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Abstract

Learning-based localization methods typically consist
of an offline phase to collect the wireless signal data
to build a statistical model, and an online phase to ap-
ply the model on new data. Many of these methods treat
the training data as if their distributions are fixed across
time. However, due to complex environmental changes
such as temperature changes and multi-path fading ef-
fect, the signals can significantly vary from time to time,
causing the localization accuracy to drop. We address
this problem by introducing a novel semi-supervised
Hidden Markov Model (HMM) totransfer the learned
model from one time period to another. This adaptive
model is referred to as transferred HMM (TrHMM), in
which we aim to transfer as much knowledge from the
old model as possible to reduce the calibration effort for
the current time period. Our contribution is that we can
successfully transfer out-of-date model to fit a current
model through learning, even though the training data
have very different distributions. Experimental results
show that the TrHMM method can greatly improve the
localization accuracy while saving a great amount of the
calibration effort.

Introduction
Recently, indoor localization have attracted more and more
attention in artificial intelligence (AI) research community
(Nguyen, Jordan, and Sinopoli 2005; Ferris, Haehnel, and
Fox 2006; Ferris, Fox, and Lawrence 2007). In general,
learning-based indoor localization systems use Radio Fre-
quency (RF) signal strength for location estimation in two
phases. In theoffline trainingphase, a mobile device mov-
ing around the wireless environment collects multiple wire-
less signals from various access points. Then, these received
signal strength values are used as the training data to build
a mapping function from a signal space to a location space.
In theonline testingphase, real-time received signal strength
(RSS) values collected by a mobile device are tested through
the learned mapping function for location estimation.

Most of the previous works assume that the data distri-
butions keep unchanged over time. However, this assump-
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tion does not hold in a real, complex indoor wireless en-
vironment. For example, subject to reflection, refraction,
diffraction and absorption by obstacles and humans, the sig-
nal propagation may suffer from multi-path fading effect,
and the received signal strength distribution may vary sig-
nificantly from time to time. Figure 1 shows the variation
of RSS distributions at the same location over different time
periods at a day. As a result, the location estimation perfor-
mance can be grossly inaccurate as time elapses.
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Figure 1: RSS variations over time at a fixed location.

However, it is impractical to collect new calibrated data
entirely at each new time period. This implies the need to
design a transfer learning algorithm that can adapt trained
models smoothly under different data distributions from
time to time. In this paper, we propose a semi-supervised
HMM framework for such a transfer learning task. Specif-
ically, we are trying to adapt an out-of-date localization
model while requiring only a small amount of additional cal-
ibration effort for collecting new data.

Figure 2 illustrates our idea. We model the prediction
problem as a classification problem of discrete location
grids. In our experiments we have over 100 grids in the en-
vironment. At time 0, we collect RSS data with location
labels over the whole area. This step is time consuming, but
is done only once. This dataset consists of both the RSS
samples at each location and some unlabelled user traces
collected as the user walks around the environment in ar-
bitrary trajectories. Based on this data, we train an HMM
θ0 = (λ0, A0, π0) for localization at time 0. As we will ex-
plain in detail later,λ0 is the radio map that connects the
RSS values to the locations,A0 is the transition matrix that
reflects the way the user moves, andπ0 is the prior knowl-
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Figure 2: Adapting a localization model from time 0 to time
t using TrHMM. The triangles denote reference point loca-
tions in the area.

edge on the likelihood of where the user is. Note thatλ0 is
changing over time because signal strength varies.A0 can
also be changing over time because at different time periods,
people may have different activities. For example, at noon,
people are more likely to go to carteen for lunch; and during
working hours, people are more likely to move within the
office area. Therefore, bothλ0 andA0 need to be adapted
to λt andAt for a new time periodt. π0 is kept unchanged
over time1, since in reality, the basic human behavior does
not change dramatically. For example, a professor usually
stays at his office longer than his walking in a corridor.

In TrHMM, we carry out three steps for transferring with
respect to the three HMM model parameters(λ0, A0, π0):

• At time 0, we select some locations to place sniffing sen-
sors to collect up-to-date RSS values. We call such set of
selected locations as ”reference points”. We then learn the
regression weightsα among the RSS data from the few
reference points and the remaining non-reference points,
in order to transfer the radio map from time 0 to timet.

• We note that even though the data distributions change,
the relationship between neighboring locations do not
change much. This relationship can be used as a bridge
for transferring the knowledge over radio map change.
Therefore, by introducing a constraint that the regression
weights remain static, we build a radio mapλt at each
non-reference point location at timet by collecting up-to-
date data on the few referent points (shown as Triangles
in Figure 2) with known locations.

• At time t, some unlabeled user traces are collected by sim-
ply walking around the environment. Since these traces
data encode the knowledge of current time period data
distribution and also the user transition behaviors, they
are further used to transfer the localization model toλnew

t
andAt by an expectation-maximization (EM) algorithm.

Note that our choice of using HMM model is motivated
by the following considerations. Compared with other local-
ization models, HMM can utilize both single RSS samples
and user trajectories in the form of sequential knowledge.
Therefore, we may be able to transfer more information for

1However, a changingπ0 can be addressed in an extension of
this work.

the new time periods. In the experimental section, we verify
our algorithm through some real-world data and show that,
compared with state-of-art methods, our TrHMM algorithm
can greatly improve the localization accuracy under different
data distributions while saving a large amount of calibration
efforts.

Related work
Generally, localization methods fall into two categories:
propagation-model based and machine-learning based.
Propagation-model based techniques rely on radio propaga-
tion models which use triangulation techniques for location
estimation (Savvides, Han, and Strivastava 2001). Learning-
based techniques try to handle the uncertainty in wireless en-
vironments and use statistical learning such as KNN (Bahl
and Padmanabhan 2000), kernel learning (Nguyen, Jordan,
and Sinopoli 2005) and Gaussian process (Ferris, Haehnel,
and Fox 2006; Ferris, Fox, and Lawrence 2007). There are
few works on studying the data distribution variations in
wireless indoor localization.LANDMARC(Ni et al. 2003)
andLEASE(Krishnan et al. 2004) utilized a large number
of hardware equipments, including stationary emitters and
sniffers, to obtain up-to-date RSS values for updating the
radio maps. (Pan et al. 2007) used multi-view manifold
learning to constrain the agreements between different dis-
tributions. However, in practice, many of these works cannot
work well due to different model constraints.

Recently, there has been a growing interest in transfer
learning. Several researchers have explored specific aspects
of transfer learning in natural language and image process-
ing areas (Thrun and Mitchell 1995; Ben-David and Schuller
2003). (DauméIII and Marcu 2006) investigated how to train
a general model with data from both a source domain and a
target domain for a natural language mention-type classifi-
cation task. (Daumé III 2007) applied redundant copies of
features to facilitate the transfer of knowledge. In the area
of machine learning based localization, few work on transfer
learning has been done before.

Preliminaries of Hidden Markov Models
Hidden Markov Model is a well known technique in pattern
recognition and has a wide range of applications (Rabiner
1990; Bui, Venkatesh, and West 2002). In indoor localiza-
tion, HMM can be used to model the user traces by treating
user’s locations as hidden states and the signal strength mea-
surements as observations (Ladd et al. 2002). As shown in
Figure 3, an HMM for user-trace modeling is defined as a
quintuple(L, O, λ, A, π), whereL is a location-state space
{l1, l2, ..., ln}, and eachli is explained as a discrete grid cell
of the physical locations withx− andy− coordinates:li =
(xi, yi). O is an observation space{o1,o2, ...,om}, and
eachoj is a set ofk signal strength measurements received
from k different Access Points (APs):oj = (s1, s2, ..., sk).
λ is a radio map{P (oj|li) : oj ∈ O, li ∈ L} that gives the
conditional probability of obtaining a signal strength mea-
surementoj at locationli. A is a location-state transition
matrix{P (lj|li) : li, lj ∈ L}; it encodes the probability for
a user moving from one locationli to another locationlj . π
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is an initial location-state distribution{P (li), li ∈ L} with
eachP (li) encoding the prior knowledge about where a user
initially may be.

... ...

l1 l2 l3 lt

O1 O2 O3 Ot

P(l1) P(l1|l2) P(l2|l3)

P(o2|l2)P(o1|l1)

Figure 3: Hidden Markov Model.

In the offline training phase, a set of labeled tracesT =
{(tri, qi) : i = 1, ..., N} is collected, with each user trace
tri = (o1,o2, ...,o|t|) and the corresponding location se-
quenceqi = (l1, l2, ..., l|t|). Here,oj ∈ O and lj ∈ L.
Then, these labeled traces are used to train an HMM. We
denote an HMM’s parameters asθ = (λ, A, π). The radio
mapλ can be obtained by modeling the conditional proba-
bility P (oj |li) as a Gaussian distribution:

P (oj |li) =
1

(2π)k/2|Σ|1/2
e−

1

2
(oj−µ)T Σ(oj−µ), (1)

whereµ is the mean vector of the observations, andΣ is the
covariance matrix. By assuming the independence among
the APs (Ladd et al. 2002), we can simplifyΣ as a diagonal
matrix. The transition matrixA = {P (li+1|li)} encodes the
probability for a mobile device to move from one locationli
to another locationli+1. It can be easily obtained from the
labeled traces by counting the transition statistics of each
location to all possible next locations. In an indoor environ-
ment, a mobile device carried by a human being usually does
not move too fast, which allows us to constrain the transition
probabilityP (li+1|li) to be zero ifli+1 is more than a few
meters away fromli; in our experiments we set the thresh-
old as three meters. The initial location-state distributionπ
can be derived by our prior knowledge. Generally, it is set
by a uniform distribution over all the locations, since a user
can start at will from any location. This assumption can be
revised easily if we have more prior knowledge about user
location patterns.

In the online test phase, given a model parameterθ and an
observed user tracetr = (o1,o2, ...,o|tr|), the well-known
Viterbi algorithm(Rabiner 1990) can then be used to infer
the most probable hidden state sequenceq.

TrHMM: Transferred Hidden Markov Model
As mentioned above, we use three steps to transfer the HMM
for the new time period.

Applying regression analysis at time 0
Our first step is to transfer the collected radio mapλ0 at
time 0 to another timet. To do this, we propose to model
the signal variation with time. Note that in a wireless in-
door environment, signals over different locations are corre-
lated,e.g., when the signal on a locationl1 increases with

time, the signal on its neighboring locationl2 is also likely
to increase. Motivated by this observation, we apply a re-
gression model to learn the temporal predictive correlations
between the RSS values by sparsely located reference points
and that by the mobile device. Specifically, we apply aMul-
tiple Linear Regressionmodel on the data at time 0 over
all the location grids, and derive the regression coefficients
α

k = {αk
ij}, which encode the signal correlations between

reference point locations{lc} and one non-reference point
locationk. In more detail, we have:

sk
j = αk

0j + αk
1jr1j + ... + αk

njrnj + ǫj (2)

wheresk
j is the signal strength received by the mobile device

at locationk from jth AP, αk
ij : 1 ≤ i ≤ n is the regression

weights forjth AP signal at locationk, andrij : 1 ≤ i ≤ n

is the signal strength received byith reference point location
from jth AP.

Rebuilding the radio map at time t

After learning the regression weightαk for each non-
reference point locationk, we can use them to rebuild the
radio map at timet. This is done by updating non-reference
point locations’ signal strengths with the newly collected
signal strengths on the reference point locations{lc}, whose
locations are known beforehand. Considering that there may
be a possible shift for the regression parameters over time,
we add a tradeoff constraint to derive the newλt:

µt = β · µ0 + (1 − β) · µreg
t (3)

Σt = β ·
[

Σ0 + (µt − µ0) (µt − µ0)
T
]

+(1 − β) ·
[

Σ
reg
t + (µt − µ

reg
t ) (µt − µ

reg
t )

T
] (4)

whereµ is the mean vector of Gaussian output for each
location,Σ is the covariance matrix. We balance the re-
gressed radio mapλreg

t = (µreg
t ,Σ

reg
t ) and the base radio

mapλ0 = (µ0,Σ0) by introducing a parameterβ ∈ [0, 1].

Using EM on unlabeled traces at time t

In previous steps, we first trained an HMMθ0 =
(λ0, A0, π0) at time 0 as the base model. Then, in another
time t, we improveλ0 by applying the regression analysis,
and obtain a new HMMθt = (λt, A0, π0). Now we will try
to further incorporate some unlabeled trace data to improve
the derivedθt. We achieve this by applying theexpectation-
maximization(EM) algorithm.

Given a set of unlabeled tracesT = {(tri, qi)} , EM is
used to adjust the model parametersθt = (λt, A0, π0) it-
eratively to find aθ∗ such that the likelihoodP (T |θ∗) is
maximized. Recall that heretri is a sequence of RSS obser-
vations on a tracei, andqi are its corresponding locations.
Therefore, maximizing the likelihoodP (T |θ∗) is to adapt
the modelθt to best fit the up-to-date unlabeled traces data.
By using such adaptation, the HMM can be more accurate
in location estimation for the new time periodt’s data. The
EM algorithm has two steps in each iteration: an Expecta-
tion step (E-step) and a Maximization step (M-step). For

1423



thek-iteration, in E-step, we calculate the conditional prob-
ability P (q|tr, θk), i.e. location estimationsq given the RSS
observationstr, from the unlabeled trace dataT by using
theθk from last iteration’s M-step:

P (q|tr, θk) =
P (tr, q|θk)

P (tr|θk)
=

P (tr|q, θk)P (q|θk)
∑

q P (tr|q, θk)P (q|θk)
(5)

whereP (tr|q, θk) =
∏|tr|

n=1 P (on|ln, θk) is the likelihood
of observing a tracetr given the mobile device’s location
sequence isq. Notice that this term can be calculated from
the last M-stepk’s radio mapλk, since λk already en-
codes the conditional probability ofP (on|ln). The term
P (q|θk) = P (l1|θk) ×

∏|tr|
n=1 P (ln|ln−1, θk) is the prob-

ability of q being location sequence in a user trace. This
can be calculated from prior knowledgeπ0 and transition
matrix Ak, becauseπ0 encodes the probabilities ofP (ln)
andAk encodes the conditional probabilitiesP (ln|ln−1) for
differentn’s. In the M-step, an expected loglikelihood (i.e.
Q-function) is maximized over the parameterθ based on the
E-step. The parameterθk is then updated to obtainθk+1:

θk+1 = arg max
θ

Q(θ, θk)

= argmax
θ

∑

tr∈T

∑

q
P (q|tr, θk) log P (tr, q|θ)

(6)

In particular, by following the derivation of (Bilmes
1997), we show the update for each parameter inθk+1 =
(λk+1, Ak+1, π). Note that sinceπ is the prior knowledge
of the user locations, it’s set to be fixed and not involved in
EM. Specifically, the radio mapλk+1 = {P (oj|li)

(k+1) :
oj ∈ O, li ∈ L} is shown to be updated by:

µ
(k+1)
li

=

∑

tr∈T

∑|tr|
n=1 o

nP (ln = li|tr, θ
k)

∑

tr∈T

∑|tr|
n=1 P (ln = li|tr, θk)

Σ
(k+1)
li

=

∑

tr∈T

|tr|
∑

n=1
(on − µli)(o

n − µli)
T P (ln = li|tr, θ

k)

∑

tr∈T

∑|tr|
n=1 P (ln = li|tr, θk)

(7)
And the transition matrixAk+1 = {P (lj|li)

(k+1) :
li, lj ∈ L} is updated as:

P (lj |li)
(k+1) =

∑

tr∈T

∑|tr|−1
n=1 P (ln = li, l

n+1 = lj |tr, θ
k)

∑

tr∈T

∑|tr|−1
n=1 P (ln = li|tr, θk)

(8)
The EM algorithm guarantees the likelihood

P (T |θk+1) ≥ P (T |θk) and the parameterθ eventu-
ally converges to a stableθ∗. The new HMM is finally
updated asθnew

t = (λnew
t , Anew

t , π0). In the online phase at
time t, the derived parameters inθnew

t are used to infer the
most probable location sequence for the queried trace based
on Viterbi algorithm (Bilmes 1997), given the obtained RSS
values. We summarize our TrHMM in Algorithm 1.

Experiments
In this section, we empirically study the benefits of trans-
ferring HMM for adapting indoor localization. Our exper-
iments were set up in an academic building equipped with

Algorithm 1 Transferred Hidden Markov Model (TrHMM)
Input: Labeled traces at time 0, labeled RSS samples col-
lected from reference points and unlabeled traces at timet
Output: Adapted modelθnew

t = (λnew
t , Anew

t , π0)
At time 0,

1. Build an HMM base modelθ0 = (λ0, A0, π0) using la-
beled traces from time 0;

2. Learn the signal regression weightsαk among referent
points and the rest, using labeled trace data from time 0;

At time t,

1. Rebuild the radio map using the labeled RSS samples
collected from reference points at timet, and update the
model toθt = (λt, A0, π0);

2. Apply EM to improveθt asθnew
t = (λnew

t , Anew
t , π0), by

using unlabeled traces from timet;

3. Return the HMM modelθnew
t = (λnew

t , Anew
t , π0).

802.11g wireless network. The area is64m × 50m, includ-
ing five hallways. It’s discretized into a space of 118 grids,
each measuring1.5m× 1.5m. Our experimental evaluation
method is based on classification accuracy, which is calcu-
lated as the percentage of correct predictions over all pre-
dictions. The problem is difficult because a random guess
would result in less than 1% in accuracy.

We collected calibration data over three time periods:
08:26am, 04:21pm and 07:10pm. We use 08:26am data to
build the base model and carry out adaptation on other time
periods. 60 samples were collected at each grid. We ran-
domly splitted 2/3 of the data as training and 1/3 as testing.
Traces for building HMM were also collected at each time
period. For training, we have 30 labeled traces for 08:26am
data, each having 20 samples on average. In the remain-
ing time periods, we obtained 30 unlabeled traces, each hav-
ing 250 samples for training. For testing, we have 20 traces
for each time period, each having 250 samples on average.
In the experiments,β is set as 0.4. We tested differentβ-
values2, and found that for different time periods, the per-
formances with differentβ-values are similar, andβ = 0.4
gives roughly the best results. This coincides with our in-
tuition of allocating around half the weight to the regressed
radio map and old radio map in Equation (3).

Impact of distribution variation
We test the localization accuracy over different data distri-
butions without adaptation. We use the 08:26am dataset to
build the base modelθ0, and then applyθ0 to predict the la-
bels for test data traces of the three time periods. We use
10% of locations as reference points and 5 unlabeled traces
for adaptation. As shown in Figure 4, the localization ac-
curacy of 08:26am data is the highest, at 92%3. This high

2We do not provide the results here due to space limit.
3The error distance is set to be 3 meters, which means the pre-

dictions within 3 meters of the true location are all counted as cor-
rect predictions.
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accuracy is due to the fact that the test data follow the same
distribution with the training data. As time goes by, the
signals become more noisy and changing, and the perfor-
mance drops. At 04:21pm, the busiest time in the work area,
the noise level reaches the highest because of many people
walking around at that time. During this period, the accu-
racy thus drops to the lowest point to about 68%, which is
unsatisfactory. This observation implies a need for transfer-
ring the localization model over different data distributions.
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Figure 4: Use 08:26am model to predict others.

Impact of reference points
We next study the impact of using different number of refer-
ence points,i.e. different amount of labeled data, for adap-
tation. We compare TrHMM with three baselines using ref-
erence points for adaptation, including RADAR (Bahl and
Padmanabhan 2000), LANDMARC (Ni et al. 2003) and
an recent adaptation method, LeManCoR (Pan et al. 2007).
RADAR is a K-nearest-neighbor method. The number of
nearest neighbors is set to be five, as tested in (Bahl and
Padmanabhan 2000). LANDMARC is a nearest-neighbor
weighting based method. In this experiment, the number
of nearest neighbors is set to two, since only few reference
points are sparsely deployed in the environment. LeMan-
CoR is a semi-supervised manifold method. It treats differ-
ent time as multiple views and uses a multi-view learning
framework to constraint the predictions on reference points
to be consistent. In this experiment, we use 5 unlabeled
traces for both TrHMM and LeManCoR. We run the ex-
periments for 5 times and report the error bar charts. As
shown in Figures 5(a) and 5(b), our TrHMM consistently
outperforms the other methods over time, especially when
the number of reference points is small. For RADAR and
LANDMARC, they can only work when the environment
is densely installed with reference points. For LeManCoR,
as discussed in (Pan et al. 2007), it cannot benefit from ei-
ther the increasing number of reference points or the trace
sequential information, so our TrHMM method can outper-
form it consistently.

Impact of unlabeled data
We also study the impact of using different number of unla-
beled traces for adaptation. We compare TrHMM with two
baseline methods. The first method is unsupervised HMM

(UnHMM) (Chai and Yang 2005), which only uses unla-
beled traces. UnHMM builds a base modelθ0, and then
directly use EM to iteratively update the modelθ0 using
the unlabeled traces. The second method is LeManCoR,
which uses unlabeled data for manifold regularization in
adaptation. We use 10% of locations as reference points for
both TrHMM and LeManCoR. We run the experiments for
5 times and report the error bar chart. As shown in Fig-
ures 5(c) and 5(d), our TrHMM consistently outperforms
the baselines. Our TrHMM can outperform UnHMM be-
cause TrHMM carefully models the signal variation over
time while UnHMM not. Our method also outperforms Le-
ManCoR because TrHMM better models the signal varia-
tions and also uses the sequential information in traces.

Sensitivity to error distance
We study the sensitivity of TrHMM to different error dis-
tances. In experiment, 10% locations were used as reference
points for collecting labeled data and 5 traces were used for
unlabeled data. We run the experiments for 5 times and
report the error bar charts. As shown in Figures 5(e) and
5(f), our TrHMM method is insensitive to the error distance
in calculating the localization accuracy4. In addition, com-
pared to other localization methods, our TrHMM can work
much better even when the error distance is small. Both of
these observations testifies our TrHMM method can provide
accurate location estimation with small calibration effort.

Conclusions and Future Work
In this paper, we study the problem of transfer learning us-
ing a semi-supervised HMM for adaptive localization in a
dynamic indoor environment. We carefully model the sig-
nal variation with time and employ a semi-supervised HMM
framework, which appropriately combine both labeled data
and unlabeled data together for model adaptation. By ap-
plying it to the real-world indoor localization, we show our
TrHMM algorithm can greatly improve the accuracy while
saving a great amount of the calibration efforts, even when
the data distribution is a function of time. Our experiments
confirm that our TrHMM can successfully transfer the out-
of-date model to current time periods.

In the future, we plan to extend this algorithm to online
setting such that the system can make predictions while it
collects new trace data. Besides, we would consider how to
optimally place the reference points for adaptation. We are
also interested in incorporating transfer learning with Gaus-
sian process for localization.
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(e) Sensitivity to error distance for 04:21pm
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(f) Sensitivity to error distance for 07:10pm

Figure 5: Experimental results
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