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Abstract
The broad class of conditional transformation models includes interpretable and simple as well as potentially very complex
models for conditional distributions. This makes conditional transformation models attractive for predictive distribution
modelling, especially because models featuring interpretable parameters and black-box machines can be understood as
extremes in a whole cascade of models. So far, algorithms and corresponding theory was developed for special forms of
conditional transformation models only: maximum likelihood inference is available for rather simple models, there exists a
tailored boosting algorithm for the estimation of additive conditional transformation models, and a special form of random
forests targets the estimation of interaction models. Here, I propose boosting algorithms capable of estimating conditional
transformation models of arbitrary complexity, starting from simple shift transformation models featuring linear predictors to
essentially unstructured conditional transformation models allowing complex nonlinear interaction functions. A generic form
of the likelihood is maximized. Thus, the novel boosting algorithms for conditional transformation models are applicable to
all types of univariate response variables, including randomly censored or truncated observations.

Keywords Transformation model ·Distribution regression ·Conditional distribution function ·Conditional quantile function ·
Conditional hazard function · Probabilistic forecasting

1 Introduction

The future remains unknown, yet we have witnessed consid-
erably improved predictions owing to advances in statistical
and machine learning over the last two decades. Numer-
ous procedures, such as support vector machines, random
forests, and tree boosting, deliver accurate point predictions
of conditionalmeans.However, inmany applications, amean
prediction is not good enough. Full predictive distributions,
also known as probabilistic forecasts, are required in appli-
cations where an assessment of the associated uncertainty
is essential, for example in models of future disease pro-
gression (Küffner et al. 2015), electricity demand (Cabrera
and Schulz 2017), stock asset returns (Mitrodima and Griffin
2017), and counterfactual distributions (Chernozhukov et al.
2013). In these applications, the prediction “takes the form
of a predictive probability distribution over future quantities
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or events of interest” (Gneiting and Katzfuss 2014). Here, I
present a novel generic boosting approach to the estimation
of full predictive distributions under mild assumptions.

Apart from completely model-free procedures (such
as kernel smoothing, Li and Racine 2008), four main
approaches of obtaining predictive distributions exist. (1)
Flexible parametric models for conditional density functions
rely on a strict parametric model of the response distribution
those parameters might be linked to predictor variables in
complex ways, for example, in generalized additive mod-
els for location, scale, and shape (GAMLSS, Rigby and
Stasinopoulos 2005) and in heteroscedastic Bayesian addi-
tive regression tree ensembles (Pratola et al. 2017). (2)
Quantile regressionmodels for conditional quantiles of inter-
est can be modelled in a linear or nonlinear additive form
(Koenker 2005); more complex relationships can be esti-
mated by quantile regression forests (Meinshausen 2006;
Athey et al. 2019). (3) Distribution regression and trans-
formation models potentially allow response-varying (or
time-varying) effects (Foresi and Peracchi 1995; Rothe and
Wied 2013; Chernozhukov et al. 2013; Wu and Tian 2013;
Leorato and Peracchi 2015) in models for conditional dis-
tribution functions on the probit, logit, or complementary
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log–log scale. (4) Hazard regression (Kooperberg et al. 1995)
aims at estimating conditional nonproportional hazard func-
tions directly.

Boosting, and especially the statistical view on boosting
(Friedman et al. 2000; Bühlmann and Hothorn 2007), have
already proved helpful in these four different approaches.
Mayr et al. (2012) developed boosting for GAMLSS, con-
ditional quantile boosting was introduced by Fenske et al.
(2011), and nonproportional hazard boosting was recently
introduced by Lee and Chen (2018). Distribution regres-
sion is a special case of conditional transformation models
(Hothorn et al. 2014). What is interesting about condi-
tional transformation models is that very simple models,
such as the linear proportional odds and hazards models,
and essentially unstructured models for conditional distri-
bution functions can be understood in a unified theoretical
framework (Hothorn et al. 2018). The same level of gener-
ality is, however, lacking from an algorithmic perspective.
The boosting algorithm introduced by Hothorn et al. (2014)
is limited to additive models and explicitly excludes tree-
based interaction models. Furthermore, the target function
is approximate and applicable to responses observed with-
out censoring or truncation only. The aim of this work is
to establish a general computational framework that allows
specification, estimation, evaluation, and comparison in a
cascade of models starting with very simple linear mod-
els and ending with essentially unstructured models for
conditional distribution functions for arbitrary response vari-
ables.

Section 2 gives a dense introduction to transformation
models. An elaborate description and connections to well-
established models can be found in Hothorn et al. (2014)
and Hothorn et al. (2018). Sections 3 and 4 develop two
boosting algorithms for complex and simple transformation
models based on a generic form of the likelihood (techni-
cal details regarding the definition of the likelihood for all
types of response variables, including random censoring and
truncation, are discussed by Hothorn et al. 2018). Empirical
evaluations are presented in Sect. 5.

2 Transformationmodels

Let Y denote a univariate and at least ordered response vari-
able on a measurable space (Ξ,C) and X ∈ χ a set of
predictor variables with joint distribution (Y , X) ∼ PY ,X .
Based on random samples from PY ,X , the goal is to estimate
the conditional distribution PY |X=x of a response given pre-
dictors. For each conditional cumulative distribution function
FY |X=x(y) = PY |X=x({υ ∈ Ξ | υ < y}), a unique condi-
tional transformation function h : Ξ × χ → R exists such
that FY |X=x(y) = FZ (h(y | x)), assuming FZ : R → [0, 1]
is an a priori given cumulative distribution function of an

absolutely continuous random variable Z with log-concave
density fZ (Hothorn et al. 2018). The conditional transfor-
mation function h is monotonic in y

h(y | x) ≤ h(ȳ | x) for all y < ȳ ∈ Ξ, x ∈ χ. (1)

Starting with Box and Cox (1964), shift transformation
functions based on the decomposition h(y | x) = hY (y) −
β(x) featuring a baseline transformation function hY : Ξ →
R and a shift term β : χ → R have been studied intensively.
The proportional hazards (with FZ (z) = 1− exp(− exp(z)))
and proportional odds (with FZ (z) = expit(z)) models are
the most well-known representatives of this class of shift
transformation models (STM, often also referred to as linear
or nonlinear transformation models, depending on the func-
tional form of β(x)). Boosting procedures that allow flexible
estimationofβ(x)havebeen studied for proportional hazards
models under right censoring (Ridgeway 1999; Schmid and
Hothorn 2008; Lu and Li 2008; Yue et al. 2017) and propor-
tional odds models have been studied for ordered responses
(Schmid et al. 2011). A comparison of prominent and less
prominent members of this model class is given in Hothorn
et al. (2018).

Structured additive transformation functions that allow
interactions between the two arguments y and x of the
form h(y | x) = ∑J

j=1 h j (y | x) lead to conditional
transformation models (CTM, Hothorn et al. 2014). The
J partial transformation functions h j allow formulation
of problem-specific effects of the predictors x, such as
linear, nonlinear, spatio-temporal, or other model terms.
Distribution regression models featuring response-varying
effects are an important special case of this model class.
When x = (x1, . . . , xJ ) ∈ R

J , a distribution regression
model is characterized by partial transformation functions
h j (y | x j ) = β j (y)x j and corresponding interpretable
response-varying effects β j : Ξ → R. The analogon
of an additive model features partial transformation func-
tions h j (y | x j ), i.e. bivariate smooth functions of both y
and x j . These bivariate terms are more complex than the
one-dimensional coefficient functions β j (y) but can still be
visualized and interpreted. If x j is more complex, for exam-
ple, if it describes a spatial location, h j (y | x j ) might be a
spatially smooth term that captures unexplained spatial het-
erogeneity (Hothorn et al. 2014).

Models with transformation function h(y | x) =
∑J

j=1 h j (y | x j ) and potential applications are discussed in
Hothorn et al. (2014) and Hothorn et al. (2018). The standard
estimation of maximizing the continuously ranked probabil-
ity score over a discrete grid coveringΞ (Foresi and Peracchi
1995; Chernozhukov et al. 2013; Hothorn et al. 2014), poten-
tiallywith inverse probability of censoringweight adjustment
for right censoring (Möst and Hothorn 2015; Garcia et al.
2019), does not allow essentially unstructured transforma-
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tion functions h(y | x), including higher-order interactions,
and thus relaxation of the additivity assumption on the scale
of the transformation function h. Furthermore, it is compu-
tationally inefficient (because the data have to be expanded)
and is unable to handle censoring or truncation directly.

This paper addresses these issues by introducing compu-
tationally efficient boosted likelihood estimation for unstruc-
tured or structured additive conditional transformation func-
tions (Sect. 3) and shift transformation functions (Sect. 4)
under all forms of random censoring and truncation for at
least ordered responses based on potentially correlated obser-
vations.

3 Boosting the likelihood of conditional
transformationmodels

In the following, the conditional transformation function
h(y | x) = a(y)�ϑ(x) is parameterized in terms of basis
functions a : Ξ → R

P of the response and a conditional
parameter function ϑ : χ → R

P ; the latter function will be
estimated.

3.1 Definition of the likelihood

The parameterisation of h implies a conditional cumulative
distribution function P(Y ≤ y | X = x) = FZ (a(y)�ϑ(x))

and thus a conditional density

fY (y | ϑ(x)) = ∂FZ (a(y)�ϑ(x))

∂ y

= fZ (a(y)�ϑ(x))a′(y)�ϑ(x)

when y ∈ R comes from an absolutely continuous distri-
bution (a′ is the derivative of a). For discrete y ∈ Ξ =
{y1, y2, . . . }, the density function is

fY (yk | ϑ(x))

=
{
FZ (a(yk)�ϑ(x)) k = 1
FZ (a(yk)�ϑ(x)) − FZ (a(yk−1)

�ϑ(x)) k > 1.

There are also other forms of the density, for example,
in mixed discrete-continuous distributions. The population
optimizer for the conditional parameter function ϑ is

ϑ := argmax
ϑ :χ→RP

∫

log{ fY [y | ϑ(x)]} dPY ,X (y, x)

st. (1).

Based on N independent observations (yi , xi ), i =
1, . . . , N from PY ,X , empirical risk minimization with neg-
ative log-likelihood loss

ϑ̂N = argmax
ϑ :χ→RP

N∑

i=1

�i (ϑ(xi )) st. (1)

can be applied to estimate the conditional parameter function
ϑ . The log-likelihood contribution �i : RP → R for the i th
observation is given by

�i (ϑ(xi ))

=
{
log{ fY [yi | ϑ(xi )]} yi ∈ Ξ

log
{∫

yi
fY [y | ϑ(xi )] dμ(y)

}
yi ∈ C \ Ξ,

(2)

where the first case corresponds to an observation yi from
an absolutely continuous or ordered response and the second
case corresponds to the situation where a set or interval was
observed (for example, for a left-, right-, or interval-censored
observation yi ). Integration is with respect to the measure μ

dominating PY |X=x . Details on the likelihood function for
models parameterized by a(y)�ϑ(x), including gradients
(denoted ui in Algorithm 1) and Hessians under censoring
and truncation, are given in Hothorn et al. (2018).

3.2 Boosting the likelihood

The proposed boosting Algorithm 1 outputs a model of the
form

ϑ(x) = ϑ [0](x) +
B∑

b=1

�[b]b j(b)(x), (3)

with offset term ϑ [0](x) and j = 1, . . . , J a priori defined
basis functions b j : χ → R

Pj of the predictor variables.
The function j(b) returns the index of the basis function
b j which was selected in the bth iteration of the algorithm.
Each basis may be equipped with an explicit penalty func-
tion Pen j . The corresponding penalty parameter λ j is chosen
such that the degrees of freedom are the same for all J basis
functions to facilitate unbiasedmodel selection (Hofner et al.
2011). The number of terms B, selected basis functions j(b),
and corresponding coefficient matrices �[b] ∈ R

P×Pj(b) are
unknowns and are estimated from data. The basis functions
b j may feature unknown parameters. With relatively deep
regression trees b j (where the tree structure is estimated from
the data in every boosting iteration and � are the parameters
in each terminal node), model (3) is the sum of B trees and as
such is potentially highly unstructured. Similar to GAMLSS-
boosting (Mayr et al. 2012), a parameter vectorϑ is modelled
instead of a scalar predictor function. The main difference is
that all dimensions of the parameter vector ϑ are updated
simultaneously whereas each dimension is assigned its own
predictor function in GAMLSS-boosting.

Algorithm 1 is essentially a multivariate version of L2

boosting (Bühlmann and Yu 2003) using the negative trans-
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Algorithm 1 Boosting CTM Likelihoods

– Start with b = 0 and offset ϑ [0](xi ). Initialize base learners j =
1, . . . , J via basis functions b j , stepsize ν ∈ (0, 1), and bstop > 0

– Iterate

1. b → b + 1; stop if b > bstop
2. Compute multivariate negative gradient u[b]

i ∈ R
P of −�i

evaluated at ϑ [m−1](xi )

u[b]
i = ∂�i (ϑ)

∂ϑ

∣
∣
∣
∣
ϑ=ϑ [m−1](xi )

with components u[b]
i =

(
u[b]
i,1, . . . , u

[b]
i,P

)
for i = 1, . . . , N

3. Fit base learners j = 1, . . . , J by (penalized)multivariate least
squares

�̂ j = argmin
��=(γ 1,...,γ P )

P∑

p=1

{[
N∑

i=1

(
u[b]
i p − b j (xi )�γ p

)2
]

+λ jPen j (γ p)
}

4. Select base learner with minimal quadratic error

j(b) = argmin
j=1,...,J

N∑

i=1

(
u[b]
i − �̂ j b j (xi )

)� (
u[b]
i − �̂ j b j (xi )

)

and �[b] = ν�̂ j(b)

5. Update ϑ [b](xi ) = ϑ [m−1](xi ) + �[b]b j(b)(xi ) for i =
1, . . . , N

– Output ϑ̂N (xi ) = ϑ [bstop](xi ), i = 1, . . . , N

formation log-likelihood (2) as loss function. This choice
makes the algorithm agnostic with respect to the scale of
the response variable and potential censoring or truncation.
The default offset is the unconditional maximum-likelihood
estimator ϑ [0](xi ) ≡ ϑ̂ML for i = 1, . . . , N that maximizes∑N

i=1 �i (ϑ). The algorithm is also applicable to the high-
dimensional setting where the number of predictor variables
exceeds the number of observations N . The number of boost-
ing iterations bstop is a tuning parameter that has to be chosen
by the out-of-sample log-likelihood for a validation sample
i = N + 1, . . . , N + Ñ

B̂ = b̂stop = argmax
b=0,1,...

N+Ñ∑

i=N+1

�i (ϑ
[b](xi )).

Model choice, for example using cross-validation, subsam-
pling, or the bootstrap, can also be implemented conveniently
by comparing this out-of-sample log-likelihood of different
candidate models.

An additional advantage of this algorithm over boosted
continuously ranked probability scores (“CTM-CRPS-
boosting”, Hothorn et al. 2014) is that computations of ten-
sor products in a(y)� ⊗ b j (x)�vec(�) = a(y)��b j (x)

are never explicitly required because the linear array model

formulation (i.e. the right-hand side of the equation, see Cur-
rie et al. 2006, formula 2.5) formula 2.5 is implemented by
Algorithm 1. This allows estimation of potentially highly
unstructuredmodels by choosing relatively deepmultivariate
regression trees as basis functions b.Moreover, the algorithm
does not require expansion of the data set (to size sample size
N 2, in the worst case).

3.3 Model interpretation

The partial transformation functions h j can be obtained from
the boosted model (3)

h j (y | x) = a(y)�
⎛

⎝
∑

b: j(b)= j

�(b)b j(b)(x)

⎞

⎠

= a(y)�ϑ j (x).

The choice b j (x) = x j results in the distribution regression
model FY |X=x(y) = FZ (hY (y)−x�β(y))with partial trans-
formation functions h j (y | x j ) = x jβ j (y) = x j a(y)�ϑ j

and corresponding response-varying effects β j (y) = a(y)�
ϑ j . Thus, this boosting procedure can also be used to esti-
mate Cox models with time-varying effects under all forms
of random censoring and truncation. Nonlinear effects can
be implemented by a B-spline basis b j (x) = b j (x j ), and
more complex bases allow specification of terms that capture
spatio-temporal correlations or other forms of unexplained
heterogeneity (Kneib et al. 2009; Hofner et al. 2011). A
collection of commonly used basis functions b, along with
corresponding penalty functions and interpretable model
terms, is reviewed in Mayr and Hofner (2018). Specific
choices of basis functions underlying the empirical results
presented in Sect. 5 are discussed in detail in Hothorn (2019).

4 Boosting the likelihood of shift
transformationmodels

A comparison of conditional transformation models that
allow interactions of y and x in the transformation function
h with shift transformation models in which these terms are
absent can help to identify situations where the simpler mod-
els perform as good as or even better than the more complex
models. Likelihood boosting for shift transformation mod-
els of the form h(y | x) = a(y)�ϑ − β(x) is presented as
Algorithm (2).

The procedure outputs a model

β(x) = β[0](x) +
B∑

b=1

�[b]b j(b)(x),
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Algorithm 2 Boosting STM Likelihoods

– Start with offset β[0](x) = 0; other choices as in Algorithm 1
– Iterate

1. b → b + 1; stop if b > bstop
2. Update ϑ [b] = argmaxϑ∈RP

∑N
i=1 �i (ϑ, β[b−1](xi )) and

compute univariate negative gradient u[b]
i ∈ R evaluated at

β[b−1](xi )

u[b]
i = ∂�i (ϑ

[b], β)

∂β

∣
∣
∣
∣
∣
β=β[b−1](xi )

3. Fit base learners j = 1, . . . , J by (penalized)multivariate least
squares

γ̂ j = argmin
γ

{[
N∑

i=1

(
u[b]
i p − b j (xi )�γ

)2
]

+ λ jPen j (γ )

}

4. Select base learner with minimal quadratic error

j(b) = argmin
j=1,...,J

N∑

i=1

(
u[b]
i − b j (xi )�γ̂ j

)2

and γ [b] = νγ̂ j(b)

5. Update β[b](xi ) = β[b−1](xi ) + b j(b)(xi )�γ [b] for i =
1, . . . , N

– Output ϑ̂N = argmaxϑ∈RP
∑N

i=1 �i (ϑ, β̂N (xi )) and β̂N (xi ) =
β[bstop](xi ), i = 1, . . . , N

with univariate shift function β(x) ∈ R, i.e. with γ � =
� ∈ R

1×Pj . In contrast to conditional transformationmodels,
the model term β(x) does not depend on y and thus shift
transformation models are easier to interpret. L2 boosting in
this setup is performed based on log-likelihood contributions
�i (ϑ, β(xi )) for �i : RP+1 → R from densities

fY (y | ϑ, β(x)) = ∂FZ (a(y)�ϑ − β(x))

∂ y

= fZ (a(y)�ϑ − β(x))a′(y)�ϑ

for the absolutely continuous case and

fY (yk | ϑ, β(x))

=
{
FZ (a(yk)�ϑ − β(x)) k = 1
FZ (a(yk)�ϑ − β(x)) − FZ (a(yk−1)

�ϑ − β(x)) k > 1

for the discrete case. The core idea is to update the nui-
sance parameter ϑ before computing the gradients in every
boosting iteration (following Schmid andHothorn 2008). For
discrete proportional odds models, Algorithm (2) is equiv-
alent to the procedure proposed by Schmid et al. (2011).
The ability to handle censoring and truncation in the like-
lihood allows proportional hazards models with potentially
very flexible log-hazard ratios β(x) to be fitted to randomly

censored (including left- and interval-censoring) or truncated
responses.

5 Empirical evaluation

The rationale for the empirical evaluation of Algorithms 1
and 2 was to demonstrate that interpretable transformation
models can be estimated for applications where information
about predictive distribution matters (Sect. 5.1) and to inves-
tigate the robustness of boosted transformationmodels under
model misspecification (Sect. 5.2).

5.1 Applications

Eight life science applications in which estimation of a
predictive distribution is of special interest are listed in
Table 1. Four applications are described by a continuous
response, two feature an ordered categorical response, and
two feature a right-censored response. Except for the Bee-
tle Extinction Risk application, which requires a discrete
basis a, a Bernstein basis a of order M = 6 (for technical
details see Hothorn et al. 2018) was used to parameterize the
transformation functions. Conditional transformation mod-
els (Algorithm 1) with nonlinear (N, using B-splines), linear
(L), and tree-based (T, of depth two and thus allowing only
two-way interactions) basis functions b as well as shift trans-
formation models (Algorithm 2) using the same bases were
evaluated. The performance of these boosted transformation
models was compared to the performance of transforma-
tion trees and transformation forests (Hothorn and Zeileis
2017). The latter two procedures estimate conditional trans-
formation models of the form FZ (a(y)�ϑ(x)), where ϑ(x)

is obtained either from a single tree (transformation trees)
or from a nonlinear interaction function (transformation for-
est). I hypothesized a priori that transformation trees should
perform worst across all applications because this method
corresponds to the most simple (but easily interpretable)
model. Also, I expected transformation forests to outperform
transformation trees and to perform only slightly worse than
the best performing boosting procedure because of the high
adaptivity of the underlying random forest procedure. My
motivation for this experiment was the hope that I would be
able to find a simple and interpretable transformation model
that outperforms the most complex transformation forests by
means of either Algorithm 1 or 2.

Subsampling (with n = 3/4N observations in the learning
and ñ = 1/4N observations in the validation sample) was
performed 100 times. Performance of the competitors was
assessed by the out-of-sample log-likelihood centered by the
out-of-sample log-likelihood of the unconditional transfor-
mation model FZ (a(y)�ϑ̂ML). For a learning sample of size
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Table 1 Applications. Eight
prediction problems with
continuous, ordered categorical
(number of categories in
parentheses), or right-censored
response (per cent censored in
parentheses)

Application Source N Y X FZ

Beetle Extinction Risk Seibold et al. (2015) 1025 Ordered (6) (7, 3) expit

Birth Weight Prediction Schild et al. (2008) 150 Continuous (5, 0) Φ

Body Fat Mass Garcia et al. (2005) 71 Continuous (9, 0) Φ

CAO/ARO/AIO-04 DFS Rödel et al. (2015) 1153 Survival (71%) (3, 15) MEV

Childhood Malnutrition Fenske et al. (2011) 24166 Continuous (6, 14) Φ

Head Circumference Fredriks et al. (2000) 7040 Continuous (1, 0) Φ

PRO-ACT ALSFRS Küffner et al. (2015) 1013 Ordered (50) (43, 16) expit

PRO-ACT OS Seibold et al. (2017) 2711 Survival (69%) (3, 16) MEV

Number of complete observations N and number of (numeric, categorical) predictor variables X . FZ is the
cumulative distribution function of the standard normal (Φ), standard logistic (expit), or standard minimum
extreme value distribution (MEV, the inverse complementary log–log)

n and a validation sample i = n + 1, . . . , ñ, the centered
out-of-sample log-likelihood is given by

ñ−1
n+ñ∑

i=n+1

�i

(
ϑ [b̂stop](xi )

)
− ñ−1

n+ñ∑

i=n+1

�i (ϑ̂ML).

Values close to zero indicate that the conditional model did
not outperform the unconditional model.

The results presented in Table 2 demonstrate that the
best-performing method was always a boosted transforma-
tion model. Transformation forests performed only slightly
worse than the topmodel for theBeetle ExtinctionRisk, Birth
Weight Prediction, Body Fat Mass, and Childhood Malnu-
trition applications. In the remaining four applications, the
best boosting procedure outperformed transformation forests
substantially. Nonlinear conditional transformation models
(N ϑ(x)) performed best twice, as did tree-based shift trans-
formation models (T β(x)). Each of the remaining models
ranked at the top once. Transformation trees outperformed
transformation forests for two applications (Head Cirumfer-
ence and PRO-ACT ALSFRS) but never performed better
than any of the boosted transformation models.

Graphical representations of the distributions of out-of-
sample log-likelihoods along with the exact model and
algorithm specification and corresponding software imple-
mentation are presented for all eight applications in Hothorn
(2019).

5.2 Artificial data-generating processes

The response Y was generated conditionally on two groups
and one numeric predictor variable x ∈ [0, 1] following a
transformation model of the form

P(Y ≤ y | Group, x) = Φ(h(y | Group, x)),

where the conditional transformation function h(y |
Group, x) = Φ−1(P(Y ≤ y | Group, x)) for four data-

generating processes (DGPs) is given in Table 3. The model
labelled “Linear β(x)” is a shift transformation model with a
main effect of group, a linear main effect of x , and a cor-
responding linear interaction effect. The linear main and
interaction effects of x are replaced by nonlinear effects (a
scaled sin function) of x in the shift transformation model
“Nonlinear β(x)”. The extension to response-varying main
and interaction effects defines the distribution regression
model “Linear ϑ(x)” and the conditional transformation
model “Nonlinear ϑ(x)”. The coefficients of the terms
introduced in Table 3 are given in Table 4. Details of the
implementation of these DGPs are explained in Hothorn
(2019). The conditional densities associated with the four
DGPs are shown in Fig. 1.

Models were evaluated by out-of-sample log-likelihoods
centered by the out-of-sample log-likelihood of the true DGP
(for test samples of size Ñ = 2000)

Ñ−1
N+Ñ∑

i=N+1

�i

(
ϑ [b̂stop](xi )

)
− Ñ−1

N+Ñ∑

i=N+1

�i (ϑTrue),

where ϑTrue is as given in Tables 3 and 4.
In Part A of this simulation, nonlinear (N, using B-

splines), linear (L), and tree-based (T, of depth six, which
allows higher-order interactions) basis functions b for shift
transformation models, i.e. models for β(x), and for con-
ditional transformation models, i.e. models for ϑ(x), were
evaluated for sample sizes N = 75, 150, 300 under correctly
specified models; this means that models were fitted using
the correct distribution function FZ = Φ, the correct order
M = 6 of a, no uninformative predictor variables, and the
correct basis functions. Both the linear and nonlinear models
were fitted with basis functions representing a main effect
of group, a main effect of x , and a corresponding interac-
tion effect, whereas trees had to learn this structure from
the data. In Part B, these models were evaluated under model
misspecification, i.e. using the incorrect distribution function
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Table 3 Artificial
data-generating processes
(DGPs). Description of four
simulation models

DGP Φ−1(P(Y ≤ y | Group 1, x)) Φ−1(P(Y ≤ y | Group 2, x))

Linear β(x) hY (y) − 2x hY (y) + 2 − x

Nonlinear β(x) hY (y) − 2g(x) hY (y) + 2 − g(x)

Linear ϑ(x) hY (y) − β1(y) − β2(y)x hY (y) + β1(y) − (β2(y) + β3(y))x

Nonlinear ϑ(x) hY (y) − β1(y) − β2(y)g(x) hY (y) + β1(y) − (β2(y) + β3(y))g(x)

g(x) = sin(2πx)(1 + x), hY , β1, β2, β3 are Bernstein polynomials of order M = 6 on the interval (− 4, 6)
(see Hothorn et al. 2018)

Table 4 Artificial
data-generating Processes
(DGPs). Coefficients of baseline
transformation hY and
response-varying effects β1, β2,
and β3

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7

hY (y) − 4.000 − 0.601 1.065 1.000 2.667 4.333 6.000

β1(y) 0.000 − 0.518 − 1.000 − 1.414 − 1.732 − 1.932 − 2.000

β2(y) 0.000 0.816 1.155 1.414 1.633 1.826 2.000

β3(y) 0.000 − 0.259 − 0.500 − 0.707 − 0.866 − 0.966 − 1.000

All functions are parameterized as a Bernstein polynomial a(y)�ϑ of order M = 6 on the interval (−4, 6)
(Hothorn et al. 2018), whose coefficients ϑ = (ϑ1, . . . , ϑ7) are given in this table

FZ = expit (standard logistic distribution) or FZ = MEV
(standard minimum extreme value distribution), a too large
dimension of the Bernstein basis a (M = 12), or J+ = 5, 25
additional uninformative uniform predictor variables. The
same “correct” basis functions as in Part A were used in
Part B. I hypothesized a priori that models exactly matching
the DGP would perform best and that tree-based boosting
would outperform boosting with linear basis functions in
nonlinear problems. Under misspecification, I expected the
performance of all models to decrease, but this general rank-
ing to persist.

The results for Part A presented in the top three rows of
Table 5 show that the model corresponding to the underlying
DGP was associated with the largest median out-of-sample
log-likelihood. For linear DGPs, the performance of boosted
models with nonlinear basis functions was only slightly infe-
rior to the performance of boosted models with linear basis
functions, while tree-based boosting performed substantially
worse in this situation. By contrast, the signal in nonlinear
DGPs was captured relatively well by tree-based boosting,
whereas linear basis functions were not able to recover this
signal. This shows that tree-based boosting was able to adapt
to the underlying nonlinear interaction signal in the two non-
linear simulation models “Nonlinear β(x)” and “Nonlinear
ϑ(x)”.

The out-of-sample log-likelihoods for misspecified mod-
els presented in Table 5, Part B for FZ = Φ, follow this
general pattern in that the model corresponding to the DGP
performed best and tree-based boosting outperformed boost-
ing with linear basis functions on nonlinear problems. In
only two cases, which were characterized by small samples,
did a linear model for ϑ(x) outperform a true linear model
for β(x) or vice versa. More frequently, the too complex
nonlinear model for ϑ(x) outperformed the nonlinear model

for β(x) slightly. Overall, Algorithms 1 and 2 seemed to be
robust against overly complex basis functions a and addi-
tional noninformative predictor variables.

This was also true under a misspecified distribution func-
tion FZ = expit for linear shift transformation models
“Linear β(x)”. More severe deviations occurred when an
incorrect FZ = expit was used for model specification in
Algorithms 1 and 2 under the nonlinear shift transformation
model “Nonlinearβ(x)”, distribution regressionmodel “Lin-
ear ϑ(x)”, and conditional transformation model “Nonlinear
ϑ(x)”. The absolute differences in the corresponding out-of-
sample log-likelihoods were, however, marginal in most of
these cases.

When the asymmetric standard minimum value distribu-
tion was used (FZ = MEV), the distortions were more
pronounced. The general pattern observed for FZ = expit
was the same, but the centered out-of-sample log-likelihoods
seemed in general smaller in this setup. Visualizations of the
distributions underlying the figures in Table 5 are presented
in Hothorn (2019).

6 Discussion

Models defined in terms of simple linear transformation
functions up tomodels featuring unstructured complex trans-
formation functions can be specified, estimated, evaluated,
and compared in the unified computational framework of
Algorithms 1 and 2. Data analysts are no longer limited in
their freedom to define and estimate transformation mod-
els, because the strong ties between models of a certain
complexity and a tailored estimation procedure (such as
CTM-CPRS-boosting for additive or transformation forests
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Fig. 1 Artificial
Data-generating Processes
(DGPs). Conditional densities
given two groups (left and right
panel) and x ∈ [0, 1] (gray color
coding) for four different
data-generating processes
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for interaction models) can be cut with the boosting algo-
rithms presented here.

For model specification, the choice of FZ is important
in simple shift transformation models because it affects the
interpretation of model parameters (log-odds ratios vs. log-
hazard ratios, for example). In more complex models, a
direct interpretation of parameters is hardly possible, and
the estimated conditional distribution functions are insen-
sitive to the choice of FZ (Hothorn et al. 2018). However,
one could use Algorithm 1 to estimate an unstructured log-
hazard function a(y)�ϑ(x)+ log(a′(y)�ϑ(x)) in the model
P(Y ≤ y | X = x) = 1 − exp(− exp(a(y)�ϑ(x)), with
ϑ(x) being, for example, the sum of B deep trees. The log-

likelihood risk function employed here, which is also able
to handle time-varying covariates through appropriate trun-
cation, avoids the technical obstacles reported by Lee and
Chen (2018) when defining an appropriate nonparametric
risk function for boosting in a class of models for conditional
log-hazard functions.

In contrast to quantile regression, where separate models
for each quantile are fitted, likelihood boosting for transfor-
mation models estimates conditional distribution functions
simultaneously for all quantiles. It is interesting to note
that a recently suggested Bayesian approach to simulta-
neous linear quantile regression (Yang and Tokdar 2017)
maximizes a log-likelihood obtained from a numerical inver-
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sion of the quantile function instead of using the traditional
check risk minimization. In light of this approach, it seems
computationally attractive to model the distribution function
in the distribution regression model FY |X=x(y | X = x) =
FZ (hY (y) − x�β(y)) rather than the quantile function in
a quantile regression model QY |X=x(τ | X = x) =
α(τ) + x�δ(τ ) of the same complexity (τ ∈ [0, 1]; α

and δ being the probability-varying intercept and coefficient
functions, respectively). Bayesian inference for the corre-
sponding model parameters in conditional transformation
models is, however, still under development (Mitrodima and
Griffin 2017).

Computational details

A reference implementation of transformation boosting
machines (Algorithms 1 and 2) is available in the tbm
package (Hothorn 2019). Analyses of all applications and
simulation results can be reproduced in the dynamic doc-
ument Hothorn (2019). All computations were performed
using R version 3.5.2 (R Core Team 2018).
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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