SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Dean G. Duffy

Department of Mathematics United States Naval Academy

CRC Press

Boca Raton Ann Arbor London Tokyo

Contents

Acknowledgments		
Introdu	ıction	viii
1 The l	Fundamentals	1
1.1	Laplace Transforms	1
1.2	Fourier Transforms	6
1.3	Linear Ordinary Differential Equations	11
1.4	Complex Variables	16
1.5	Multivalued Functions, Branch Points, Branch Cuts and Riemann Surfaces	27
1.6	Some Examples of Integration Which Involve Multivalued Functions	30
2 Trans	sform Methods with Single-Valued Functions	51
2.1	Inversion of Laplace Transforms by Contour Integration	55
2.2	Inversion of Fourier Transforms by Contour Integration	68
2.3	The Solution of Partial Differential Equations by Laplace Transforms	80

	2.4	The Solution of Partial Differential Equations by Fourier Transforms	114
	2.5	The Solution of Partial Differential Equations by Hankel Transforms	123
		Papers Using Laplace Transforms to Solve Partial Differential Equations	130
		Papers Using Fourier Transforms to Solve Partial Differential Equations	158
		Papers Using Hankel Transforms to Solve Partial Differential Equations	161
3 Т	rans	form Methods with Multivalued Functions	163
	3.1	Inversion of Laplace Transforms by Contour Integration	163
	3.2	Inversion of Fourier Transforms by Contour Integration	206
	3.3	The Solution of Partial Differential Equations by Laplace Transforms	221
	3.4	The Solution of Partial Differential Equations by Fourier Transforms	245
		Papers Using Laplace Transforms to Solve Partial Differential Equations	254
		Papers Using Fourier Transforms to Solve Partial Differential Equations	260
4 T	he J	Joint Transform Method	263
	4.1	The Solution of Partial Differential Equations Using the Joint Transform Method	263
	4.2	Inversion of the Joint Transform by Cagniard's Method	290
	4.3	The Modification of Cagniard's Method by De Hoop	305
	4.4	Expansions in Terms of Leaky Modes	313
		Papers Using the Joint Transform Technique	324
		Papers Using the Cagniard Technique	335
		Papers Using the Cagniard-de Hoop Technique	340

5 The Wiener-Hopf Technique	
5.1 The Wiener-Hopf Technique When the Factorization Contains No Branch Points	348
5.2 The Wiener-Hopf Technique When the Factorization Contains Branch Points	362
5.3 The Wiener-Hopf Technique with a Finite Scatterer	368
Papers Using the Wiener-Hopf Technique	379
Worked Solutions to Some of the Problems	
Index	

Φ.