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Abstract— In the past decade, the development of transform
coding techniques has achieved significant progress and several
advanced transform tools have been adopted in the new gen-
eration Versatile Video Coding (VVC) standard. In this paper,
a brief history of transform coding development during VVC
standardization is presented, and the transform coding tools in
the VVC standard are described in detail together with their
initial design, incremental improvements and implementation
aspects. To improve coding efficiency, four new transform coding
techniques are introduced in VVC, which are namely Multiple
Transform Selection (MTS), Low-Frequency Non-separable Sec-
ondary Transform (LFNST) and Sub-Block Transform (SBT),
as well as a large (64-point) type-2 DCT. The experimental
results on VVC reference software (VTM-9.0) show that average
4.5% and 3.6% overall coding gain can be achieved by the
VVC transform coding tools for All Intra and Random Access
configurations, respectively.

Index Terms— Versatile video coding (VVC), joint video explo-
ration team (JVET), transform coding, MTS, LFNST, SBT, VVC
test model (VTM), joint exploration model (JEM).

I. INTRODUCTION

TRANSFORM coding has been an essential part of many

practical video codecs for achieving a high compression

ratio, and it has been successfully adopted in multiple video

coding standards, e.g., H.261 [1], MPEG-1 [2], MPEG-2 [3],

H.263 [4], H.264/AVC [5] and High-Efficiency Video Coding

(HEVC) [6]. The development of transform coding in the

past several decades was based on the traditional DCT, more

specifically, type-2 DCT (DCT-2) [7], due to its reasonable

tradeoff between coding performance and complexity. Under

the first-order Markov conditions, which efficiently model

the characteristics of natural imagery sources, it has been

mathematically proved that DCT-2 approximates the optimal

data-driven Karhunen-Loève transform (KLT) [8]. Fast

method for implementing DCT-2 was first proposed in [9]
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and further developed in the following decades. In H.264/AVC,

a low-complexity 4 × 4 transform [10] is adopted featured by

multiplier-less calculation, fixed-point and 16-bit intermediate

data representation. In addition, a secondary 4 × 4 Hadamard

transform can be applied in H.264/AVC to further decorrelate

DC coefficients of 4 × 4 transform block. In HEVC,

the transform size of DCT-2 is further extended to 8 × 8,

16 × 16 and 32 × 32 with fixed-point transform kernels, and

the implementations can be done using either direct matrix

multiplication or a partial butterfly fast method. In addition,

16-bit intermediate data representation and arithmetic is kept

in the HEVC transform design [11]. Moreover, in HEVC,

a 4 × 4 DST-7 is applied for 4 × 4 intra prediction residuals.

Further technical advances on top of DCT-2 are mainly

reflected by the extended transform sizes and different designs

of integer DCT-2 kernels. In [12], a directional extension of

conventional DCT-2 was proposed, which employs two 1-D

DCTs along directional directions rather than the horizontal

and vertical directions. In recent years, driven by the

drastically increased traffic of multimedia communications

and new systems supporting more computational power,

extensive efforts have been made to seek for higher coding

performance at an increased yet feasible complexity cost.

From the industrial standardization side, the Joint Video

Exploration Team (JVET) was created in 2015 as a joint

effort of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG

11 to explore advanced video coding technologies beyond

HEVC. In 2018, after receiving 23 responses to the Call for

Proposal (CfP) on next-generation video coding, the Joint

Video Experts Team, also known as JVET, was created that

officially launched the standardization of the new generation

Versatile Video Coding (VVC) [13]. After two years of

development, VVC has been finalized in July 2020 with a

substantial objective coding gain over its predecessor, HEVC.

This paper provides a history of the tool development in

transform coding and presents how these tools are shaped

into their final designs in VVC. Among all the coding tools

included in VVC, the major advances in transform cod-

ing techniques can be categorized into primary transform,

secondary transform and transform partitioning, which are

summarized in the following three subsections.

The remainder of this paper is organized as follows.

In Section II, further development of transform coding beyond

HEVC is reviewed in three categories, including 1) primary

transform, 2) secondary transform and 3) transform partition-

ing. In Section III, the transform design in VVC is described

with technical details, and the encoder implementations on
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top of version 9.0 of the VVC reference software called VVC

Test Model (VTM) are described in Section IV. Complexity

analysis and experimental results are discussed in Section V

and Section VI, respectively, and Section VII concludes this

paper.

II. REVIEW OF TRANSFORM CODING TOOLS

BEYOND HEVC

A. Primary Transform

The fixed transform scheme based on DCT-2 has been

widely used in the past video coding standards. However,

due to diverse characteristics of image/video content, it is

not always efficient to use a single transform kernel for

all prediction residuals. In [14], it is proposed to use

sine and cosine transforms alternatively for image coding.

In [15], mode-dependent directional transforms (MDDTs) are

proposed for intra prediction residuals, wherein hard-coded

KLTs are selected as the horizontal and vertical transform

based on intra prediction mode. Moreover, with a first-order

Gauss-Markov model for image pixels, it was further mathe-

matically proved in [16] that, the optimal horizontal (vertical)

transform applied on the intra prediction residual of horizon-

tal (vertical) prediction mode is actually DST-7. In HEVC,

a 4×4 DST-7 is applied for 4×4 intra prediction residuals, and

better coding performance is achieved over DCT-2. Further-

more, to overcome the limitation of using single fixed kernel,

transform signaling has been proposed, which allows multiple

options of transform kernels, so that an encoder can choose a

transform on a per block basis and signal such that selection in

the bitstream. In such signaling schemes, transform candidates

can be derived by off-line training or selected from a group

of mathematically defined transforms, such as the DCT/DST

families [17].

Multiple transform selection with transform signalling was

proposed in [18] as known as rate-distortion optimized trans-

form (RDOT), which applies multiple Karhunen-Loève trans-

forms (KLTs) and the transform selection is rate-distortion

optimized. Alternative schemes that apply DCT/DST as the

transform candidates are also proposed in [19]–[21]. More

specifically, in [20], an Enhanced Multiple Transform (EMT)

scheme was proposed and included in the Joint Exploration

Model, which applies intra prediction mode dependent trans-

form sets with each set consist of multiple candidates of

transform kernels. Moreover, multiple non-separable transform

schemes have also been proposed in [22], [23]. In [24],

a row-column transform scheme is proposed, which approxi-

mates non-separable KLT using a separable transform.

B. Secondary Transform

Secondary transform refers to an additional transform

process that follows the primary transform. In H.264/AVC,

a 16×16 transform is implemented as sixteen 4×4 transforms,

and the DC coefficients of each 4 × 4 transform block are

combined as one 4 × 4 block and further processed using a

secondary Hadamard transform [5]. During the development

of HEVC, a secondary rotational transform (ROT) [25] was

proposed on top of DCT, with kernels featured by sparse trans-

form matrices constructed using pre-defined Givens rotations.

Note that ROT is still a separable transform and the coding

gain overlaps with the DST-7. In HEVC, 4×4 DST-7 has been

adopted for intra coding with a simpler design.

Non-separable transform schemes have been proposed as a

secondary transform [26], namely Non-Separable Secondary

Transform (NSST) as either a direct matrix multiply [26] or

Hypercube-Givens Transform (HyGT) [27] where transform

could be represented as multi-layer transforms by cascaded

Givens rotations in a hypercube arrangement. The major

benefit of applying non-separable transform as a secondary

transform is to achieve a better tradeoff between coding effi-

ciency and complexity. With NSST, a non-separable secondary

transform is performed on the lower-frequency coefficients so

that computational complexity for non-separable transform is

largely reduced. Besides, HyGT provides parallel, multi-stage

decompositions for non-separable transforms with lower com-

putational complexity and memory cost, yet it introduces

additional latency due to its stage-wise implementations.

C. Transform Partitioning

Transform coding is applied to reduce the statistical depen-

dency among residual samples. However, when the residual

samples are distributed locally, applying a larger transform

may create high frequencies that can be expensive for entropy

coding. To address this issue, transform partitioning schemes

have been proposed. In [28], adaptive block-size transforms

(ABT) was proposed, and the basic idea of inter ABT is to

align the block size used for transform coding of the prediction

error to the block size used for motion compensation In

HEVC, a quadtree partitioning scheme has been applied for

transform [29], and a spatially varying transform (SVT) was

proposed in [30] to adapt the position and size of transform

with localized residual samples.

III. TRANSFORM DESIGN IN VVC

Transform design in VVC mainly includes three aspects:

the primary transform, secondary transform and transform

partitioning. In this section, the new transform coding tools in

VVC are described with respect to each of the three aspects.

In this paper, an N-point transform refers to a one-dimensional

transform that can be applied on an N-point input vector,

which is done using a transform matrix of size N by N.

Several design aspects of HEVC transform coding are

inherited in VVC, including: 1) fixed-point operations are used

and intermediate data representation and arithmetic is kept to

be 16-bit, 2) the transform process can be either implemented

using direct matrix multiply or a fast method, e.g., partial

butterfly, 3) the transform kernels are designed by scaling the

transform basis with 64
√

N and rounding to the nearest integer

with minor adjustment, where the norm of transform basis is

1 and N is the transform size, 4) smaller DCT-2 is part of

the larger DCT-2, so all DCT-2 kernels are embedded in the

64 × 64 DCT-2 transform kernel. Although up to 128 × 128

coding block sizes can be applied in VVC, the transform

coding is designed to be compatible with the virtual pipeline
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data units (VPDUs) implementation. In hardware decoding

process, VPDUs are non-overlapping 64 × 64 blocks and

consecutive VPDUs are processed in parallel by multiple

pipelines.

A. Primary Transform

1) Transform Kernels: In VVC, in addition to the con-

ventional type-2 DCT (DCT-2), alternate transform types,

including type-7 DST (DST-7) and type-8 DCT (DCT-8),

are employed. The basic functions of DST-7 and DCT-8 are

formulated in below Equation (1) and (2), respectively.

Ti ( j) =
�

4

2N + 1
· sin

�

π · (2i + 1) · ( j + 1)

2N + 1

�

, (1)

Ti ( j) =
�

4

2N + 1
· cos

�

π · (2i + 1) · (2 j + 1)

4N + 2

�

, (2)

where N is the transform size, i = 0, 1, . . . , N−1 refers to the

element index of the output vector, and j = 0, 1, . . . , N − 1

refers to the element index of the input vector. For uneven

distribution of residual, DST-7 and DCT-8 are usually more

efficient than DCT-2 since their basis functions are more

aligned with such statistics [20]. The size of DCT-2 ranges

from 4-point to 64-point, and DST-7/DCT-8 ranges from

4-point to 32-point. It is noted that the transform bases of

DST-7 and DCT-8 are flipped versions of each other with

alternating sign changes.

The transform kernels defined in VVC are composed of

8-bit signed integers and all the primary transform kernels

in HEVC, including 4-point DST-7 and DCT-2 ranging from

4-point to 32-point, are kept unchanged. The additional integer

transform kernels defined in VVC are derived by scaling the

floating-point transform kernel with 64
√

N , where N is the

transform size, and further adjusted by ±1 after rounding.

The adjustment of 64-point DCT-2 is performed in a way

that all the DCT-2 kernel defined in HEVC are included,

partial butterfly [11] is supported and kernel elements are

optimized towards better orthogonality. The adjustment of

kernel element is performed with the following criteria: 1) to

align with the HEVC core transform design that smaller

DCT-2 can be extracted as part of the larger DCT-2, only

32 elements can be adjusted and the remaining 33 elements

are kept same as HEVC to generate smaller DCT-2 from

4 × 4 to 32 × 32, 2) the orthogonality is optimized such that

K × K T is as close as possible to the identity matrix, wherein

K is the transform matrix, 3) the adjustment can be done

only with offset −1 and +1 to ensure that the decorrelation

capability of adjusted transform kernel approximates DCT-

2 efficiently. The adjustment of DST-7/DCT-8 kernels are

performed to ensure the three notable features associated with

DST-7/DCT-8, as illustrated in Figure 1, including feature

1) repetitive segments {b, f , i , l, o} in some bases, 2) unique

coefficient value in one basis and 3) mathematical relationship

among coefficients in a tuple with fixed pattern in some

bases, as pointed out in [32], [33], are kept in the integer

kernel with optimized orthogonality. Specially, for feature 3),

Fig. 1. Illustration of three features in the 16 × 16 DST-7 transform matrix
of VVC.

the following formulation is supported:

a + j = l

b + i = m

c + h = n

d + g = o

e + f = p (3)

To align the worst-case multiplications per coefficient with

HEVC, for 64-point DCT-2 and 32-point DST-7/DCT-8, only

the first 32 and 16 low-frequency coefficients are kept, respec-

tively, and the high frequency coefficients are zeroed out,

which is also considered in last coefficient position coding and

coefficient group scanning [31]. More details will be discussed

in the Section V. Moreover, based on the three features of the

DST-7/DCT-8 kernels, a fast transform scheme with support of

dual implementations is included in VVC [32], [33]. In this

way, the fast algorithm and direct matrix multiply produce

identical results. Meanwhile, the fast method achieves around

50% multiplication reduction for 16-point DST-7/DCT-8 [32].

In VVC, the primary transform is specified as separable

transform. Five different combinations of transform types are

supported, including the conventional (DCT-2, DCT-2) and

four new MTS mode combinations, i.e., (DST-7, DST-7),

(DST-7, DCT-8), (DCT-8, DST-7) and (DCT-8, DCT-8). The

explicit combination between DCT-2 and DST-7 (or DCT-8)

with extra signalling overhead is not supported due to the

limited coding gain and increased complexity for introducing

extra encoder search and additional transform combinations.

In VVC, DST-7 and DCT-8 can be applied to the luma blocks

in several coding tools, including Multiple Transform Selec-

tion (MTS), Intra Sub-Partitioning (ISP) [34] and Sub-block

Transform (SBT), which will be detailed in the following

subsection related to transform type selection. For chroma

coding, the potential benefits of DST-7/DCT-8 have also been

studied during the development of VVC. However, since

chroma components typically present smooth textures, where

DCT-2 is sufficient, the coding gain versus complexity tradeoff

is less beneficial.

2) Multiple Transform Selection: In VVC, there are two

variants of Multiple Transform Selection (MTS), called
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TABLE I

SPECIFICATION OF TRANSFORM KERNELS DEPENDING ON THE SYNTAX

TABLE II

SUMMARY OF THE COMBINATIONS OF DIFFERENT TOOLS

explicit and implicit MTS. The explicit MTS can be applied

to both intra and inter coded blocks, while the implicit MTS

can be only used for intra coded blocks. In explicit MTS,

the choice of DST-7/DCT-8 is indicated by explicit signaling

of the transform type. In implicit MTS, the transform type

are selected based on coded information that is known to

both the encoder and decoder, and transform type signalling

is not needed. In the Sequence Parameter Set (SPS), there

are three flags controlling MTS operation. The first is used

to enable MTS itself. The second is used to select between

explicit or implicit intra MTS and the last is used to enable

explicit inter MTS. Thus, with the latter two flags, four MTS

mode combinations need to be selected if MTS is enabled.

In explicit MTS, the index mts_idx is signaled at the end of

Coding Unit (CU) level syntax to indicate the transform type

for horizontal transform (trTypeHor) and vertical transform

(trTypeVer). The value of mts_idx ranges from 0 to 4, and the

mapping to the transform type is specified in Table I.

The MTS index, denoted as mts_idx, is signalled only when

nonzero coefficients for luma block exist beyond the DC

coefficient and nonzero coefficient is not identified outside the

top-left 16 × 16 coefficients region, since DST-7/DCT-8 has

only an impact on the lowest 16 × 16 frequency coefficients.

In other words, identification of a nonzero coefficient beyond

the lowest 16×16 coefficients means DST-7/DCT-8 not being

applied. In addition, when several tools are enabled, includ-

ing ISP, SBT and Low-Frequency Non-Separable Transform

(LFNST), mts_idx is not signaled [35] and transform type

is inferred as either DCT-2 or a pre-defined transform type.

In Table II, the combinations of different tools, including MTS,

LFNST, MIP, ISP and SBT, have summarized, where “Y/N”

means the associated coding tools in the row and column

can/cannot be combined, and “N/A” means the associated

combination is not applicable.

The initial design of implicit MTS was first proposed

in [36] where the transform types were derived based on

the shape of the coded block. The transform type selection

condition has later been simplified in [37] and led to the final

design of implicit MTS in VVC. That is, DST-7 is applied

as the horizontal (vertical) transform if block width (height)

Fig. 2. Examples of transform type selection for vertical and horizontal
transforms based on the implicit MTS in VVC.

is smaller than 32. Otherwise, DCT-2 is used. This same rule

is also used to derive transforms for ISP coded blocks. In

Figure 2, examples of implicit MTS derivation are illustrated

for different block sizes. The implicit MTS design in VVC can

be viewed as an extension of the HEVC transform derivation

for intra prediction residual, by extending the applicable block

size for DST-7 from 4 × 4 to 16 × 16 (inclusive) and other

rectangular block sizes in between. Other than the restrictions

based on block sizes, implicit transform can be applied only

when LFNST and Matrix-based Intra Prediction (MIP) [34]

indices are set to zero [38].

The benefits of implicit MTS are summarized as follows: (1)

Although implicit MTS provides less coding gain as compared

to explicit MTS, it provides significant coding gain over DCT-

2 without any encoder search. This feature is appealing for

simple encoder designs that cannot accommodate a complex

rate-distortion search. (2) Implicit MTS provides a unified

transform derivation rule for both ISP coded and non-ISP intra

coded blocks. (3) Since DST-7 is not allowed for dimensions

beyond 16 in implicit MTS, the built-in zeroing out opera-

tion on high-frequency coefficients (which only applies for

32-point DST-7) is avoided.

B. Secondary Transform

The LFNST [39], [40] is a non-separable transform which

applies to the top-left low-frequency region of primary trans-

form coefficients, as shown in Figure 3. In VVC, the LFNST

can be applied for intra coded blocks that use DCT-2 as

the primary transform [41]. The transform kernels defined in

LFNST consists of 4 transform sets with 2 kernels per set,

where each kernel is selected among 48 × 16 and 16 × 16

matrices depending on transform block size. Specifically,

a 48 ×16 kernel is applied to the top-left 8 ×8 region when a

transform block (TB) is greater than or equal to 8×8, denoted

as LFNST8, and a 16×16 kernel is applied to the top-left 4×4

region when TB width or height is 4, denoted as LFNST4.

Detailed design of LFNST8 and LFNST4 is elaborated in next

subsections.

1) LFNST Computation Process: The LFNST is computed

in the form of matrix multiplication that is friendly to paral-

lelism. The main idea of LFNST, also known as Reduced Sec-

ondary Transform (RST) [40], is mapping an N dimensional
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Fig. 3. Illustration of the LFNST design in VVC.

vector to an R dimensional vector through R × N matrix,

where R is usually less than N where N /R is the reduction

factor. The reduced R × N matrix is used as the kernel

in a forward transform, which consists of R orthonormal

row vectors of the N dimensional space, and its transposed

matrix is used as the kernel in the inverse LFNST. The larger

reduction factor indicates more complexity reduction in terms

of computation and memory usage, which will be detailed in

Section V.

The LFNST design in VVC employs two reduction fac-

tors to restrict the worst-case computation complexity to be

8 multiplications per sample and kernel memory to be 8KB.

First, the LFNST8 has a reduction factor of 3 relative to

square 48 × 48 matrix. With LFNST8, 48 coefficients from

three pre-defined 4 × 4 blocks, namely Region of Interest for

LFNST8 (ROI8), form the input vector that is multiplied by

the 16 × 48 matrix to output 16 coefficients. For LFNST4,

the Region of Interest, denoted as ROI4, is one single top-left

4 × 4 block. In addition, for 4 × 4 and 8 × 8 TBs, the LFNST

design has an extra reduction factor of 2. That is, only the

first 8 coefficients of the output vector are calculated. In this

way, the worst-case multiplication count per sample is limited

to be 8. It is observed that around 0.2% and 0.3% coding

performance loss (i.e., BD-bitrates increase) are caused due to

the reduction factor of 2 and the transform set reduction from

35 to 4, respectively.

The Figure 4(a) illustrates an example of applying forward

LFNST8 with its 16 × 48 or sampled 8 × 48 matrix. When

LFNST is applied, all primary transform coefficients other

than ROI8 are zeroed out [42]. Then the output of LFNST8,

which is a 16 or 8 coefficient vector, is further quantized

and entropy coded [43]. For the case that only 8 output

coefficients are generated, i.e. 4×4 or 8×8 TB, the coefficients

after the 8th position along the scanning order must be zero.

Therefore, for coefficient coding, the last non-zero coefficient

is coded with constraint that it is within the 8th scanning

position [43]. An example of applying inverse LFNST is

shown in Figure 4(b). In the inverse LFNST8, given the

input 16 or 8 LFNST coefficients, a 48 × 16 and a sampled

48 × 8 inverse LFNST matrix is used to perform the inverse

LFNST and reconstruct the primary transform coefficients

back to ROI8. Furthermore, LFNST is applied to both luma

and chroma blocks for a dual tree, and LFNST indices for

Fig. 4. The exemplary procedure of (a) forward LFNST8 and (b) backward
LFNST8 with 16 × 48/48 × 16 or sampled 8 × 48/48 × 8 matrix.

TABLE III

THE LFNST SET SELECTION TABLE

luma and chroma blocks are signalled separately. Otherwise,

if the dual tree is disabled, a single LFNST index is signalled

and used only for luma, because the LFNST is not applied to

chroma in shared-tree case [44].

Regarding the interaction with ISP mode [34] in VVC, when

there are multiple transform partitions in one intra coding unit,

LFNST is applied to all transform blocks and a single LFNST

index is signalled. The LFNST kernel was initially proposed

to be 10-bit precision but it was quantized to 8-bit integer

including sign. There was no noticeable coding performance

impact due to this precision change.

2) LFNST Set Selection: An LFNST set indicates a group

of transform kernel options that can be selected in LFNST.

In VVC, four LFNST sets, denoted as lfnstSetIdx, are defined

and the selection depends on the intra prediction mode,

denoted as intraPredMode, as shown in Table III. In each

LFNST set, three different options of LFNST kernel are

provided and the selection is indicated by an LFNST index

ranging from 0 to 2. If the LFNST index is equal to 0, LFNST

is not applied. Otherwise, an LFNST is applied using one of

the two kernels in the LFNST set and the selection is indicated

by the LFNST index.

As mentioned above, an LFNST set is selected among

4 transform sets according to intraPredMode, which is derived

from an original intra prediction mode. In addition, lfnstSetIdx
is assigned to be 1 for negative values of intraPredMode
in Table III, which corresponds to wide-angle intra prediction

mode that is applied to cover the prediction angles beyond

the diagonal prediction direction [34]. The basis images of
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Fig. 5. First basis images of 16×16 DCT-2 and LFNST combinations. From
left to right, (a) transform set 0, (b) transform set 1, (c) transform set 2 and
(d) transform set 3.

16×16 DCT-2 and LFNST combination are shown in Figure 5,

wherein the first basis images of four transform sets are shown

in the first row and the second basis images of four transform

sets are shown in the second row. Two columns of basis images

are shown each transform set, corresponding to the two kernel

candidates in one transform set. Here, the first and second basis

refers to the basis that generates the first and second output

LFNST coefficient, respectively. From Figure 5 it can be seen

that, the directionality of basis images are well aligned with

the associated intra prediction directionality, e.g., transform

basis of transform set 1 show diagonal directionality.

There are two exceptions in the LFNST set selection process

that are not defined solely by Table III. For a Cross-Component

Linear Model (CCLM) mode, the wide angle intra prediction

mode of collocated luma TB at the center position of the

current chroma TB is used with Table III to select its LFNST

set [45]. If MIP is applied and both width and height of the CU

is greater than or equal to 16, LFNST set 0 is selected [46].

3) LFNST Index Signalling: LFNST index can be signalled

for an intra-coded coding unit only when block width and

height are greater than or equal to 4. On top of that, the fol-

lowing extra conditions are also considered to determine the

LFNST signaling.

• If a non-zero coefficient is identified in zeroed-out region,

it is not needed to signal an LFNST index since LFNST

is inferred to be disabled in this case.

• If a non-zero coefficient exists only for DC position or it

does not exist in any relevant color components, LFNST

index signaling is skipped except for ISP mode.

• If one or more of all relevant color components is coded

by transform skip, an LFNST index is not signalled [47].

• For a CU coded by MIP mode with either width or height

being less than 16, LFNST is not signalled.

• If either width or height of a CU is greater than maximum

transform size specified in SPS, LFNST is not signalled.

When an LFNST index is not signaled, it is inferred to be

zero, i.e., LFNST is not applied.

C. Transform Partitioning

1) Sub-Block Transform: The distribution of inter-

prediction residual is different from that of intra-prediction

residual. Statistically, energy of inter-prediction residual

increases from the center of prediction block towards its

boundaries [48]. In addition, in many cases, the inter-

prediction residuals are localized at one side of the block,

rather than being distributed around all block boundaries.

Inspired by the SVT [30] that uses a smaller transform block

to capture the localized residuals, and further considering the

Fig. 6. Sub-block Transform modes (a) The eight SBT modes in VVC and
(b) Additional SBT modes studied during VVC standardization.

unique distribution of inter-prediction residual, a Sub-Block

Transform (SBT) method was developed and included in VVC.

In VVC, there are eight SBT modes associated with dif-

ferent configurations of the size and location of transform

blocks. When SBT is used, the transform block is either half or

quarter size of the residual block, as illustrated by the shaded

blocks in Figure 6 (a), while residual in the rest part of the

residual block is not coded and regarded as zero. In SBT, the

transform blocks always reside in one boundary of the residual

block.

Another feature of SBT design is the adaptive transform

kernel, which is selected based on the transform block posi-

tion, as illustrated in Figure 6 (a). This feature contributes

to near half of the SBT coding gain [49]. If the residual is

not evenly distributed within the residual block, the residual

energy typically increases from one side to the other. For

instance, if the transform block at the left side of the residual

block is selected the best mode, the right side typically

contains weaker residual. In this case, DCT-8 is more efficient

than DCT-2 for the horizontal transform since the basis vector

decreases from left to right. For the other dimension of the

transform block, DST-7 is selected based on experimental

results that show marginally higher coding gain than both

DCT-2 and DCT-8.

During VVC standardization, another two types of SBT

modes were proposed, as shown in Figure 6 (b). Each type

contributes around 0.1% extra coding gain on top of the eight

SBT modes that reflect the final design in VVC. The first type

includes two modes, utilizing a half-sized transform block

to cover the center of the residual block [50]. The transform

block is coupled with type-1 DST (DST-1) in one dimension,

because the associated basis vector has the highest value in the

middle [20] which fits residual that is weaker at two sides of
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the transform block than the center. Such a mode has smaller

coding gain than each of the half-sized SBT modes with trans-

form block locating at residual block boundaries. The second

type includes four modes, with a quarter-sized transform block

to cover one corner of the residual block [50]. The transform

kernel selection is optimized based on the observation that

residual increases from the center to a corner. In view of that

the eight modes in Figure 6 (a) already contributed to the

major coding gain, the six modes in Figure 6 (b) were not

adopted in VVC, to avoid a more complicated SBT design

as well as the introduction of an additional type of DST/DCT

transform.

In a nutshell, the SBT modes are optimized for the cases that

the major residual is localized at a lateral part of the residual

block. During VVC standardization, transform unit split with

position-dependent transform kernels were also studied for

comparison with SBT, which showed marginally coding gain

over SBT (especially on top of inter MTS) but required twice

extra encoding runtime than SBT [51] for RDO.

For implementation consideration, when the width or height

of an SBT transform block exceeds 32 (e.g., a 64 × 64 CU

with any SBT mode), both horizontal and vertical transforms

are forced to be DCT-2. In this way, it is aligned with the

design principle in VVC that DST-7/DCT-8 is only applied to

blocks no larger than 32 × 32.

2) Implicit Transform Partitioning: In VVC, the transform

size can be up to 64-point, which is supported by DCT-2 only.

The maximum transform size is selectable at sequence level

and the transform size can be either 32 or 64-point [52]. When

the coding unit width (or height) is greater than the maximum

transform size, the prediction residual block will be further

split horizontally (or vertically) into multiple transform blocks

with width (or height) equal to maximum transform size. For

one example, when the coding block size is 128 × 64 and the

maximum transform size is 32-point, the coding block will be

split into 8 transform units arranged in 4 rows and 2 columns.

For another example, when the coding block size is 64 × 16

and the maximum transform size is 32-point, the coding block

will be split into 2 transform units distributed horizontally with

each transform unit covering a 32 × 16 residual block. The

implicit transform splitting is processed with always vertical

splitting first if the coding block width is greater than the

maximum transform size. The transform splitting is done in a

way that the coding order of transform units does not cross

the 64 × 64 boundary. That is, all transform units within one

64 × 64 block are coded before any other transform unit in the

next 64 × 64 block. In this way, the processing of transform

units will not break down the VPDU implementation.

The signalling on maximum transform size provides the

flexibility for encoder to implement up to either 32-point or

64-point transform size without limiting the coding block size.

In addition, in VVC, lossless coding is achieved by enabling

transform skip mode, which is supported by up to 32 × 32

block size. Therefore, with the option of selecting 32 × 32 as

the maximum transform block size, coding block size greater

than 32 × 32 can be also enabled for lossless coding. Further-

more, 64-point transform in VVC is always accompanied with

zeroing out of the high frequencies, which may potentially

create subjective quality artifacts. Maximum 32-point trans-

form provides an alternate way of keeping large coding block

without dropping any high frequency coefficients.

IV. ENCODER IMPLEMENTATION IN VTM

An efficient encoder algorithm is important in a practical

video codec. In this section, to provide some insights on the

encoder side design, the implementation of transform tools in

VTM is described.

A. Encoder Decision for MTS and LFNST

In this section, MTS encoder implementation in VTM-9.0 is

described. The transform using DCT-2 as both horizontal and

vertical transform is checked first, then Transform Skip (TS)

is evaluated, and DST-7 and DCT-8 are checked in the last.

To achieve a reasonable coding gain versus complexity trade-

off, a subset of transform candidates is first selected based on

the cost measured by the L1-norm of a transform coefficient

block, then the selected candidates are further evaluated

based on high-complexity RD cost measurement. Specifically,

if L1-norm of a transform candidate is less than or equal to

a pre-determined threshold, the candidate is included in the

candidate list for next high-complexity RD cost measurement

if the list is not full. All the candidates enter the list in a first-

in, first-out fashion if the cost is less than or equal to the given

threshold. The maximum number of entries in the candidate

list can be specified default VTM configuration files.

Since LFNST is only enabled when DCT-2 is applied as the

primary transform, the encoder search of LFNST and MTS is

jointly optimized using following two steps.

• Step 1: A predefined reduced set of transform modes is

evaluated first, which includes DCT-2, TS, DST-7 and

combination of DCT-2 and LFNST. Based on the evalua-

tion outcome, the remaining MTS modes may be skipped.

• Step 2: If the remaining MTS modes are further checked,

based on the outcome, it is further determined if the

encoder search is terminated after checking a certain MTS

mode.

As an exception to the above encoder process, combina-

tions of ISP and LFNST are searched in addition to the

checking DCT-2 pair or transform skip with LFNST off.

Moreover, as aforementioned, ISP employs implicit MTS only.

These two exceptions facilitate useful early skip decisions

in VTM.

B. Sub-Block Transform (SBT)

SBT modes are searched after the regular DCT-2 transform

for entire-block residual. A full search on all the eight SBT

modes imposes significant encoder complexity, e.g., over 60%

encoding time increase on VTM-3.0 under Random-Access

configuration. Three fast algorithms have been developed to

reduce the encoding time increase to around 8%, with less

than 0.1% Bjøntegaard delta bitrates (BDR) penalty [53].

Algorithm 1: Based on residual energy distribution, cer-

tain SBT modes are skipped from encoder checking. Before

performing transform and quantization, the RD cost for each
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SBT mode is estimated using the signaling bits for the CU

and the distortion of both the residual-skipped part and the

residual-coded part, measured by sum of squared difference.

If the estimated RD cost is already greater than the best RD

cost (i.e., the minimum RD cost for the CU that is found

before this prediction mode), the corresponding SBT mode is

skipped further testing. In addition, at most four SBT modes

are tested for any inter prediction mode.

Algorithm 2: When the prediction residual is either too large

or too small, all SBT modes are skipped. More specifically,

an inter prediction mode is unlikely to be chosen if its RD

cost associated with full size transform exceeds the best RD

cost to some extent. On the other hand, when the residual is

too small, SBT is less efficient than skipping the residual due

to the signaling overhead.

Algorithm 3: To decide from a large number of inter

prediction modes and flexible coding tree as defined in VVC,

a block may be encoded many times by different coding

modes. After a residual block is encoded, the residual energy

and the best transform mode among all candidates, i.e., the

DCT-2 mode, inter MTS modes, and SBT mode, are recorded

as a pair of historical information. When this region is encoded

with another inter prediction mode, if the residual energy is

similar to a recorded case, only the recorded best transform

mode is tested for this prediction block. If a matching prior is

not found, above fast algorithms 1 and 2 are invoked and later,

the best transform mode after RDO is saved for later encoder

decision.

V. COMPLEXITY ANALYSIS

A. Primary Transform

As mentioned in Section III-A, high-frequency DCT-2 trans-

form coefficients are zeroed out for the transform blocks

with size (width and/or height) equal to 64, so that only the

32 low frequency coefficients are retained. For example, for an

M × N transform block, when M is equal to 64, only the left

32 columns of transform coefficients are kept. Similarly, when

N is equal to 64, only the top 32 rows of transform coefficients

are kept. In addition, for 32-point DST-7 and DCT-8, only the

16 low frequency transform coefficients are kept and others are

zeroed-out to reduce computation complexity [31]. With the

zeroing-out, multiplication count is reduced to 37.5% for both

64-point DCT-2 and 32-point DST-7/DCT-8 for 64 × 64 and

32 × 32 transform blocks, respectively. Moreover, memory

usage for 64-point DCT-2 and 32-point DST-7/DCT-8 is

reduced to a half since only half of transform basis vectors are

involved in the transform process. The multiplication counts

per sample for all combinations of transform kernels and block

shapes are summarized in Table IV.

In Table IV, M , N , m, and n denote TB width, TB height,

width and height of top-left non-zero coefficients region,

respectively. The analysis in Table IV is based on assumption

that DCT-2 is computed using a partial butterfly structure [11].

When performing inverse transform, the vertical transform is

performed first with the top-left m by n non-zero coefficient

region as input and the output is an M × N block with only

the left m × N region being nonzero. Then the horizontal

TABLE IV

THE MULTIPLICATION COUNTS PER SAMPLE FOR ALL COMBINATIONS OF

PRIMARY TRANSFORM KERNELS AND BLOCK SHAPES

transform is performed, and the output is an M × N residual

block. During this transform process, only the multiplication

counts associated with non-zero inputs were calculated, using

the following formula, where Nmul is the total number of

multiplication operations needed for a 2-D transform.

Nmul =

⎧

⎪

⎨

⎪

⎩

CN

N · rM · rN
+

CM

M · rM
for DCT − 2

mn

M
+ m for DST − 7/DCT − 8,

(4)

CN =
N2 + 2

3
, rN =

N

n
, and rM =

M

m
, (5)

In Equation (4) and (5), CN corresponds to the multiplica-

tion count for a one-dimensional N-point DCT-2. Without per-

forming zeroing-out for 32-point DST-7/DCT-8, i.e., m equals

to M and n equals to N , the worst-case multiplication counts

for 32-point DST-7/DCT-8 becomes 64, as shown in Table IV,

which is excessive for hardware implementation. For 64-point

DCT-2, by zeroing out, more than half of multiplication counts

is reduced. The coding performance impact from skipping

high frequencies was observed to be around 0.1% and 0.05%

bit-rate increase for AI and RA, respectively [31].

The memory usage of different transform types and sizes are

summarized in Table V measured in bytes. In both HEVC and

VVC, the smaller DCT-2 kernel can be sampled from larger

one. In certain implementation, with this feature, the memory

usage of DCT-2 with different sizes is same to the 64-point

DCT-2, i.e. 2048 bytes. Furthermore, the DCT-8 basis vector

can be derived by arranging the DST-7 basis in reverse order

with sign value being alternated over all basis vectors [54].

Hence, DCT-8 can be derived from DST-7 without extra

memory cost.
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TABLE V

THE MEMORY USAGE INFORMATION OF ALL OF VVC PRIMARY TRANS-
FORM KERNELS (IN BYTES)

Fig. 7. The non-zero coefficient block expansion of primary transform from
coefficients generated by inverse LFNST.

B. Secondary Transform

In the initial design of Reduced Secondary Transform

(RST) [40], which is a previous version of LFNST, there are

35 transform sets. Each transform set is composed of 3 kernels

except for Planar and DC modes that 2 kernels are defined

in the transform set. In addition, for 8 × 8 and larger block

sizes, 16 ×64 transform matrices are used in RST. In LFNST,

total 4 transform sets are specified with 2 kernels for each

transform set. The transform matrix dimensions of LFNST are

48 × 16 and 16 × 16 for LFNST8 and LFNST4, respectively.

Moreover, the required worst-case number of multiplications

per sample is 8, and up to 8 non-zero LFNST coefficients are

processed for 4 × 4 and 8 × 8 blocks with further reduced

LFNST matrices sampled from the 8 × 16 LFNST4 and

8 × 48 LFNST8 transform matrices, respectively. By further

zeroing-out primary coefficients [42] when LFNST is applied,

only the first 16 or 8 LFNST coefficients are kept and all other

coefficients are set as zeros. Therefore, the maximum number

of final transform coefficients becomes only 16 or 8, and the

latter case happens in case of 4 × 4 or 8 × 8 transform block.

This zeroing-out not only reduces computation complexity but

also decreases coefficient buffer storage, which will be detailed

below.

In Table IV, the total multiplication counts with both

LFNST and DCT-2 being applied are reported. Given the

output of LFNST, which is the top-left 48 or 16 coefficients,

the number of multiplications needed for inverse primary

transform is analyzed as follows. As shown in Figure 7,

the left 4 × 8 (region A in Figure 7) and its neighboring 4 × 4

(region B in Figure 7) are first fed into the inverse vertical

transform to generate the first 4 and the next 4 columns

of output, which together form the M × N with only left

8 × N block being nonzero (region C in Figure 7). Then

this 8 × N block is fed into the inverse horizontal transform

and the output is the M × N residual block, as indicated

by region D in Figure 7. In this analysis, it is assumed that

the DCT-2 computation is performed using partial butterfly

structure. Based on the above analysis, the following Equation

(6) can be obtained for deriving the multiplication counts for

DCT-2 in the case of a combination of LFNST and DCT-2,

where CM , CN , rM , and rN are the same as in Equation (4).

Nmul = 4 ·
CN

rN
+ 4 ·

CN

2 · rN
+ N ·

CM

rM
(6)

It is noted that the overall complexity of LFNST and DCT-2

combination is smaller than the worst case of only primary

transform being applied.

VI. EXPERIMENTAL RESULTS

A. Coding Efficiency

In this section, the coding performance of MTS (the explicit

MTS), LFNST, SBT and 64-point DCT-2 are studied using

the reference software VTM-9.0. The common test condi-

tions (CTC), as defined by JVET for evaluating technical

contributions during the standardization process of VVC, are

used to perform the experiments. The test set defined in CTC

includes a set of 32 video sequences, ranging from WQVGA

(416 × 240) to 4K (3840 × 2160) resolutions, including

four sequences with synthetic content, e.g., screen content,

gaming content and mixed natural and screen content. The

Bjøntegaard-delta rate (BDR) [53] is used to evaluate the

coding performance. The tested quantization parameters (QP)

are 22, 27, 32 and 37. The test conditions include All Intra

(AI), Random Access (RA) and Low Delay B (LDB) as

defined in the configuration files associated with the reference

software VTM-9.0.

When evaluating the run-time difference, the following 1T
measurement is used,

1T =
TProposed

TAnchor
× 100%, (7)

where TAnchor and TProposed represent the runtimes of the

anchor and proposed method. This criterion is used to estimate

algorithm complexity in terms of encoder and decoder soft-

ware run-time, where 100% indicates no run-time difference.

To evaluate the overall BDR for multiple color components,

an overall PSNR value derived as the sum of weighted luma

and chroma PSNR values. The weights are 6/8, 1/8 and 1/8 for

the PSNR value of Y, Cb and Cr components, respectively.

These set of weights have been used in JVET for tool

reporting [55].

When evaluating the coding performance, i.e., BDR,

the anchor used in the results is VTM-9.0 with one (or

multiple) tool(s) being disabled, and the test is VTM-9.0. For

example, when reporting the coding gain of MTS, the anchor

is VTM-9.0 with MTS being disabled (MTS = 0). Therefore,

a negative BDR number indicates a bitrate reduction, i.e., cod-

ing gain.

The coding performance and software run-time of MTS

and LFNST are reported in Table VI. For AI configuration,

the average coding gains of MTS and LFNST are −1.25%

and −1.19%, respectively. For RA configuration, the average

gains of MTS and LFNST are −0.73% and −0.74%,

respectively. The encoding run-time is approximately reduced

by 10% when LFNST is enabled. One of main reasons is
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TABLE VI

CODING GAIN OF MTS AND LFNST FOR AI AND RA CONFIGURATIONS IN CTC

that, two different MTS encoding procedures are applied

depending on the enabling of LFNST, and heavier MTS

encoding procedure is applied when LFNST is turned off,

which is detailed in Section IV. The combined coding gains

of MTS and LFNST are also shown in Table VIII, and it is

noted that the combined coding gain of MTS and LFNST is

greater than the sum of individual coding gains, i.e., −3.52%

and −1.91% for AI and RA configurations, respectively.

This indicates that MTS and LFNST has some overlap on

the coding gain, which is expected since both coding tools

introduce additional transform kernels in a similar fashion as

competing transform modes.

The results for SBT are reported in Table VII, the average

gains for RA and LDB are −0.31% and −0.44%, respectively.

With more advanced inter prediction and block partition in

VVC, the inter prediction residue is greatly reduced, especially

for RA, which leaves less room for SBT as well as other

transform tools like inter MTS. Compared with inter MTS,

SBT showed 0.3% higher coding gain in LDB with 40%

of encoding runtime on VTM-3.0 [50], and achieved the

best tradeoff between coding gain and encoding complexity

among all transform tools for inter residual during VVC

standardization.

The combined coding gains of MTS, LFNST and SBT, are

reported in Table IX. Only RA and LDB results are reported

since SBT only has an impact for those two test configurations.

The combined coding gains of all transform coding techniques,

including 64-point transform, MTS, LFNST and SBT, are also

reported in Table X, and −4.5%, −3.6% and −2.2% are

TABLE VII

CODING GAIN OF SBT FOR RA AND LDB CONFIGURATIONS IN CTC

achieved for AI, RA and LDB configurations, respectively.

The run-time impact of 64-point transform is very minor and

not shown in this paper due to page limitations.
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TABLE VIII

CODING GAIN OF MTS + LFNST FOR AI AND RA
CONFIGURATIONS IN CTC

TABLE IX

COMBINED CODING GAIN OF MTS, LFNST AND SBT FOR AI, RA AND

LDB CONFIGURATIONS IN CTC

TABLE X

COMBINED CODING GAIN OF 64-POINT TRANSFORM, MTS, LFNST AND

SBT FOR AI, RA AND LDB CONFIGURATIONS IN CTC

B. Tool Analysis

In Figure 8, the coding blocks using MTS, LFNST and

SBT are highlighted using red, blue and green boxes, respec-

tively. The above one is the first reconstructed picture (Intra

frame) of BQTerrace (1920 × 1080), and the bottom one is

the third reconstructed picture (B frame) of MartketPlace

(1920 × 1080). Those pictures are reconstructed using bit-

stream coded by VTM-9.0 following the CTC under RA

configuration using QP 37 (BQTerrace) and 27 (MarketPlace).

It is observed that MTS and LFNST coded blocks cover a con-

siderable percentage of blocks in Intra frame coding. However,

for blocks with smooth or vertical texture patterns (top-left part

of the picture), neither MTS nor LFNST is used frequently.

These blocks typically show little specific residual patterns,

where separable transform using DCT-2 seems to be efficient.

For Inter coding, it is observed that SBT is more frequently

used along the moving object boundaries. This represents a

typical case where SBT can be helpful, since the residual can

be more frequently locally distributed within one coding block.

From Table VI and Table VII, it is noticed that MTS

and SBT contribute relatively consistent coding gain across

different video content and resolutions, while the coding gain

of LFSNT is higher for an input sequence with rich directional

texture patterns (BasketballDrill) of which coding gain can

go up to 3% for AI coding configuration. For SBT, from

Table VII, it is noted that the coding gain is consistent across

different resolutions, and for sequences with complex motion,

Fig. 8. Reconstructed picture of BQTerrace (top) and MarketPlace (bottom)
with coding blocks selecting MTS, LFNST and SBT highlighted in red, blue
and green, respectively.

and frequent object occlusions (ParkRunning3), the RA coding

gain of SBT is peaked at 0.7%.

VII. CONCLUSION

The transform coding design for VVC has been described in

this paper, including new primary transform kernel types with

explicit and implicit selection schemes, explicitly signalled

non-separable secondary transform with reduced kernels and

sub-block transform partitioning. Besides these new trans-

form tools, VVC also extended several aspects of the HEVC

transform design, including 64-point DCT-2 and transform

for rectangular block shape. Moreover, normative zeroing-out

schemes are applied in VVC for 64-point DCT-2, 32-point

DST-7/DCT-8 and LFNST to reduce complexity. Experimental

results show significant coding gains contributed by MTS,

LFNST, SBT and 64-point DCT-2, especially for intra coding

with up to 7.1% BD rate reduction for 4K video contents.
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