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Abstract

The identification of succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate

dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular

metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of

succinate and fumarate, respectively, which can inhibit 2-oxoglutarate (2-OG)-dependent

enzymes, including the EglN prolyl 4-hydroxylases that mark the HIF transcription factor for

polyubiquitylation and proteasomal degradation 1. Inappropriate HIF activation is suspected of

contributing to the pathogenesis of SDH-defective and FH-defective tumors but can suppress

tumor growth in some other contexts. IDH1 and IDH2, which catalyze the interconversion of

isocitrate and 2-OG, are frequently mutated in human brain tumors and leukemias. The resulting

mutants display the neomorphic ability to convert 2-OG to the R-enantiomer of 2-

hydroxyglutarate (R-2HG) 2, 3. Here we show that R-2HG, but not S-2HG, stimulates EglN
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activity leading to diminished HIF levels, which enhances the proliferation and soft agar growth of

human astrocytes.

To study the role of IDH mutations in brain tumors, we stably infected immortalized human

astrocytes with retroviral vectors encoding hemagglutinin (HA)-tagged versions of wild-type

IDH1, a tumor-derived mutant (IDH1 R132H) 2,3, or an IDH1 R132H variant in which three

conserved aspartic acid residues within the IDH1 catalytic domain were replaced with

asparagines (R132H/3DN) (Fig 1a and Supplementary Fig 1). As expected, R-2HG levels,

but not S-2HG levels, were dramatically increased in the cells producing IDH1 R132H but

not in cells producing the R132H/3DN variant (Fig 1b, Supplementary Fig 2). In multiple

independent experiments the IDH1 R132H cells acquired a proliferative advantage relative

to cells producing the other versions of IDH1 beginning around passage 14, manifested as

increased proliferation at confluence (Fig 1c) and the ability to form macroscopic colonies in

soft agar (Fig 1d and e).

Consistent with recent reports, we found that both R-2HG and S-2HG inhibit a number of 2-

OG-dependent enzymes in vitro 4-6, including the collagen prolyl 4-hydroxylases, the TET1

and TET2 methyl cytosine hydroxylases, the HIF asparaginyl hydroxylase FIH and the

JMJD2D histone demethylase, with S-2HG being a more potent inhibitor than R-2HG

(Supplementary Fig 3 and data not shown). S-2HG was also a micromolar to low millimolar

inhibitor of the three mammalian HIF prolyl 4-hydroxylases (EglN1, EglN2, and EglN3)

under standard assay conditions, which included 10 μM 2-OG (Supplementary Fig 4). In

contrast, R-2HG was not an effective EglN inhibitor (IC50 values >5 mM) (Supplementary

Fig 4). Moreover, we discovered unexpectedly that R-2HG, but not S-2HG, promoted

EglN1 and EglN2 activity, and to a lesser extent EglN3 activity, at tumor-relevant

concentrations (low mM) in reactions that lacked exogenous 2-OG (Fig 2a, c, d and

Supplementary Fig 5a and b). This was specific because R-2HG did not promote collagen

prolyl 4-hydroxylase activity (Fig 2b) or JMJD2D histone demethylase activity (data not

shown). Similar results were obtained with EglN1 purified from either insect cells or E. coli

and with a heat-inactivated HIF polypeptide substrate (Supplementary Fig 6), making it

unlikely that ability of R-2HG to promote EglN activity required a contaminating enzyme.

To determine how R-2HG might promote EglN activity, we monitored the EglN1 prolyl 4-

hydroxylase reaction using LC-MS. 2-OG and succinate were detected when catalytically

active EglN1 was incubated with 5 mM R-2HG and a recombinant HIF1α polypeptide,

suggesting that EglN1 can oxidize R-2HG to 2-OG, which is then decarboxylated to

succinate during the hydroxylation reaction (Fig 2e and Supplementary Fig 5c). In support

of this model, 13C-labelled succinate was generated in EglN hydroxylation assays that

contained uniformly labelled 13C-R-2HG (Supplementary Fig 5d).

Consistent with the idea that R-2HG can substitute for 2-OG as a cosubstrate, addition of

increasing amounts of R-2HG to EglN1 assays containing 10 μM 2-oxo-[1-14C]glutarate

progressively decreased the release of 14CO2 without decreasing the prolyl hydroxylation of

HIF1α, even at concentrations as high as 100 mM (Supplementary Fig 7). Modeling of 2HG

bound to the active site of EglN1 predicts that binding of the S enantiomer, but not the R

enantiomer, would prevent the subsequent recruitment of oxygen to the active site, perhaps

accounting for the qualitatively different effects of the two enantiomers on EglN activity

(Fig 2f and Supplementary Fig 5e).

To ask if these findings were relevant in vivo we examined the HIF levels in IDH1 mutant

cells. In keeping with our biochemical results, HIF1α and HIF2α protein levels were

reproducibly lower in midpassage (p9-p15) human astrocytes producing IDH1 R132H

relative to control astrocytes (Fig 3a), due at least partly to increased HIFα hydroxylation
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and diminished protein stability (Supplementary Figs 8 and 9), and were associated with

lower levels of the HIF-responsive mRNAs encoding VEGF, GLUT1, and PDK1

(Supplementary Fig 10a). Oxygen consumption and ROS production, which can also affect

HIF levels and the HIF response, were not measurably altered in the IDH1 mutant cells

(Supplementary Fig 11). R132H-expressing cells were relatively resistant to the 2-OG

competitive antagonist DMOG, but not to the iron chelator deferoxamine (DFO) (Fig 3b),

consistent with R-2HG acting as a 2-OG agonist in intact cells. In later passage (> p20)

IDH1 R132H NHA cells HIF levels began to normalize despite persistent production of the

exogenous IDH1 protein and R-2HG (Supplementary Fig 12), possibly due to adaptive HIF-

responsive feedback loops such as those involving EglN3 and miR-155 1,7. These cells,

however, retained the ability to form colonies in soft agar (data not shown) and remained

addicted to EglN activity (see below).

Similarly, the induction of HIF1α and HIF-responsive mRNAs by hypoxia was diminished

in two independent cell lines derived from two IDH1 R132H, 1p/19q-codeleted,

oligodendrogliomas compared to a control IDH1 wild-type, 1p/19q-codeleted,

oligodendroglioma that had been generated in a similar fashion (Fig 3c and Supplementary

Fig 10b). Although these three cell lines have similar growth kinetics in vitro (data not

shown) they are not isogenic. We therefore also tested two HCT116 colorectal cancer cell

sublines wherein the R132H mutation was introduced into the endogenous IDH1 locus by

homologous recombination. These sublines also displayed a diminished HIF response

compared to wild-type cells unless EglN was pharmacologically (DFO) or genetically

(shRNA) inactivated (Fig 3d and 3e and Supplementary Fig 13).

Finally, we asked whether IDH mutational status influenced HIF activity in primary patient

astrocytoma samples using the TCGA expression data set 8 and a previously defined HIF-

responsive gene expression signature 9. The HIF signature was diminished in proneural

tumors, which is the subtype most often associated with IDH mutations 8, relative to other

gene expression-defined subtypes of brain cancer (Supplementary Fig 14a and b) and,

notably, was diminished in IDH mutant proneural tumors relative to wild-type proneural

tumors (Fig 3f and Supplementary Fig 14c). Similar results were obtained with other

previously published HIF gene sets and with a manually curated data set (Supplementary Fig

14a and d).

Downregulating HIF1α with 3 independent shRNAs promoted soft agar growth by

immortalized human astrocytes after ~ 15 passages (Fig 4a and b and Supplementary Fig

15), as did overproduction of wild-type, but not catalytic-defective, EglN1 (Fig 4c and d and

Supplementary Fig 16). Conversely, downregulation of EglN1 with multiple shRNAs

inhibited the proliferation of late passage IDH1 R132H cells (Fig 4e and f and

Supplementary Fig 17) unless HIF1α was concurrently ablated (Fig 4g and h and

Supplementary Fig 18).

Collectively, these data suggest EglN activation by R-2HG, and subsequent downregulation

of HIF1α, contributes to the pathogenesis of IDH mutant gliomas. Our data do not,

however, exclude that R-2HG has additional targets, including TET2 and JmjC-containing

histone demethylases, that contribute to its ability to transform cells4-6. Indeed, we found

that downregulation of TET2 in human astrocytes also promotes soft agar growth

(Supplementary Fig 19). Nonetheless, our finding that R-2HG and S-2HG are qualitatively

different with respect to EglN might explain the apparent selection for R-2HG in adult

tumors, despite the fact that S-2HG is a more potent inhibitor of most of the 2-OG-

dependent enzymes tested to date. It should be noted, however, that S-2HG has been linked

to neurological abnormalities and brain tumors in children and young adults with germline

S-2-HG dehydrogenase mutations 10-12. The pathogenesis of R-2HG-driven tumors linked to
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somatic IDH mutations in adults and S-2HG-driven tumors linked to inborn errors of

metabolism conceivably differ, with the latter possibly reflecting the perturbation of one or

more neurodevelopmental programs during embryogenesis.

Nor are our data incompatible with the finding that HIF1α protein levels are increased in

IDH mutant tumors relative to normal brain 13. Our data simply suggest that R-2HG

quantitatively shifts the dose-response linking HIF activation to hypoxia, leading to a

blunted HIF response for a given level of hypoxia. In support of this idea, HIF elevation in

IDH mutant tumors is usually confined to areas of necrosis and presumed severe hypoxia 14.

Although HIF is typically viewed as an oncoprotein it can behave as a tumor suppressor in

embryonic stem cells 15,16, leukemic cells 17, and brain tumor cells 18,19. For example,

Bergers and coworkers showed that HIF1α scores as an oncoprotein when transformed

murine astrocytes are grown subcutaneously but as a tumor suppressor when such cells are

grown orthotopically 19. This finding, together with our results, raises the possibility that

pharmacological inhibition of EglN activity (and the resulting increase in HIF activity)

would impair the growth of IDH1 mutant tumors. A caveat, however, is that IDH mutant

tumors tend to be relatively indolent 20. It is possible that low levels of HIF1α, while

promoting some aspects of transformation, simultaneously suppress other hallmarks of

cancer required for aggressive behavior (such as angiogenesis).

The published 2-OG Km values for the EglN family members are below the estimated

intracellular 2-OG concentration 21,22, suggesting that 2-OG should not be limiting for EglN

activity and that EglN activity would not be enhanced further by R-2HG. A caveat is that a

considerable amount of intracellular 2-OG appears to be sequestered in mitochondria and

might also be bound by other 2-OG-dependent enzymes 22. Moreover, these 2-OG Km

values were determined under idealized conditions with purified enzymes and substrates in

the absence of endogenous inhibitors such as reactive oxygen species, nitric oxide, and 2-

OG competitive molecules such as succinate and fumarate 1. Studies in model organisms

suggest that many metabolic enzymes are saturated in vivo with a mixture of substrate and

competitive inhibitors and thus sensitive to changes in substrate concentrations that are far

above their nominal Km values 23,24 We confirmed that succinate and fumarate increase the

2-OG requirement for the EglN reaction and that their inhibitory activity, like that of DMOG

(Fig 3b) and its active derivative 2-oxalyl glycine, is blunted in the presence of R-2HG

(Supplementary Fig 20).

We have not yet formally proven that R-2HG is sufficient to downregulate HIF in intact

cells. It is possible, for example, that additional metabolic changes in IDH mutant cells

sensitize them to the HIF modulatory effects of R-2HG 25. Another, potentially related,

observation is that both downregulation of HIF and transformation by mutant IDH in

immortalized human astrocytes, although highly reproducible, was only noted after multiple

passages. HIF activates a number of genes, including genes that participate in feedback

regulation of the HIF response and genes that modify chromatin structure 1. It is possible

that modulation of the HIF response over time, perhaps in conjunction with alterations in

other enzymes affected by 2-HG, leads to epigenetic changes that ultimately are responsible

for transformation. If so, it will be important to determine the degree to which such changes

are reversible.

METHODS

Cell lines

Normal Human Astrocyte (NHA) cell line immortalized with E6/E7/hTERT was described

elsewhere 26 and was maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)
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containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in the presence of

10% CO2 at 37°C. Following retroviral infection, cells were maintained in the presence of

hygromycin (100 μg/ml).

Introduction of the IDH1 R132H mutation into HCT116 colon cancer cell lines by

homologous recombination was as previously described 27. Briefly, targeting constructs

were designed utilizing the pSEPT rAAV shuttle vector 31. Homology arms for the targeting

vector were PCR-amplified from HCT116 genomic DNA using Platinum Taq HiFi

polymerase (Invitrogen). The R132H hotspot mutation was introduced in the targeting

construct using the Quickchange II site-directed mutagenesis kit (Stratagene). An infectious

rAAV stock harboring the targeting sequence was generated and applied to parental

HCT116 cells as previously described 32, and clones were selected in 0.5 mg/ml geneticin

(Invitrogen). Excision of the selectable element was achieved with an adenovirus encoding

Cre recombinase (Vector Biolabs). Genomic DNA and total RNA were isolated from cells

using QIAmp DNA Blood Kit and RNeasy kit (Qiagen). First strand cDNA was synthesized

using iScript cDNA Synthesis Kit (BioRad). Successful homologous recombination and cre-

mediated excision were verified using PCR-based assays and by direct sequencing of

genomic DNA and cDNA.

Anaplastic oligodendroglioma cell lines expressing wild type IDH1 (BT260) or IDH1

R132H (BT237 and BT138) were derived from surgical resection material acquired from

patients undergoing surgery at the Brigham and Women’s Hospital on an IRB approved

protocol. Briefly, tumor resection samples were mechanically dissociated and tumospheres

were established and propagated in Human NeuroCult NS-A Basal media (StemCell

Technologies) supplemented with EGF, FGFb, and heparin sulfate. All lines were obtained

from the DF/BWCC Living Tissue Bank and confirmed to be derived from recurrent and

progressive anaplastic oligodendrogliomas, WHO Grade III, at the time of cell line isolation,

and to have chromosome1p/19q codeletion. The presence of IDH R132H mutation was

confirmed by mutant specific antibody staining via immunohistochemistry and direct DNA

sequencing.

Vectors

Human IDH1 cDNAs (wild-type and R132H) were subcloned as BamHI-EcoRI fragments

into pBabe-HA-hygro. Aspartic acid residues 273, 275 and 279 were mutated to asparagines

(N) by site-directed mutagenesis and confirmed by DNA sequencing. EglN1, EglN2, and

EglN3 cDNAs were subcloned into pLenti6-FLAG expression vector after restriction with

XbaI and EcoRI. pLenti6-Flag-EglN1 P317R 33 was prepared by QuikChange Mutagenesis

(Stratagene) using pLenti6-Flag EglN1 as a template and the following oligonucleotides: 5’-

GTACGTCATGTTGATAATCGAAATGGAGATGGAAGATCTG-3’ and 5’-

CACATGTTCCATCTCCATTTCGATTATCAACATGACGTAC-3’. The entire EglN1

coding region was sequenced to verify its authenticity.

Lentiviral (pLKO.1) HIF1α shRNA vectors (TRCN0000003810, target sequence: 5’-

GTGATGAAAGAATTACCGAAT-3’; TRCN0000010819, target sequence: 5’-

TGCTCTTTGTGGTTGGATCTA-3’; TRCN0000003809, target sequence: 5’-

CCAGTTATGATTGTGAAGTTA-3’), EglN1 (PHD2) shRNA vectors (TRCN0000001042,

target sequence: 5’-CTGTTATCTAGCTGAGTTCAT-3’; TRCN0000001043, target

sequence: 5’-GACGACCTGATACGCCACTGT-3’; TRCN00000010578, target sequence:

5’-TGCACGACACCGGGAAGTTCA-3’), and TET2 shRNA vectors [TRCN0000122172

(122), target sequence: 5’-GCGTTTATCCAGAATTAGCAA-3’; TRCN0000144344 (145),

target sequence: 5’-CCTTATAGTCAGACCATGAAA-3’] were obtained from the Broad

Institute TRC shRNA library.]. pLKO.1 shRNA with target sequence: 5’-

GCAAGCTGACCCTGAAGTTCAT-3’ was used as negative control shRNA.
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Immunoblot analysis

Cells extracts were prepared with 1x lysis buffer (50mM Tris [pH 8.0], 120 mM NaCl, 0.5%

NP-40) supplemented with a protease inhibitor cocktail (Complete, Roche Applied Science),

resolved on 10% SDS-PAGE gels and transferred to nitrocellulose membranes (Bio-Rad).

Membranes were blocked in TBS with 5% nonfat milk and probed with anti-HIF1α
monoclonal antibody (BD Transduction Laboratories), anti-HIF2α polyclonal antibody (NB

100-122, Novus), anti-Flag monoclonal antibody (M2, Sigma-Aldrich), mouse monoclonal

anti-HA (HA-11, Covance Research Product), anti-EglN1(PHD2) monoclonal antibody

(D31E11, Cell Signaling), anti-GLUT-1 polyclonal antibody (NB300-666, Novus

Biologicals), mouse monoclonal anti-tubulin (B-512, Sigma-Aldrich) or anti-vinculin

monoclonal antibody (Sigma-Aldrich). Bound proteins were detected with horseradish

peroxidase-conjugated secondary antibodies (Pierce) and Immobilon western

chemiluminescent horseradish peroxidase substrate (Millipore).

Liquid chromatography–electrospray ionization–mass spectrometry (LC–MS)

Metabolite levels in samples were determined by negative mode electrospray LC–MS as

previously described 2. Briefly, metabolites were extracted from exponentially growing cells

using 80% aqueous methanol (-80 °C) and were profiled by LC-MS. R-2HG, 2-oxolutarate

and succinate were quantified by LC-MS in negative mode using multiple reaction

monitoring (MRM) on a Quattro micro triple quadruple mass spectrometer (Waters).

Samples were diluted with equal amounts of 25% acetonitrile and 10 μl aliquots were

analyzed in triplicate. The HPLC column (Luna NH2, 3μm, 2.0 ×100 mm, Phenomenex)

was operated isocratically with 130 mM ammonium acetate pH 5.0 in 37% acetonitrile/

water. The MRM transitions were: 117>73, 117>93 (succinate), 145>57, 145>101 (2-OG),

and 147>85, 147>129 (R-2HG), 0.2 sec dwell time for all transitions. Calibration curves

were set up with Quant Lynx, using standards dissolved in reaction buffer.

Enzyme activity assays

R-2HG (H8378) and S-2HG (S765015) were from Sigma. R-2HG was free of contaminating

2-OG as determined by LC-MS under conditions that could detect 0.37 μM exogenous 2-

OG in 5 mM R-2HG (data not shown). Human EglN1-3, collagen P4H-I and FIH, and

murine Tet1 and Tet2 were produced in insect cells and purified as described earlier 34-37.

The plasmids to generate the baculoviruses coding for Tet1 and 2 were a kind gift from Yi

Zhang (University of North Carolina). IC50 values for R-2HG and S-2HG were determined

based on the hydroxylation-coupled stoichiometric release of 14CO2 from 2-oxo-

[1-14C]glutarate using synthetic peptides or double stranded oligonucleotides representing

the natural targets of the studied enzymes as substrates. These were

DLDLEMLAPYIPMDDDFQL (DLD19) for EglN1-3, (PPG)10 for collagen P4H-I,

DESGLPQLTSYDCEVNAPIQGSRNLLQGEELLRAL for FIH and 5’-

CTATACCTCCTCAACTT(mC)GATCACCGTCTCCGGCG-3’ for Tet1 and 2. The Ki

values for S-2HG for EglN1-3 were determined by adding S-2HG in four constant

concentrations while varying the concentration of 2-oxo-[1-14C]glutarate.

In order to study whether R-2HG, which failed to efficiently inhibit EglN activity, could

promote EglN activity by acting as a cofactor in the place of 2-OG, we determined the

amount of 4-hydroxy[3H]proline formed by a specific radiochemical procedure 38 using a L-

[2,3,4,5-3H]proline-labeled HIF-1α oxygen dependent degradation domain (ODDD) as a

substrate. Collagen P4H-I and a [14C]-proline-labeled protocollagen 39 substrate were used

as controls (detecting 4-hydroxy[14C]proline), and 2-OG (nonlabeled) and S-2HG were

assayed for comparison. The Km values of EglN1 and EglN2 were determined by adding

increasing amounts of R-2HG while the concentration of the substrate and other cofactors

were kept constant.
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Generation of a recombinant HIF1α substrate

The HIF1α ODDD substrate, spanning residues 356-603 of human HIF1α, was produced in

a BL21(DE3) E. coli strain (Novagen) in the presence of L-[2,3,4,5-3H]proline (75 Ci/mmol,

PerkinElmer Life Sciences) and affinity purified in a chelating Sepharose column charged

with Ni2+ (ProBond, Invitrogen) exploiting a C-terminal His-tag 40. Concentration of the

purified substrate was measured by RotiQuant (Carl Roth GmbH) and it was used at Km

concentrations for the distinct EglNs 40.

Modeling

EglN1 active site structure (PDB ID 3HQR, 29) with N-oxalylglycine (NOG, magneta),

Mg 2+, and a peptide substrate (light blue), was used to model R-2HG (green) and S-2HG

(cyan) into the active site.

Gene expression profiling and gene set enrichment analysis

Expression data from human brain tumor samples were obtained from The Cancer Genome

Atlas (http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) and processed as described 8,28. In

short, 200 expression profiles from glioblastoma multiforme and two non-neoplastic brain

samples were generated using three platforms (Agilent 244K, Affymetrix HT-HG-U133A,

Affymetrix HuEx), preprocessed using gene centric probe sets and three expression values

were integrated through factor analysis. After consensus clustering using 1,740 variably

expressed genes, profiles with a negative silhouette metric were identified and removed

from the data set, leaving expression profiles from 173 GBM tumor samples. IDH1 mutation

status was established for 116 out of the 173 samples.

11 gene sets representing response to induced hypoxia were reported in Table S6 from 41.

One gene set was from Figure 4C in 9. A final set was assembled by one of us (W.G.K.)

based on a literature review of genes upregulated by HIF in a wide variety of cell types

(CA9, EglN1, EglN3, SLC2A1, BNIP3, ADM, VEGF, PDK1, LOX, PLOD1, CXCR4,

P4HA1, ANKRD37). Single sample GSEA was applied as reported previously 8. Briefly,

genes were ranked by their expression values. The empirical cumulative distribution

functions (ECDF) of both the genes in the signature as well as the remaining genes were

calculated. An enrichment score was obtained by a sum of the difference between a

weighted ECDF of the genes in the signature and the ECDF of the remaining genes. This

calculation was repeated for all signatures and samples. Z-score transformation was applied

to be able to make scores from different gene sets comparable. A positive score indicates

gene set activation. A negative value does not indicate inactivation, but rather a lack of

effect.

Cell proliferation assays

Cells were plated in 96 well plates (~ 700 cells/well) with a media change every three days.

The number of viable cells per well at each time point was measured using an XTT assay

(Cell Proliferation Kit II, Roche) according to the manufacturer’s instructions.

Spectrophotometrical absorbance at 450 nm was measured 5-6 hours after adding the XTT

labeling reagent/electron coupling reagent using a microtiter plate reader (Perkin Elmer Life

and Analytical Science). For direct cell counting, cells were plated in p60 dishes (~50,000

cells/dish) with a media change every three days. The number of viable cells at each time

point was measured after trypan blue staining by using an automated cell counter

(Invitrogen) according to the manufacturer’s instructions.
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Soft agar colony formation assay

Approximately 8,000 cells were suspended in a top layer of 0.4% soft agar (SeaPlaque

Agarose, BMA products) and plated on a bottom layer of 1% soft agar containing complete

DMEM supplemented with 10% FBS in 6 well plates. After 3 to 4 weeks, colonies were

stained with 0.1% iodonitrotetrazolium chloride (Sigma-Aldrich).

Real-time qPCR analysis

Total RNAs were extracted with Trizol reagent (Invitrogen). cDNA synthesis and PCR

amplification were performed with Superscript One-Step RT-PCR (Invitrogen) with 2 μg

total RNA. EglN3 cDNA was amplified with sense primer (5’-

GCGTCTCCAAGCGACA-3’) and antisense primer (5’-GTCTTCAGTGAGGGCAGA-3’).

VEGF cDNA was amplified with sense primer 5’-CGAAACCATGAACTTTCTGC-3’) and

antisense primer 5’-CCTGAGTGGGCACACACTCC-3’). HIF1α cDNA was amplified

with sense primer (5’-TATTGCACTGCACAGGCCACATTC-3’) and antisense primer (5’-

TGATGGGTGAGGAATGGGTTCACA-3’). HIF2α was amplified with sense primer (5’-

ACAAGCTCCTCTCCTCAGTTTGCT-3’) and antisense primer (5’-

ACCCTCCAAGGCTTTCAGGTACAA-3’). GLUT1 CAIX cDNA was amplified with

sense primer (5’-TGGAAGAAATCGCTGAGGAAGGCT-3’) and antisense primer (5’-

AGCACTCAGCATCACTGTCTGGTT-3’). PDK1 cDNA was amplified with sense primer

(5’-ATGATGTCATTCCCACAATGGCCC-3’) and antisense primer (5’-

TGAACATTCTGGCTGGTGACAGGA-3’). As a control, β-actin cDNA was amplified

with sense primer (5’-ACCAACTGGGACGACATGGAGAAA-3’) and antisense primer

(5’-TAGCACAGCCTGGATAGCAACGTA-3’)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Oncogenic Properties of IDH1 R132H
a,b, Anti-HA immunoblot (a) and LC-MS analysis (b) of immortalized human astrocytes

(passage 4) infected with retroviruses encoding HA-tagged versions of the indicated IDH1

variants. c,d, In vitro proliferation under standard culture conditions (c) or in soft agar (d)

(passage 23). Bars in (d) = 0.5 mm. e, Number of macroscopic soft agar colonies in (d)

(*P<0.01, **P<0.005). Error bars, s.d.; n=3.
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Fig. 2. R-2HG can serve as an EglN cosubstrate
a, b, In vitro prolyl 4-hydroxylation assays conducted with recombinant EglNs (a) and

collagen P4H-I (b) in the presence of the indicated amounts of 2-OG or 2HG. L-

[2,3,4,5-3H]proline-labeled HIF1α oxygen-dependent degradation domain (ODDD) (a) and

[14C]proline-labeled protocollagen (b) were used as substrates. Enzymes were produced in

insect cells using baculoviruses and affinity-purified. Error bars, s.d.; n = 3-4.

c, d, Km and Vmax values for R-2HG for EglN family members. Km and Vmax values for 2-

OG 21 are included for comparison.

e, LC-MS analysis of succinate, 2-OG and R-2HG from enzymatic reactions with EglN1,

HIF1α oxygen-dependent degradation domain (ODDD) polypeptide and either 5 mM

R-2HG (red) or 80 μM 2-OG (black) as cofactors. Numbers next to each peak indicate

elution times (plain font) and peak areas (bold font). No peaks above background were

detected in samples in which 2-OG and R-2HG were both omitted (data not shown).

f, Model of R-2HG (green) and S-2HG (cyan) bound to the active site of EglN1. N-

oxalylglycine (magneta) bound in the original structure 29 is shown for comparison. The
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active site water molecule, which has been shown to be the O2 binding site 30, is shown in

red and the peptide substrate in light blue. Hydrogen bonds are indicated by dash lines.
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Fig 3. HIF activity is diminished in IDH mutant cells
a-d, Immunoblot analysis of immortalized human astrocytes (passage 10) (a,b),

oligodendroglioma cells (c) and HCT116 colorectal cells (d) expressing the indicated IDH1

variants grown under 21% (N) or 7.5% (H) oxygen for 24 hours prior to lysis or under 21%

oxygen in presence of DFO (D). In (b) cells grown under 21% oxygen were treated with

increasing amounts of DMOG or DFO for 16 hours prior to lysis. e, Quantitative real-time

PCR analysis of cells in (d) under normoxic conditions. Error bars, s.d. n=3. f, Heat map

depicting expression of HIF target genes (blue = lower expression and red = higher

expression) in proneural tumors clustered based on IDH status (red = mutant and green =

wild-type in horizontal bar atop matrix).
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Fig 4. Decreased HIF activity contributes to transformation by mutant IDH
a,c, Soft agar colony formation by human astrocytes after stable infection with lentiviruses

encoding the indicated HIF1α shRNAs or scrambled (Scr) shRNA (a) or lentiviruses

encoding EglN1, EglN1 (P317R), or venus fluorescent protein (c). Bars = 0.5 mm.

b,d, Number of macroscopic soft agar colonies in (a) and (c), respectively. (*P<0.05,

**P<0.005). Error bars, s.d. n=3.

e,f, Proliferation (e) and immunoblot analysis (f) of human astrocytes expressing wild-type

or R132H IDH1 and an shRNA against EglN1 (10578) (or scrambled control).

g,h, Proliferation of human astrocytes expressing IDH1 R132H and shRNAs against HIF1α
(0819), EglN1 (10578), or both. Scr= scrambled shRNA.
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