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Transferring Generalizable Motor Primitives
From Simulation to Real World

Murtaza Hazara “

Abstract—Reinforcement learning provides robots with an au-
tonomous learning framework where a skill can be learned by
exploration. Exploration in real world is, however, inherently un-
safe and time consuming, and causes wear and tear. To address
these, learning policies in simulation and then transferring them
to physical systems has been proposed. In this letter, we propose a
novel sample-efficient transfer approach, which is agnostic to the
dynamics of a simulated system and combines it with incremental
learning. Instead of transferring a single control policy, we trans-
fer a generalizable contextual policy generated in simulation using
one or few samples from real world to a target global model, which
can generate policies across parameterized real-world situations.
We studied the generalization capability of the incremental trans-
fer framework using MuJoCo physics engine and KUKA LBR 4+.
Experiments with ball-in-a-cup and basketball tasks demonstrated
that the target model improved the generalization capability be-
yond the direct use of the source model indicating the effectiveness
of the proposed framework. Experiments also indicated that the
transfer capability depends on the generalization capability of the
corresponding source model, similarity between source and target
environment, and number of samples used for transferring.

Index Terms—Learning and Adaptive Systems, Model Learning
for Control.

I. INTRODUCTION

EINFORCEMENT learning (RL) can provide robots with
R the capability to learn a skill autonomously. However, RL.
performs learning by exploration which is sometimes danger-
ous to execute on a physical system; causes wear and tear on
the robot; and, is time consuming. In order to minimize the in-
teraction with the physical robot, one can instead apply RL for
learning a policy in the simulation. However, policies learned
in the simulation often cannot be directly deployed in the real
world because of discrepancies between dynamics of simulation
versus real world. To address this problem, transfer learning has
been proposed. The main focus of previous research has been
on transferring a single control policy and robustifying it against
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the uncertainties of real world dynamics (e.g. friction dynamics)
or adapting the dynamics of a task. However, few researchers
have studied the generalization of the transferred policy to new
situations.

Incremental learning provides another way of decreasing the
amount of real-world exploration. When the context of learning
can be controlled, a system can be exposed to increasingly diffi-
cult situations to build a contextual model that generalizes over
those situations. For example, a global parametric model of a
skill can be combined with RL to construct a database of motion
primitives (MPs) incrementally [1]. When encountering a new
situation, the global model predicts MPs by extracting the under-
lying regularities from the database, while RL optimizes the pre-
dicted MPs which have failed to re-enact the task successfully.

The main contribution of this letter is an incremental trans-
fer framework which combines the incremental learning of a
source task with transfer to the target environment. The pro-
posed transfer approach is agnostic to the dynamics model of
a system. Incremental learning is applied first in simulation to
build a contextual model that captures the underlying regular-
ities of the simulated (source) task with respect to measurable
task parameters. Then, the contextual model is transferred to
the real-world (target) environment using one or few real-world
samples. The resulting global model can generate policies for
any task parameter value in the real world. In other words, in-
stead of transferring a single source policy optimized for only
one specific situation, we transfer a generalizable model from
simulation to real world. This allows the transfer approach to
accommodate both unmodeled dynamics and generalization to
new situations.

The proposed method is experimentally evaluated in basket-
ball and ball-in-a-cup tasks to assess its generalization capabil-
ity. Results show that the proposed incremental transfer frame-
work can successfully transfer the source contextual model even
with one sample from the real world. Furthermore, the experi-
ments indicate that the transfer capability depends on the sim-
ilarity between target and source environment, generalization
capability of the source model, and the number of the samples
from target environment used for transferring.

II. RELATED WORK

Transfer learning (TL) has been extensively studied in differ-
ent contexts [2]. However, in this section, we focus on simulation
to real-world transfer. After that, we briefly review generalizable
models.
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A. Transfer Learning

One of the main assumptions in transferring control policies
is that the source and target environment share the same char-
acteristics. In this case, policies learned in the source is useful
in the target. For example, in [3] utility of past policies is es-
timated using policy reuse to bias the exploration process of a
simulated grid-based navigational domain. However, discrepan-
cies between the simulation and real world makes it necessary
to adapt the source policies with respect to the target.

Domain randomization has been proposed as a successful ap-
proach for adapting source policies to the target. In [4], visual
features such as lighting and texture have been randomized in the
source environment to robustify the transferred policies against
the uncertainties of the visual input. However, these methods do
not account for the uncertainties in the dynamics of a system.
On the other hand, in [5], [6], they optimize source policies on
an ensemble of perturbed dynamics models to robustify against
the dynamics model uncertainties. In [7], [8], they randomize
friction dynamics for learning policies which have been shown
to be robust against the uncertainties of real-world friction dy-
namics. However, they have considered only the dynamics of
a system which can be parametrized such as friction. In other
words, it does not account for unmodeled dynamics. More-
over, the range of parameters (e.g. friction coefficient) need to
be determined in advance of transferring. Above all, it does
not account for generalizing transferred policies to new task
parameters.

Instead of adapting the dynamics of the system, in [9], dy-
namics of the task is adapted using a data-efficient model-based
approach [10], [11]. Even though, it can accounts for unmodeled
dynamics of the system, it can only learn a single controller for
one specific situation.

On the other hand, we propose incremental transferring of a
global model which is generalizable to new situations. In other
words, the transferred generalizable model generates target poli-
cies for any task parameter in the real world. In fact, our transfer
approach is sample efficient, data-driven and agnostic to the un-
derlying dynamics model of a system. Therefore, our transfer
approach can accommodate for unmodeled disturbances.

B. Generalizable Models

Researchers have shown interest in generalizable motor
primitives (MPs) to new situations using contextual policy
search [12], [13], or a skill model such as Gaussian process re-
gression [14] and locally weighted regression [15]. On the other
hand, non-linear global models (GPDMP) with linear compu-
tational complexity [16] have been shown to outperform local
models and the global linear models [17], [18] with respect
to their extrapolation capability. Furthermore, GPDMP has pro-
vided the uncertainty of MPs for guiding the exploration process
of RL in an incremental learning framework outperforming the
covariance matrix adaptation [19]. The main contribution of this
letter is to propose incremental transfer and combine it with in-
cremental learning for transferring GPDMP from simulation to
real world. To our best knowledge, this is the first letter propos-
ing incremental transfer of a global model.
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IIl. METHOD

We begin this section by describing the global parametric dy-
namic movement primitives (GPDMPs) method which extends
dynamic movement primitives (DMPs) to varying contexts. We
then describe the applied model selection approach and ex-
plain how a database of primitives can be learned incrementally
in simulation. Finally, we describe the approach to transfer a
GPDMP model learned in simulation to a physical system in an
incremental fashion.

A. Global Parametric Dynamic Movement Primitives

DMPs [20] are a common policy representation for trajectory-
based motions. The motion is encoded as a spring-damper sys-
tem perturbed by a time variant forcing function. The forcing
function can be written as

flzw) =wlg(2), (1)

where g is a time-parameterized kernel vector and w the policy
parameters. the n-th element of the kernel vector

P"(2)z

N .
i1 ¥'(2)
is determined by a normalized basis function ¢/ (z) multiplied
by the phase variable z and the scaling factor (g — x) allowing
for the spatial scaling of the resulting trajectory.

Using DMPs, a task can be imitated from a human demonstra-
tion; however, the reproduced task cannot be adapted to different
environment conditions. To overcome this limitation, we have
integrated a parametric model to DMPs capturing the variability

of a task from multiple demonstrations. We transform the basic
forcing function (1) into a parametric forcing function [16]

fz,Lw) =w() g(2), A3)

where the kernel weight vector w is parametrized using a pa-
rameter vector | of measurable environment factors.

We model the dependency of the weights with respect to pa-
rameters as a linear combination of J basis vectors v; with co-
efficients depending on parameters in a non-linear fashion [16]

gl = (g — o) @

J-1
w(l) =) _éi(hvi = V7 (D), @
i=0
where Visa J x N matrix of parameters with N referring to the
number of kernels g, and .J denotes model complexity. The basis
function ¢(1) is a J dimensional column vector with elements
¢;(1). For example, the non-linear basis ¢, (1) for a polynomial
model in one parameter is ¢; (1) = I. The formulation captures
linear models such as [18] as a special case.
For a chosen non-linear basis (known functions ¢; ), the basis
vectors can be determined as a least squares problem

K

argmnvng 1w (le) = well, , )
where K represents the number of training sample represented
by w; which denotes target weights determined from human
demonstration [20] or learned using policy search [21]. In either
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case, reproducing an imitated task using w;. should lead to a
successful performance in an environment parametrized by 1.
The solution of (5) is

V=&"W, (6)
where
¢o(li)  ¢i(lh) é7-1(h)
do(la)  ¢i(l2) d7-1(l2)
- : : : D
¢o(lx) ¢(lk) dr-1(lx)
is the design matrix and @ * denotes it pseudoinverse and
wi
W=| : ®)
wh

is the target matrix.

B. Model Selection

The best generalization using a parametric regression model
can be achieved by choosing an optimal order of complexity
J for the model, which is addressed in model selection. We
have selected a penalized log-likelihood model selection method
which chooses a model by minimizing

By = tr(W —®V)T (W - ®V)X;}) + Jlog K (9)

where ¥, represents a constant covariance matrix which needs
to be determined prior to the model selection process (see [16]
for more detail).

C. Incremental Learning of the Source Model

We utilize the incremental learning framework proposedin [1]
to construct a database of MPs in a source (simulation) envi-
ronment, denoting the database DB;. The database is used to
estimate a corresponding global parametric model GPDM F..
Whenever the application of GPDM P, fails to reproduce a
skill successfully, we apply the POWER [21] policy search to
optimize the primitive. The optimized primitive is then added
to DB, and the global model GPDM P, is re-estimated.

To perform exploration in the policy search, we use pre-
structured covariance matrix [16] for the Gaussian distribution
from which a correlated smooth noise vector is sampled pro-
viding safe exploration. Our complete setup of the POWER is
described in [16].

When re-estimating the GPDM P,, the model selection
method (9) is used. This may cause the model order .J to change
when more data is acquired. In particular, the model order can
increase to allow describing more complex relationships when
enough evidence is gathered.

In a nutshell, GPDM P, provides policy search a good start-
ing policy for a new situation; RL, on the other hand, optimizes
the predicted MPs in a new situation; thus, providing GPDM P,
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with more training samples. In this way, D B, is built incremen-
tally and in an online manner.

D. Incremental Transfer of the Source Model

Real world cannot be simulated perfectly. Thus, the policies
learned in the simulation need to be adjusted to the real world.
This problem is addressed in transfer learning. The policies can
be transferred independently for every single task parameter. Al-
though the policy learned in simulation is a good starting policy
for transfer learning, this requires excessive robot interaction
with the real world because learning is necessary for each task
parameter. Instead, we transfer the generalizable model which
can generate target policy for any task parameter, thus speed-
ing up the transfer and minimizing the interaction with the real
world.

Transferring a source global model GPDM P, can be per-
formed incrementally (see Algorithm 1). The basis vectors of
the transferred policy V; are initialized from the source model
in lines 1-7. Task parameter value is chosen in line 9, depending
on application. For a one dimensional task parameter, an initial
value is selected and then decreased or increased by a chosen
amount (see Section IV-C for an example). Next, policy param-
eters are determined using the target basis vectors (line 10) and
the policy is re-enacted in the real world. If the re-enacted pol-
icy is unsuccessful, it is optimized using reinforcement learning.
The optimized policy parameters are then added to a database
of target MPs D B; (line 13).

Now that DB; contains a MP for one task parameter, we can
transfer GP DM P,. We assume that the underlying regularities
of the real-world dynamics are similar to the simulated dynam-
ics since the tasks are the same. Therefore, we assume that the
transferred global model GPDM P, has the same model com-
plexity as the source model GPDM P;, while it also matches
MPs in the D B;, collected in matrix W,. In order to calculate
the transferred basis vectors V, one needs to solve a system of
linear equations:

Wi =9V, (10)

where the target design matrix ®; is defined in (7).
Initially, the system may be under-determined, since W, con-
tains only one sample. The set of solutions to (10) is

Vi=Vo+ VyAy, (11)
where
Vo =® W, (12)
and where each column of
Vy = null(®;) (13)

denotes a basis vector for the null space of the target design
matrix ®;.

The coefficient matrix Ay can be determined by minimizing
the distance between the target basis vectors V; and the source
basis vectors V,

min ||(Vo — V,) + VuAx |2, (14)
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where the basis vectors of the simulation is computed using
V=D W,. (15)

This case, however, gives equal attention to all dimensions of
the basis vector space. This may lead to a transferred contextual
model which is noticeably different from the contextual model
in simulation because different basis functions may have effects
in different scales. Therefore, instead of minimizing the sum of
squares (14), we minimize the weighted sum of squares

min ||(Vo — Vi) + VyAx [z, (16)

where F is a diagonal weight matrix reflecting scales similar to
a covariance matrix of a Gaussian prior. The solution to (16) is

An = (VEFVy) ™ VEF (V, - Vy).

For the polynomial base functions, we select the diagonal
terms to be of the form Fj; = cf;l. In this case, the coeffi-
cients associated with higher order terms in the global paramet-
ric model will contribute more to the adjustment. Consequently,
the transferred contextual model will be more similar to the
source contextual model, increasing the safety of generalization
to new situations.
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IV. EXPERIMENTAL EVALUATION

We studied experimentally the generalization performance
of the proposed incremental transfer framework using ball-
in-a-cup and basketball tasks on KUKA LBR 4+. We uti-
lized DMPs as the policy encoding since it provides us with
a low-dimensional policy representation which is a less data-
demanding model than high-dimensional policy representations
such as deep RL. In this section, we first explain the tasks and
the incremental transfer process. The experiments study five hy-
potheses on the relationship between generalization capability
and factors such as number of target samples and similarity of
source and target environments.

A. Ball-in-a-Cup Task

The ball-in-a-cup game consists of a cup, a string, and a ball;
the ball is attached to the cup by the string (see Fig. 2). The
objective of the game is to get the ball in the cup by moving
the cup. We chose the ball-in-a-cup game because variation
in the environment can be generated by changing the string
length. The string length is observable and easy to evaluate, thus
providing a suitable task parameter. Nevertheless, changing the
length requires a complex change in the motion to succeed in
the game. Hence, the generalization capability of a parametric
LfD model can be easily assessed using this game. Similar to
our previous set-up in [16], the trajectories along y and z axes
were encoded using separate DMPs. Utilizing 20 kernels per
DMP, in total N = 40 parameters are needed to describe the
motion model for a single task parameter value. In order to
vary the similarity between source (simulated) and target (real-
world) environment, air density was changed in simulation from
the real world value of 1.2 %%— For this task, five values of air
density were used: 1.2,1.5,2.0,2.5,and 3.0 —:r‘ﬁ- for environments
i =1, ... ,5 respectively. Changing the air density causes air
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Algorithm 1: Incremental transfer of source model
GPDMP,.

Input: DB, = {{l;;wy,} |1 <i < K}

Output: transferred global model, that is GPDM P; with
corresponding parameters, that are V.

Initialisation :

: K, — |DBq|

Jo «+ argmin { By }, where By, is computed using (9)
Jel. K,

W, — [(w1,)T; ... (Wi, 7] € REeXN
®, — [(@(L)7; ... ($(ik,))T] € RE=
V, — (21 ®,) 'dITW,
Vg — V3
DB, — {}
repeat
select a task parameter 1
10: wy— (V)T o())
11:  if wy is not successful for task parameter | then
12: optimize w for | using policy search RL
13: DB, — DB; U{l; wi}
14: K; — |DB;|

PRSLIGY My W ks

bt

15: W, — [(w1,)7; ... (Wi, )T] e REN
16: Ji «— argmin { By, }, By is computed using (9
Jel .. .K,
17: ®; — ()75 ... (&(k,))T] € REX
(see (7))

18: Vo — (87 &) '®&I'W,
19: Vy «— null(®;)

20: F « diag(cy ... cé‘ e

21: Ay« (VLFVy) " 'VIF(V, - Vy)
22 V:— Vo+VyAx

23: Evaluate the generalization capability of the

transferred model, that is g;(GPDMF;)
24:  endif
25: until The required generalization capability
g:(GPDMP,) is achieved and while J; < J,
26: return V, and DB,

drag, introducing viscous friction and generating differences
between the dynamics of environments.

To compare to a common sim-to-real transfer approach, we
implemented domain randomization (DR) [7] for the ball-in-
cup task. We optimized the policy over randomized environ-
ment dynamics (air density). Results showed that the optimized
policy was successful only in one of five environments. The
results were consistent over different task parameters (string
length). Thus, DR as a sim-to-real transfer method was insuffi-
cient to account for environment differences in our experimental
scenario.

B. Basketball Task

The basketball game consists of a ball holder, a basket, and a
ball; the holder is attached to the end-effector of KUKA LWR
4+ (see Fig. 1) and the basket is set at a certain distance from
the robot. The objective of the game is to throw the ball at the
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'\_‘I'ra.nsfer
Leaming .

Fig.1. Transferring basket ball skill from a simulated environment in MuJoCo
to KUKA LBR 4+.

Transfer |
/learning

Fig. 2. Transferring ball-in-acup skill from a simulated environment in
MuloCo to KUKA LBR 4+.

basket. In this case, the task parameter is the distance of the
basket from the base of the robot. KUKA LBR 4+ has seven
DOF but only joints 2, 3, and 6 were used; the rest of the joints
were kept fixed. Using 20 kernels per DMP, total of N = 60
parameters need to be determined for a task parameter value. To
vary similarity between source and target environments, densi-
ties 1.2, 3.0, 5.0, 6.0, and 7.0 st_ were used for environments
1 =1, ... ,5 respectively.

C. Learning Process

In this section, we give an example how a contextual model
is learned in the source (simulation) environment and how it
is then transferred to the real world, using the ball-in-a-cup as
the example task. The policy is represented as DMPs; thus,
policy parameters are DMPs shape parameters w (see equa-
tion (1)). The task parameter 1 is the string length. Furthermore,
the global model GPDM P maps task parameters 1 to policy
parameters w. Let GPM DP; denote a particular source model
learned under certain conditions.

To learn a source database DB, in the simulated environ-
ment 7 = 2 with air density 1.5 %, we started the incremen-
tal learning process with reasonable initial policy parameters
(DMP shape parameters) for the string length of 34 cm. We
optimized these policy parameters using POWER and added the
resulting policy w#, to the source database D B2, where su-
perscript 2 refers to the index of the source environment and
w; denotes the policy parameters optimized for string length
[ in environment 7. Next, we decreased the string length to 32
cm, which significantly changed the dynamics of the ball. As a
result, we could not re-enact the task successfully using w3,.
The policy was then optimized using POWER using the previous
policy as a starting point, and the resulting policy parameters
w2, was added to DB2. The source database of two MPs,
DB? = {{32;w3,},{34; w3, }}, was then used to determine
the global model G P DM P?, model selection indicating a lin-
ear model. Moving to string length 30 cm, an initial policy was

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 2, APRIL 2019

determined using the contextual model, and after optimization
using POWER, the resulting MP w2, was added to the database.
The contextual model was then re-estimated, where model se-
lection indicated a second order model for GPDM P2.

To study the generalization capability of a contextual model
with respect to the task parameter, we define g, (m) as the range
of task parameter values for which the contextual model m is
successful, that is, the MP generated by the contextual model
leads to a successful re-enactment of the task. For example, if
model GPDM P? is successful for task parameter values | =
29,30, ..., 37 cm, we say that the the generalization capability
of the source model g,(GPDMP?) is 8 cm. The subscript s
in g4 (-) refers to the generalization capability of a model in its
corresponding source environment; whereas, g;(-) denotes the
generalization capability of the model in the target environment.
gs(-) and g;(-) were evaluated experimentally (in simulation or
in real world, respectively) by varying the task parameter one
unit at a time.

To transfer G P DM P2 to the real world, Algorithm 1 was ap-
plied to generate a transferred model GP DM P? as follows. Af-
ter success in using unmodified source policy for string lengths
27 cm to 35 cm (g, (GPDM P?) = 8 cm), w2 failed to repro-
duce the task successfully in the real world for string length 36
cm. The algorithm then optimized the primitive using POWER
and added the resulting MP w1 to target database D B?, super-
script r indicating the real world. Using this primitive in transfer,
the generalization capability of the resulting transferred model
GPDM P? increased to g(GPDM P?) = 10 cm, being suc-
cessful forl = 26,...,36 cm.

D. Hypotheses and Results

We studied 5 hypotheses about the transfer capability:

1) Transferimproves the generalization capability of a source
model beyond its direct use, that is g;(GPDM P}) >
g (GPDMP?).

2) As the source environment becomes more dissimilar
from the target environment, the transfer capability de-
teriorates, that is g¢,(GPDMP;™') < ¢,(GPDMP})
for'i = Ly d.

3) The larger the generalization capability of the source
model, the larger the generalization of the transferred
model.

4) The more samples are used for transferring, the better the
transfer capability will be.

5) Incremental transfer enhances the transfer capability
beyond the non-transfer incremental learning, that is
%(GPDMP}) > g:(GPDMPF}).

1) Direct use of source policy vs transferred one: In order
to study the benefit of transfer, we compared the generaliza-
tion capability of the source GPDM P2 versus the transferred
GPDM P? model. The experiment was repeated twice for the
ball-in-a-cup and 5 times for the basketball task. On average,
7 roll-outs were required for ball-in-a-cup and 15 roll-outs for
basketball to converge, while learning from demonstration re-
quired 100 roll-outs on average. Results shown in Figs. 3a and
3b show consistent increase of generalization capability in both
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Transfer Capability of
Ball-in-a-cup Skill in the Real World

Transfer Capability of
Basketball Skill in the Real World
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Fig. 3. Generalization capability of G PDM P2 (in red) versus G PDM P}?
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Fig.4. The generalization performance in environments characterized by two
context parameters. Note that only the one sample denoted by circle was used
to transfer the skill.

cases, on average 25% increase for ball-in-cup and 32% for bas-
ketball even though only one sample MP was used for transfer.
We also studied the transfer capability for basketball skill with
two task parameters, namely basket height and basket distance.
We achieved a generalization of 2435 cm? in the source envi-
ronment. Direct use of the source model in the target resulted
in a generalization of 1100 cm?. Using a single sample transfer,
the generalization increased to 1690 cm?, a 53% improvement
over the direct use (see Fig. 4).

The experiments demonstrate that the proposed transfer ap-
proach has indeed increased the generalization capability in
the target environment further than the direct use of the source
model indicating its effectiveness.

2) Similarity Between Source and Target Environments: To
study how the level of similarity between the source and target
environment influences the transfer capability, we created vari-
ous source environments by changing their air density in the sim-
ulation. In other words, we managed to make a source environ-
ment more dissimilar from real world (target) by making its air
more dense. Then, we applied 1-sample transfer from these dif-
ferent source environments and evaluated their transfer capabil-
ity. 1-sample transfer refers to transferring a source global model
GPDM P! using only one MP from the target (real-world) en-
vironment. In other words, target database DB; = {{l;w] }}
has only one successful MP, that is | DB;| = 1.

2177
=2 Ball-in-a-cup Skill Basketball Skill
Glabal models Generating 120 Global models Generating
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Fig. 5. Generalization capability of 1-sample transfer from different envi-
ronments for (a) ball-in-a-cup and (b) basketball. Note that g, (GPDM F}) >

a {GPDI&IP:+1 ) for i=2, 3 and 4 and that g, (GPDM P} ) is the largest in
both tasks.

We only considered zero-sample transfer from environment
1 because it has the same air density as the real world. Fur-
thermore, models ¢ = 2, ..., 5 have been trained in environ-
ments : = 2, ..., 5 respectively. We observed that the direct
use of source model GPDM P! (zero-sample transfer) has led
to the best generalization performance in the real world (tar-
get) for both tasks (see red bars in Fig. 5a and Fig. 5b). Zero-
sample transfer from environment 1 has achieved this great
performance because the density of the air in the source en-
vironment is the same as the real world. On the other hand,
1-sample transfer capability has decreased as the density of the
source environment has increased (see Fig. 5). In other words,
9:(GPDMP;) > g,(GPDMP;*') for i=2, 3 and 4. There-
fore, the transfer capability depends on the similarity between
the source and the target environment.

3) Generalization Capability in Source Tasks: We stud-
ied how the generalization performance of the source
model GPDMP! in its corresponding source environment
g:(GPDM P?) influences the generalization capability of the
corresponding transferred model GPDM P} in the target en-
vironment g,(GPDM P}) after transfer with one sample. We
trained three models (¢ = 5, 6, 7) with air density set to 3.0 Ekﬁ' in
environment 5 for ball-in-a-cup task and two models (i = 5, 6)
with air density set to 7.0 Ekﬁ- in environment 5 for basketball.
Because of stochastic nature of the training, the generalization
capabilities of the models differ.

Figure 6 shows the generalization capability of these models
in addition to the transfer capabilities, blue showing the capabil-
ity in the source and red in the target. For the ball-in-a-cup task,
models GPDM P and GPDM P! have 2 cm larger trans-
fer capability than GPDMP? (see Fig. 6a). Meanwhile, their
corresponding source models GPDM PS and GPDM P also
have better generalization capability than G P DM P?. Similarly
in the basketball task, the greater generalization capability of the
source model indicates greater generalization of the correspond-
ing target model.

However, the transfer capability is also influenced by the sim-
ilarity between the source and the target environment as stated
in Sec. IV-D2. For example, in the basketball task (Fig. 6b), al-
though g,(GPDMP3) < g.(GPDMP?), 1-sample transfer
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Fig. 6. Generalization capability of source models GPDM P! in their
corresponding source environment, namely gs(GPDM P!) (represented
by blue bars) versus their 1-sample transfer capability in the real world,
namely g; (GPDM P!") (illustrated by brown bars) for: (a) ball-in-a-cup and
(b) basketball task.
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Fig.7. Transfer capability of 1-sample versus 2-sample transfer from different
environments in the real world for: (a) ball-in-a-cup and (b) basketball skill.

capability of model 6 is not better than model 3; this is mainly
because the corresponding environment for model 3 (environ-
ment 3) is more similar to the real world than the corresponding
environment for model 6 (environment 5). Similar behaviour
can also be seen for the ball-in-a-cup task. This implies that in
order to achieve the best transfer capability, several contextual
models should be trained in the simulation, and the one with the
best source generalization capability be selected as the candi-
date source model for transfer. Furthermore, if affordable, one
should make source environment as similar as possible to the
target to achieve the best transfer capability.

4) 2-Sample Transfer Improves Transfer Capability Over 1-
Sample: We studied whether 2-sample transfer enhances the
transfer capability over 1-sample transfer. In this experiment,
we selected environments 3, 4 and 5 for both basketball and
ball-in-a-cup tasks. It is noteworthy that 2-sample transfer has
enhanced the transfer capability beyond the 1-sample transfer
consistently across all these three environments in both tasks
(compare blue vs brown in Figs. 7a and 7b). Therefore, the
more number of samples used for transferring a source model,
the better transfer capability its corresponding transferred model
have achieved.

Furthermore, It is interesting to note that both 1-sample and 2-
sample transfer capability of the ball-in-a-cup task decreased as
the corresponding source environment became more dissimilar
from the target environment making the transfer more difficult.
On the other hand, 2-sample transfer capability of the basketball
did not decrease unlike the ball-in-a-cup task. However, this was
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Fig.8. Standard non-transfer incremental learning G PDM P! vs incremen-
tal transfer GPDM Pt" from different environments, namely i = 3,4, 5 for:
(a) ball-in-a-cup and (b) basketball skill.

because the velocity limit of the robot has exceeded the safety
threshold for both GPDM P? and GPDM P}, thus limiting
their transfer capability. In fact, GPDMP? could generalize
from task parameter, that is [ = 145 cm up to 180 cm, but the
velocity limit of joint A2 was exceeded by 35 deg/sec when
generalizing to [ = 185 cm. This happened at early part of the
trajectory causing the robot to stop the movement. On the other
hand, GPDM P} could generalize from [ = 165 to 205 cm. It
is noteworthy to mention that exceeding the velocity limit also
occurred for GPDM P} when generalizing to [ = 205 cm, but
the robot stopped only after the ball was released into air.

5) Incremental Transfer vs Standard Incremental Learning:
In this experiment, we have used two samples from the real
world for transferring from a simulated environment. Now, it
is natural to ask whether 2-sample transfer is more useful than
the standard non-transfer incremental learning. Standard incre-
mental learning refers to learning the global model GPDM P!
only using the MPs in the target D B;. In this case, we ignore
the corresponding source database, that is DB’ and the under-
lying regularities which we have captured in the simulation.
On the other hand, incremental transfer combines transfer with
incremental learning and consider both the source D B!, and tar-
get DB} for computing the transferred model GPDMP;. In
other words, we are adapting the underlying regularities of the
source task to fit to the target task. In order to test whether the
information which the source model is providing is beneficial
for the target task, we conducted an experiment where we se-
lected source environments 3, 4 and 5 for both ball-in-a-cup and
basketball tasks.

It is noteworthy that incremental transfer has led to larger
generalization capability throughout these three environments
and in two different tasks (see Fig. 8); thatis, g,(GPDM P}) >
g:(GPDM P!) for environments =3, 4 and 5. This is mainly
because the target database D B! is not capable enough to cap-
ture the required underlying regularities of the target task due to
the limited number of MPs in the target D B;.

V. CONCLUSION

In this letter, we proposed an incremental transfer framework
for transferring a generalizable model from simulation to real
world. The proposed framework consists of incremental learn-
ing of a source model and its incremental transfer to target.
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Incremental learning in source environment results in a source
database of motion primitives that is used to learn a contextual
model capturing the underlying regularities of the simulated
task. The real-world target model is learned incrementally by
combining the contextual source model with one or few samples
from the real world. Experiments demonstrated that learning a
global model in simulation is useful as it leads to a generalizable
model. In fact, using the global model, learning is not required
for every new situation as the model can generalize successfully
to new task parameter values, thus reducing the interaction with
the physical system. We observed that as the target becomes
more dissimilar from the source environment the generalization
capability of the direct use of the source model decreased. This
indicated that the underlying regularities of the source task need
to be adapted to better represent the underlying regularities of
the target task. However, instead of adapting the underlying dy-
namics of the task or system, we proposed a transfer approach
which is agnostic to the dynamics model and sample efficient. A
single sample from target domain increased the generalization
capability by 25-32%. Furthermore, the more samples we used
from the real world, the larger transfer capability was achieved,
indicating that the transferred model represents better the un-
derlying regularities of the target task. As a side effect, the
transferred model makes learning for a new situation easier and
faster as it provides RL with a better initial policy to optimize.

We also compared incremental transfer versus standard incre-
mental learning where a contextual model is trained using only
data from target domain. Experiments revealed that incremen-
tal transfer was superior in terms of generalization capability.
This indicates that the information from the source domain im-
proves generalization even when the dynamics between source
and target differ.

Experiments revealed also that the transfer capability of the
contextual model depends on two additional factors, namely
the generalization capability of the source model and the level
of similarity between the source and target environment. This
implies that due to the stochastic nature of learning, several
contextual models can be trained in simulation and the one with
the best source generalization capability selected as the can-
didate model for transfer. Besides that the source environment
should be made as similar as possible to the target environment
to achieve the best transfer capability.

All things considered, we proposed a novel sample-efficient
transfer approach which is agnostic to the dynamics of a sys-
tem, thus accommodating the unmodeled dynamics. As a future
work, we will study how to speed up incremental transfer and
the incorporation of active learning in the proposed incremental
transfer framework.
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