
Transformation and synthesis of FSMs for low-power

gated-clock implementation

Luca Benini and Giovanni De Micheli

Center for Integrated Systems

Stanford University

Stanford, CA, 94305

Abstract

We present a technique that automatically synthesizes

�nite state machines with gated clocks to reduce the power

dissipation of the �nal implementation.

We describe a new transformation for general incom-

pletely speci�ed Mealy-type machines that makes them suit-

able for gated clock implementation. The transformation is

probabilistic-driven, and leads to the synthesis of an opti-

mized combinational logic block that stops the clock with

high probability.

A prototype tool has been implemented and its perfor-

mance, although strongly in
uenced by the initial structure

of the �nite state machine, shows that sizable power reduc-

tions can be obtained with our technique.

1 Introduction

The majority of the currently published work in the area
of automatic synthesis for low power focuses on the reduc-

tion of the level of activity in some portion of the circuit

[3, 4, 5, 6], since in the dominant CMOS technology the
most important fraction of the power is dissipated during

switching events.

In synchronous circuits, a very promising technique is

based on selectively stopping the clock in portions of the
circuit where active computation is not being performed.

Local clocks that are conditionally enabled are called gated

clocks, because a signal from the environment is used to
qualify (gate) the global clock signal. Gated clocks are

commonly used by designers of complex power-constrained

systems [10, 7]. It should be noticed, however, that it is
usually responsibility of the designer to �nd the conditions

that disable the clock.

Some attempts have been made to automate the gener-

ation of signals that can be used to gate the global clock.

In [1] a Precomputation-based approach has been described
that focuses mainly on data-path circuits, while in [2] the

authors have described a method to generate gated clocks

for systems described as �nite state machines.

Our previous work [2] exploits the concept of self-loop,

an idle condition for a Moore machine. If the machine is in

a self-loop, the next state and the output do not change,
therefore clocking the FSM only wastes power. Obviously,

detecting self-loop conditions requires some computation

to be performed by additional circuitry. This computation
dissipates power, and sometimes it will be too expensive to

detect all self-loop conditions. It is therefore very impor-

tant to select a subset of all self-loops that are taken with
high probability during the operation of the FSM.

We have improved in several directions and extended

the validity of the techniques discussed in our previous
work [2]. First, applicability of our techniques has been in-

creased, and the limitation to Moore �nite state machines

has been removed. Our new method deals with a very gen-
eral model of sequential circuit, the incompletely speci�ed

Mealy machine. Second, we adopt a novel probabilistic

approach, that can selectively individuate and exploit the
idle conditions that occur with high probability. Moreover,

our new algorithms for the synthesis of the clock-stopping

logic are more accurate an powerful, and are able to �nd
exact and heuristic solutions as well.

A tool has been implemented and applied to a number

of benchmark circuits. We have embedded our tool in a
complete path from high-level speci�cation to transistor-

level implementation, and we have veri�ed our results using

accurate switch-level simulation.

For some circuits, more than 100% improvement in av-

erage power dissipation have been obtained. Notice that

the quality of the results is strongly dependent on the type

of �nite state machine we start with. In particular, our

method is well suited for FSMs that behave as reactive

systems: they wait for some input event to occur and they

produce a response, but for a large fraction of the total

time they are idle. These FSMs are common in portable

devices where low power consumption is important.

2 Background

In this work we will assume a single clock scheme with

edge triggered
ip-
ops, as shown in Figure 1 (a). This is
not a limiting assumption. We have discussed the appli-

cability of our methods to di�erent clocking schemes in [2]

a

Combinational
 Logic

CLK

IN OUT

STATE

Combinational
 Logic

IN OUT

STATE

GCLK
&L

CLK

f

(b)(a)

R
egisters

R
egisters

Figure 1: (a) Single clock,
ip-
op based �nite state

machine. (b) Gated clock version.

where we used transparent latches and multiphase clocks.

With a gated clock implementation, we need to slightly
modify the structure in Figure 1 (a). We de�ne a new

signal called activation function (fa) whose purpose is to

selectively stop the local clock of the FSM, when the ma-
chine is idle and do not perform state transitions. When

fa = 1 the clock will be stopped. The modi�ed structure

is shown in Figure 1 (b). The block labeled \L" represents
level-sensitive register, transparent when the global clock

signal CLK is low. Notice that the presence of L is needed
for a correct behavior, because possible glitches on fa must

be �ltered out when the global clock signal is high.

We assume that the activation function fa becomes
valid before the raising edge of the global clock. At this

time the clock signal is low and L is transparent. If the

fa signal becomes high, the upcoming edge of the global
clock will not �lter trough the AND gate, therefore the

FSM will not be clocked and GCLK will remain low. Note

that when the global clock is high, L is not transparent,
therefore the GCLK signal is forced low at least up to the

next falling edge of the global clock.

When the local clock is stopped, no power is consumed
in the FSM combinational logic, on the clock line and in the

sequential elements (di�erently from the scheme proposed

in [1] where enabling signals are used). Notice however
that the delay of the logic for the computation of fa is on

the critical path of the circuit, and its e�ect must be taken

into account during timing veri�cation.
Our technique automatically generates the activation

function in form of a combinational logic block that uses as

its inputs the primary input IN and the state lines STATE
of the FSM. The input data for our algorithm is the be-

havioral description of the FSM and the probability distri-

bution of the input signals.
In the following subsections we will describe some basic

concepts from automata and probability theory that will

be useful for the understanding of our algorithms. Refer
to [14, 8] for a more detailed treatment.

2.1 Models of �nite state systems

A Mealy-type FSM can be described by a six-tuple
(X;Y; S; s0; �; �) where X is the set of inputs, Y is the

set of outputs, S is the set of states, and s0 is the initial

(reset) state. The next state function � is given by:

st+1 = �(X; st) (1)

The output function � is de�ned as:

yt = �(X; st) (2)

S1 S2

S0

−1/−0
10/00

−1/01
10/01

00/01

00/10 10/10
01/−1

11/11

00/00

M0/−0 M1/01

M2/10

M3/00M4/11

M5/−1

−1

10

00
−1
10

00

10

11

01

00

10

−1 00

−1
10

10

11

01

00

(a)

(a) (b)

00

Figure 2: (a) STG of a Mealy machine. (b) STG of

the equivalent Moore machine.

If the machine is incompletely speci�ed � and � are

partial functions. For a Moore FSM the output does not

depend on the input, therefore �M is de�ned as:

yt = �M (st) (3)

Conceptually, Mealy and Moore machines are equiva-

lent, in the sense that it is always possible to specify a

Moore machine whose input-output behavior is equal to a
given Mealy machine behavior, and viceversa [11]. Practi-

cally, however, there is an important di�erence. The Mealy
model is usually more compact than the Moore model, in

fact the transformation from Mealy to Moore involves a

state splitting procedure that may signi�cantly increase
the number of states and state transitions [11].

Example 1 In Figure 2 (a), a Mealy machine is represented
in form of state transition graph (STG). If it is transformed in

the equivalent Moore machine (using the procedure outlined in
[11]), the new STG is shown in Figure 2 (b). The higher com-

plexity in terms of states and edges of the Moore representation
is evident. Notice that both FSMs are incompletely speci�ed.

2.2 Probabilistic models of FSMs

We model the probabilistic behavior of a general FSM
using a Markov chain [8], as done in [9, 6, 16]. This model

can be described by a weighted directed graph with a struc-

ture isomorphic to the STG of the machine. For a transi-
tion from state si to state sj, the weight pi;j on the corre-

sponding edge represents the conditional probability of the

transition (i.e., the probability of a transition to state sj
given that the machine was in state si). Symbolically this

can be expressed as:

pi;j = Prob(Next = sjjPresent = si) (4)

The pi;j are collected in a matrix P and depend on
the probability distribution of the inputs, that is initially

known. However, using the conditional probability as an

estimate of the total transition probability can lead to large
errors, because the probability of a transition strongly de-

pends on the probability for the machine to be in the state

tail of the transition.

In order to �nd the probability of a transition without
any condition, we need to know the state probabilities qi,

that represent the probability for the machine to be in a

given state i. Namely, the total transition probabilities we
are looking for are

ri;j = pi;jqi (5)

Many methods have been proposed to calculate the

state probabilities [8, 9]. In this work we have used the

Power Method. Using this method, the state probability
vector q = [q1; q2; :::; qjSj]

T can be computed using the it-

eration:

q
T
n+1 = q

T
n P (6)

with the normalization condition
PjSj

i=1
qi = 1 until con-

vergence is reached. The convergence properties of this

method are discussed in [9]. The power method has been
chosen because of its simplicity and its applicability (if

sparse matrix manipulation or symbolic formulation are

used [9]) to FSMs with a very large number of states. In
the following sections we assume that the state probability

vector and the total transition probabilities have already

been computed.
If we now consider a Boolean function f with inputs the

state and input variables of the machine, we can compute

its probability (the probability for the function to be 1)
in an exact fashion. If f is speci�ed in cover form (a list

of cubes that cover the ON-set of the function), the prob-

ability of f can be calculated using the following steps.

� Make the cover disjoint.

� Compute the probability of the disjoint cubes.

� Sum the disjoint cube probabilities.

Notice that this calculation is of vital importance in our
algorithm, that performs a search based on the probability

of the activation function.

3 Problem formulation

Given the knowledge of the FSM structure and its prob-

abilistic model, we �rst want to identify the idle conditions
where the clock may be stopped. If the machine is a Moore

one, this is a simple task. For each state s we identify all

the input conditions such that �(x; s) = s. We therefore
de�ne a set of self-loop state function Selfs : X ! f0; 1g

such that Selfs = 1 8x 2 X where �(x; s) = s.

We then encode the machine. After the encoding step
every state will have a unique code: si $ ei and ei =

(ei;1; ei;2; :::; ei;jV j), where V is the set of the state variables

used in the encoding.
Finally, the activation function is de�ned as fa : X �

V ! f0; 1g:

fa =
X

i=1;2;:::;jSj

Self si � ei (7)

These de�nitions can be clari�ed using an example.

Example 2 For the Moore machine in Example 1, the self-loop
state function for state M5 is SelfM5 = in0

0
in1 Similarly, all

the other self-loop state functions can be obtained. We encode

the states using three state variables, v1, v2, v3. The encodings
are: M0 ! v0

1
v0
2
v0
3
, M1 ! v0

1
v2v

0
3
, M2 ! v1v2v

0
3
, M3 !

v1v2v3, M4! v0
1
v2v3, M5! v0

1
v0
2
v3. The activation function

is therefore: fa = in2v
0
1
v0
2
v0
3
+ in2v

0
1
v2v

0
3
+ in1in

0
2
v0
1
v2v

0
3
+

in1in
0
2
v1v2v

0
3
+ in1in

0
2
v1v2v3 + in0

1
in2v

0
1
v0
2
v3.

If the machine is Mealy-type, the problem is substan-

tially more complex. The knowledge of the state and the

input is not su�cient to individuate the conditions when
the clock can be stopped. If only the next state lines and

the inputs are available for the computation of the acti-

vation function, we do not have a way to determine what
was the output. This is a direct consequence of the Mealy

model: since the outputs are on the edges of the STG, we

may have the same next state for many di�erent outputs.
The important consequence is that, even if we know that

the state in not going to change, we cannot guarantee that

the output too will remain constant, therefore we cannot
safely stop the clock.

There are two ways to solve this problem. The sim-

pler way is to use the outputs of the FSM as additional
inputs for the activation function. The other approach is

to transform the STG in such a way that the FSM will

be functionally compatible with the original one, but only
the input and state lines will be su�cient to compute the

activation function.

We decided to investigate the second method for two
main reasons. First, since for many FSMs the number of

output signals is large, it is likely that adding all the out-
put signals to the inputs of the activation function will

produce poor results because of the high complexity of the

activation function itself. Second, in the present imple-
mentation our tool operates using state transition tables

as input, therefore we still have the freedom to modify the

number of states and the STG structure (this is not the
case if we start from a synchronous network that is an

implementation of the STG).

The simplest transformation that enables us to use only
input and state signals as inputs of the activation function

fa, is a Mealy to Moore transformation. The algorithm

that performs this conversion is well known [11] and its
implementation is simple, but it may sensibly increase the

number of states and edges (correlated with the complexity

of the FSM implementation).

3.1 Locally-Moore machines

We now de�ne and study a new kind of FSM trans-

formation that enables us to use a Moore-like activation

function without a large penalty in increased complexity
of the FSM. A Moore state is a state such that all in-

coming transitions have the same output �eld. Formally:

s 2 S j 8x 2 X;r 2 S; �(x; r) = s) �(x; r) = const.

Proposition 1 A Mealy-state s with k di�erent values of

the output �elds on the edges that have s as a destination

can be transformed in k Moore-states. No other state split-

ting is required.

We could transform the FSM simply applying the Mealy
to Moore transformations locally to states that have self

loops. The local Moore transformation has the advantage

that it allows us to concentrate only on states with self-
loops, avoiding the useless state splitting on the states

without self-lops. Still, this is not enough, because for
many examples all the states will have self-loops and the lo-

cal transformation will produce the complete Moore equiv-

alent machine.

Our next step is to further localize the transformation.
Consider an incompletely speci�ed Mealy-machine. In gen-

eral we may have many di�erent outputs for di�erent in-

puts, even if the next state is always the same. Intuitively
we want split the Mealy state with self-loops simply in a

couple of states. One of the two states will be Moore-type

with a self-loop that has maximum probability.

We de�ne the maximum probability state self-loop func-

tion MPselfs : X ! f0; 1g. Its ON-set represents the set

of input conditions for a state that are on self-loops and

produce compatible outputs (two outputs �elds are com-
patible if they di�er only in entries where at least one of

the two is don't care) and are taken with maximum prob-

ability.
To �nd MPselfs we group the self-loops from state

s in (possibly overlapping) compatibility classes, we then

compute the probability of each compatible class and we
choose the class with maximum probability as the ON set

of MPselfs.

Example 3 In the Mealy machine of Example 1, if we con-

sider state S2, we have two self loops: in1in
0
2
with output 10

and in0
1
in2 with output �1. The two output �elds are not com-

patible, therefore we have two compatible classes (the same two
functions). We will choose the class that is more probable. In
this particular example, we assumed equiprobable and indepen-

dent inputs and both functions have the same probability, there-
fore one of the two is randomly chosen.

Once the MPselfs functions have been found for all

the states with self-loops, the second step of our trans-

formation algorithms is performed. If a state s is not a
Moore-state, it is split in two states so and sl. The �rst

state (so) is the original one, but its edges corresponding

to the self-loops included in MPselfs become transitions
from so to sl. The second state (sl) is reached only from

so and has a self-loop corresponding to MPselfs(x). All

the outgoing edges that leave so are replicated for sl. The
sl state is now Moore-type, because all the edges that have

sl as tail have the same output �eld.

This procedure is advantageous for many reasons. First,

the increase in the number of states is tightly controlled (in
the worst case, if all the states are Mealy-type and have

self-loops, we can have a twofold increase in the number of

states). Second, the self-loops with maximum probability
are selected. Third, if we really want to limit the increase in

the number of states, we may de�ne a threshold: only the

�rst k states in a list ordered for decreasing total probability

of MPselfs are duplicated.

We call the FSM obtained after the application of this

procedure locally-Moore FSM, because in general only a

subset of the states is Moore-type.

Example 4 The application of our procedure on the Mealy ma-
chine of Example 1 produces the locally-Moore FSM shown in
Figure 3. The shaded areas enclose states that have been split.
The Moore-states with self-loops are drawn with bold lines. The

PM1

PM0

−1/00
10/00

00/01

00/10

PM4

10/10

00/00

01/−1

00/10

PM2

00/00

01/−110/10

PM3
−1/01
10/01

11/11
11/11

−1/01
10/01

Figure 3: STG of the locally-Moore FSM

number of states and edges of the locally Moore machine is
smaller than those that we obtained with the complete Mealy
to Moore transformation.

If we restrict our consideration to Moore-states, we can

generate an activation function that uses as inputs only
the state and primary input of the FSM. The next step

is to generate an activation function that produces a �nal

implementation with minimum power dissipation.

3.2 Optimal activation function

If we call S0
� S the set of Moore-states in a FSM, the

complete activation function is given by

fa =
X

i=1;2;:::;jS0 j

Selfsi � ei (8)

where ei is the encoding of the states in S0. The sim-

plest approach is to try to use the complete fa as activa-
tion function. This is seldom the best solution, because

the complexity if fa can be too high, and the power dis-

sipated by its implementation may reduce or nullify the
power reduction that we obtain stopping the clock. It is

therefore necessary to be able to choose a simpler function

contained in fa whose implementation dissipates minimum
power, but whose e�ciency in stopping the clock is maxi-

mum.

In [2] we proposed a simple greedy algorithm that will

be shortly outlined. First, the fa is two-level minimized,
and a minimum cover is obtained. Then, the larger cubes

in the cover are greedily selected until the number of lit-

erals in the partial cover exceed a user-speci�ed literal
threshold. The rationale of this approach is that gener-

ally large cubes have high probability and the primes that

compose a minimum cover are as large as possible.

The solution proposed in [2] is highly heuristic and can

be improved. We have devised a new strategy for the

synthesis of reduced activation functions that exploits the

knowledge of the probability of the self-loops. Moreover,

we have studied and solved the new combinational synthe-

sis problem that arises when we want to �nd a minimum

complexity function that is active with a pre-�xed proba-
bility.

We do not describe in detail our new algorithms be-

cause of space limitations. Intuitively, we �nd the opti-

mal activation function using a branch-and-bound algo-

rithm that select a minimum-literal-count cover of a func-

tion Fa � fa that is guaranteed to be active (one) with

probability P (Fa) � �P (fa). The parameter � � 1 is
user-de�ned.

We can now brie
y summarize the full procedure used
for the synthesis of our low-power gated clock FSMs.

� The Mealy machine is transformed in an equivalent
locally-Moore machine.

� The complete activation function fa is extracted from
the Moore-states of the locally-Moore machine.

� The probability of the complete fa is computed.

� The branch-and-bound algorithm �nds the minimum

literal count solution Fa whose probability is a pre-

speci�ed fraction � of the probability of fa

� Fa is used as additional DC set for the combinational

logic of the FSM.

The last step (more thoroughly described in [2]) can

sensibly improve the quality of the results, in particular if
Fa is large. Unfortunately its e�ect is to greatly increase

the theoretic complexity of the problem, because it is very

hard to foresee the e�ect of Fa used as DC set. Sometimes
it may be convenient to choose a Fa that is not minimal

in the sense discussed above, if it allows a large simpli�ca-

tion in the combinational part of the FSM. Our heuristic
approach is to try di�erent Fa of decreasing size (and com-

plexity), in an attempt to explore the trade-o� curve. We

generate a set of solutions using di�erent values of �, in
such a way that the possible range of solutions is uniformly

sampled. The details of this approach will not be discussed
here for space reasons.

4 Experimental results

We implemented the described algorithms as a part of

a tool-set for low-power synthesis that we are developing.

The tool reads the state transition table of the FSM. The
�rst step is the transformation of the Mealy machine to a

Locally-Moore machine and the extraction of the self-loops

from the Moore-states. We then apply the power method
to compute the exact state probabilities given an input

probability distribution

Once the state codes have been assigned (using JEDI
[17]), our probabilistic-driven procedure for the selection of

the activation function can start. First, all the primes of

the activation function are generated using symbolic meth-
ods [15], then the probability of the complete activation

function fa is computed starting from a minimized cover

(obtained with ESPRESSO [12])

The user speci�es the number of activation functions

that the procedure should generate, and the branch-and-

bound algorithms �nds reduced activation functions as

many times as it is requested. Surprisingly, for all the

MCNC benchmarks this step has never been the bottle-
neck. This is certainly due to the fact that the majority of

the FSM MCNC benchmarks do not have a large number

of self-loops (in particular the larger ones).

The combinational logic of the Locally-Moore FSM is

then optimized in SIS [12] using the additional DC set

Original Locally-M. Gated

Circuit Size P Size P Size P %

bbara 330 67 422 72 408 34 97

bbsse 640 121 742 137 736 119 2

bbtas 142 56 138 57 164 44 27

keyb 721 128 754 132 820 114 12

lion9 188 60 226 60 248 52 15

s298 7492 899 7496 900 7502 810 11

s420 544 132 544 132 602 108 22

scf 3222 437 3222 437 3169 400 9

styr 1474 159 2468 230 2534 208 0

test 348 73 442 76 374 32 128

Table 1: Results of our procedure applied to MCNC

benchmarks. Power is in �W.

given by the activation function. The DC-based minimiza-

tion of the combinational logic using the activation func-
tions is the main bottleneck of our procedure. In our tool

the user has the possibility to specify a CPU-time limit

for each minimization attempt. This of course limits the
possible improvements obtainable on large FSMs.

The activation functions are also optimized using SIS,

then the alternative solutions are mapped with CERES
[13], and the gated clocking circuitry is generated. Finally

the alternative gated clock implementations and the imple-

mentation of the original Mealy FSM are simulated with a
large number of test patterns using a switch level simulator

(IRSIM [18]) modi�ed for power estimation.

The quality of the results strongly depends on two fac-
tors. First, how much state splitting has been needed to

transform the machine in a locally-Moore one. Second, for

what percentage of the total operation time the FSM is in a
self-loop condition (this depends on the FSM structure and

on the input probability distribution). For machines with

a very small number of self-loops or a very low-probability
complete activation function, the area of improvement is

almost null. This is the case for many MCNC benchmarks

for which the �nal improvement is negligible. As for the
�rst problem, it may be worthy to investigate if, in case the

state duplication is too high, using an activation function

with the outputs of the FSM as additional inputs may lead
to better results.

Table 1 reports the performance of our tools on a sub-

set of the MCNC benchmarks. The �rst six columns show
the area (number of transistors) and the power dissipa-

tion of the normal Mealy FSM, the locally-Moore FSM

without gated clock and the locally-Moore machine with
gated clock. The last column shows the power improve-

ment, computed as (100(Pmealy=Pgated� 1)). Notice that,

if there is no power improvement this number is set to 0.

The tool is able to process all the benchmarks, but in

the table we list examples representative of various classes

of possible results. The benchmarks bbara and test are

reactive FSMs. The high number and probability of the

self-loops allow an impressive reduction of the total power

dissipation, even if the area penalty can be not negligible.

In contrast, for bbsse and styr there is no power re-

duction or even a power increase. The bbsse benchmark is

representative of a class of machines where the number and
probability of the self-loops is too small for our procedure

to obtain substantial power savings. The styr benchmark
has many self-loops, but they all have very low probability.

Moreover, the transformation to locally-Moore machine is

paid in this case with a too large area overhead.
For the other examples in the table the power savings

vary between 10% and 30%. For some of these machines

(s420 and scf), the self-loops are only on Moore states
and there is no area overhead for the locally-Moore trans-

formation. We included some of the large examples in the

benchmark suite (s298 and scf) to show the applicability
of our method to large FSMs.

From the observation of the results, it is quite clear

that several complex trade-o�s are involved. First, the
transformation to locally-Moore machine can sometimes

be very expensive in terms of area overhead. Second, the

choice of the best possible activation function is paramount
for good results. In fact, for many examples, the complete

activation function was too large, and reduced activation

functions gave better results.

5 Conclusions and future work

We have described a technique for the automatic syn-
thesis of gated clocks for FSMs of a very general class. We

want to emphasize that our method is a complete proce-

dure, from the FSMs high-level speci�cation to the fully
mapped network, and it has been tested with accurate

power estimation tools. The quality of our results depends

on the initial structure of the FSM, but we obtain substan-
tial power savings for a large class of �nite state machines.

We have presented a new transformation for Mealy

FSMs that makes them suitable for gated-clock implemen-
tation, and outlined a complete procedure for the synthesis

of an optimized combinational logic function whose pur-

pose is to stop the clock with high probability during the
operation of the machine.

Future research will concentrate on the implementation

of fully symbolic algorithm for the synthesis of the activa-
tion function and on the application of our techniques to

large synchronous networks.

6 Acknowledgements

This research is supported by NSF and ARPA under
contract number 9115432.

References

[1] M. Alidina, et al., \Precomputation-based sequential logic

optimization for low power," in ICCAD, Proceedings of

the International Conference on Computer-Aided Design,
pp. 74{80, Nov. 1994.

[2] L. Benini, P. Siegel and G. De Micheli, \Automatic synthe-

sis of gated clocks for power reduction in sequential circuit-

s" IEEE Design and Test of Computers, pp. 32{40, Dic.
1994.

[3] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer, \On av-

erage power dissipation and random pattern testability of

CMOS combinational logic networks," in ICCAD, Proceed-
ings of the International Conference on Computer-Aided
Design, pp. 402{407, Nov. 1992.

[4] C. Tsui, M. Pedram, and A. Despain, \Technology decom-

position and mapping targeting low power dissipation," in

DAC, Proceedings of the Design Automation Conference,
pp. 68{73, June 1993.

[5] K. Roy and S. Prasad, \Circuit activity based logic synthe-

sis for low power reliable operations," IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 1,
no. 4, pp. 503{513, Dec. 1993.

[6] L. Benini and G. De Micheli, \State assignment for low

power dissipation," in CICC, Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 136{139, May

1994.

[7] B. Suessmith and G. Paap III, \PowerPC 603 micropro-

cessor power management,"Communications of the ACM,

no. 6, pp. 43{46, June 1994.

[8] K. Trivedi. Probability and statistics with reliability, queu-
ing and computer science applications. Prentice-Hall, 1982.

[9] G. Hachtel, E. Macii, A. Pardo and F. Somenzi \Symbolic

algorithms to calculateSteady-Stateprobabilities of a �nite

state machine," in Proc. of IEEE European Design and
Test Conf., pp. 214{218, Feb. 1994.

[10] J. Schutz, \A 3.3V 0.6�m BiCMOS superscalar micropro-

cessor," in IEEE International Solid-State Circuits Con-

ference, pp. 202{203, Feb. 1994.

[11] J. Hartmanis and H. Stearns, Algebraic Structure Theory
of Sequential Machines. Prentice-Hall, 1966.

[12] E. Sentovich, et al., \Sequential circuit design using syn-

thesis and optimization," in ICCD, Proceedings of the In-
ternational Conference on Computer Design, pp. 328{333,

Oct. 1992.

[13] F. Mailhot and G. De Micheli, \Algorithms for technol-

ogy mapping based on binary decision diagrams and on

Boolean operations," IEEE Transactions on CAD/ICAS,
pp. 599{620, May 1993.

[14] G. De Micheli. Synthesis and optimization of digital cir-

cuits. McGraw-Hill, 1994.

[15] O. Coudert and C. Madre, \Implicit and incremental com-

putation of primes and essential primes of Boolean func-

tions," in DAC, Proceedings of the Design Automation

Conference, pp. 36{39, June 1992.

[16] R. Marculescu, D. Marculescu and M. Pedram, \Switching

activity analysis considering spatiotemporal correlations,"

in ICCAD, Proceedings of the International Conference on
Computer-Aided Design, pp. 294{299, Nov. 1994

[17] B. Lin and A. R. Newton, \Synthesis of multiple-level logic

from symbolic high-level description languages," in Proc.
of IEEE Int. Conf. On Computer Design, pp. 187{196,

Aug. 1989.

[18] A. Salz and M. Horowitz, \IRSIM: an incremental MOS

switch-level simulator," in DAC, Proceedings of the Design

Automation Conference, pp. 173{178, June 1989.

