75

top-9 classes 57.29 85.63 63.45

bear-only 40.69 70.88 44.23

person-only 9.39 19.32 8.21

animals-only 52.28 80.62 58.60

person + animals 57.34 85.76 63.59

person + animals: class agnostic 57.34 85.76 63.59

person + animals: class specific 50.47 72.85 54.30

Table 5: Instance segmentation AP on DensePose-Chimps

for Mask R-CNN trained on different subsets of classes.

benchmark detection performance in our models. However,

due to in-the-wild nature of this data and presence of motion

blur, severe occlusions, and low resolution in some cases,

we found it infeasible to collect precise human annotations

at the level of dense correspondences.

DensePose-Chimps test set. For the task of evaluating

DensePose performance on this new category, we collected a

set of 662 higher quality images that contain 933 instances of

chimpanzees. We annotated this data with bounding boxes,

binary masks, body part segmentation and dense pose corre-

spondences as explained in Sect. 3.1.

4.2. Results

Ablations on architectural choices. First, we compare

our model to the original DensePose-RCNN [14] (detec-

tron2 implementation). We also ablate our improvements in

the architecture and provide results with and without auto-

calibration. Tab. 1, 2 show consistent improvements on all

tasks for both modifications.

Optimal transfer support. We (a) benchmarked every

strategy for class selection described in Sect. 3.4 and (b)

experimented with multi-class and class-agnostic models.

From Tab. 5 we can see that class agnostic training on the

animals+person subset shows the best transferability for

DensePose-Chimps dataset. Therefore, it was used for train-

ing all our DensePose models.

Dense label distillation. We conducted experiments with

different sampling strategies and different numbers of sam-

pled points k per detection. In Tab. 3 we show performance
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Figure 5: Visual results: (left) teacher network predictions vs (right) predictions of student network trained using I-sampling.

The student produces more accurate boundaries and uv-maps. Zoom-in for details. Image source: [53, 54, 37, 34, 2, 13, 12, 55].

of the teacher (first row) and the student networks trained us-

ing different sampling strategies along with the correspond-

ing optimal k. I-based sampling showed most impressive

gains, followed by uv-based sampling. Uniform selection

produces poor results. In Tab. 4 we report performance for

different number of sampled points in every detection for

I-based sampling. Qualitative results are shown in Fig. 5.

5. Conclusions

We have studied the problem of extending dense body

pose recognition to animal species and suggested that doing

this at scale requires learning from unlabelled data. En-

couragingly, we have demonstrated that existing detection,

segmentation, and dense pose labelling models can transfer

very well to a proximal animal class such as chimpanzee de-

spite significant inter-class differences. We have shown that

substantial improvements can be obtained by carefully select-

ing which categories to use to pre-train the model, by using

a class-agnostic architecture to integrate different sources of

information, and by modelling labelling uncertainty to grade

pseudo-label for self-training. In this manner, we have been

able to achieve excellent performance without using a single

labelled image of the target class for training.

In the future, we would like to investigate how a limited

amount of target supervision can be best used to improve the

results, and how other techniques from domain adaptation

could also be used for this purpose.
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