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Abstract

We present a transformation-grounded image generation

network for novel 3D view synthesis from a single image.

Our approach first explicitly infers the parts of the geometry

visible both in the input and novel views and then casts the

remaining synthesis problem as image completion. Specif-

ically, we both predict a flow to move the pixels from the

input to the novel view along with a novel visibility map

that helps deal with occulsion/disocculsion. Next, condi-

tioned on those intermediate results, we hallucinate (infer)

parts of the object invisible in the input image. In addition

to the new network structure, training with a combination

of adversarial and perceptual loss results in a reduction in

common artifacts of novel view synthesis such as distortions

and holes, while successfully generating high frequency de-

tails and preserving visual aspects of the input image. We

evaluate our approach on a wide range of synthetic and real

examples. Both qualitative and quantitative results show

our method achieves significantly better results compared

to existing methods.

1. Introduction

We consider the problem of novel 3D view synthesis—

given a single view of an object in an arbitrary pose, the

goal is to synthesize an image of the object after a specified

transformation of viewpoint. It has a variety of practical ap-

plications in computer vision, graphics, and robotics. As an

image-based rendering technique [21], it allows placing a

virtual object on a background with a desired pose or ma-

nipulating virtual objects in the scene [22]. Also, multiple

generated 2D views form an efficient representation for 3D

reconstruction [37]. In robotics, synthesized novel views

give the robot a better understanding of unseen parts of the

object through 3D reconstruction, which will be helpful for

grasp planning [41].

This problem is generally challenging due to unspecified

input viewing angle and the ambiguities of 3D shape ob-
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served in only a single view. In particular inferring the ap-

pearances of unobserved parts of the object that are not vis-

ible in the input view is necessary for novel view synthesis.

Our approach attacks all of these challenges, but our contri-

butions focus on the later aspect, dealing with disoccluded

appearance in novel views and outputting highly-detailed

synthetic images.

Given the eventual approach we will take, using a care-

fully constructed deep network, we can consider related

work on dense prediction with encoder-decoder methods to

see what makes the structure of the novel 3D view synthesis

problem different. In particular, there is a lack of pixel-to-

pixel correspondences between the input and output view.

This, combined with large chunks of missing data due to oc-

clusion, makes novel view synthesis fundamentally differ-

ent than other dense prediction or generation tasks that have

shown promising results with deep networks [31, 7, 20]. Al-

though the input and desired output views may have simi-

lar low-level image statistics, enforcing such constraints di-

rectly is difficult. For example, skip or residual connections,

are not immediately applicable as the input and output have

significantly different global shapes. Hence, previous 3D

novel view synthesis approaches [49, 37] have not been able

to match the visual quality of geometry-based methods that

exploit strong correspondence.

The geometry-based methods are an alternative to pure

generation, and have been demonstrated in [17, 22, 34].

Such approaches estimate the underlying 3D structure of

the object and apply geometric transformation to pixels in

the input (e.g. performing depth-estimation followed by

3D transformation of each pixel [13]). When successful,

geometric transformation approaches can very accurately

transfer original colors, textures, and local features to cor-

responding new locations in the target view. However, such

approaches are fundamentally unable to hallucinate where

new parts are revealed due to disocclusion. Furthermore,

even for the visible geometry precisely estimating the 3D

shape or equivalently the precise pixel-to-pixel correspon-

dence between input and synthesized view is still challeng-

ing and failures can result in distorted output images.
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Figure 1. Results on test images from 3D ShapeNet dataset [4]. 1st-input, 2nd-ground truth. From 3rd to 6th are deep encoder-decoder

networks with different losses. (3rd-L1 norm [37], 4th-feature reconstruction loss with pretrained VGG16 network [20, 26, 38, 25], 5th-

adversarial loss with feature matching [14, 33, 35, 6], 6th-the combined loss). 7th-appearance flow network (AFN) [51]. 8th-ours(TVSN).

In order to bring some of the power of explicit correspon-

dence to deep-learning-based generation of novel views, the

recent appearance flow network (AFN) [51] trains a convo-

lutional encoder-decoder to learn how to move pixels with-

out requiring explicit access to the underlying 3D geome-

try. Our work goes further in order to integrate more ex-

plicit reasoning about 3D transformation, hallucinate miss-

ing sections, and clean-up the final generated image pro-

ducing significant improvements of realism, accuracy, and

detail for synthesized views.

To achieve this we present a holistic approach to novel

view synthesis by grounding the generation process on view-

point transformation. Our approach first predicts the trans-

formation of existing pixels from the input view to the view

to be synthesized, as well as a visibility map, exploiting the

learned view dependency. We use the transformation re-

sult matted with the predicted visibility map to condition

the generation process. The image generator not only hallu-

cinates the missing parts but also refines regions that suffer

from distortion or unrealistic details due to the imperfect

transformation prediction. This holistic pipeline alleviates

some difficulties in novel view synthesis by explicitly using

transformation for the parts where there are strong cues.

We propose an architecture composed of two consec-

utive convolutional encoder-decoder networks. First, we

introduce a disocclusion aware appearance flow network

(DOAFN) to predict the visibility map and the interme-

diate transformation result. Our second encoder-decoder

network is an image completion network which takes the

matted transformation as an input and completes and re-

fines the novel view with a combined adversarial and

feature-reconstruction loss. A wide range of experiments

on synthetic and real images show that the proposed tech-

nique achieves significant improvement compared to exist-

ing methods. Our main contributions are:

• We propose a holistic image generation pipeline that

explicitly predicts how pixels from the input will be

transformed and where there is disocclusion in the out-

put that needs to be filled, converting the remaining

synthesis problem into one of image completion and

repair.

• We design a disocclusion aware appearance flow net-

work that relocates existing pixels in the input view

along with predicting a visibility map.

• We show that using loss networks with a term con-

sidering how well recognition-style features are recon-

structed, combined with L1 loss on pixel values during

training, improves synthesized image quality and de-

tail.

2. Related Work

Geometry-based view synthesis. A large body of work

benefits from implicit or explicit geometric reasoning to ad-

dress the novel view synthesis problem. When multiple im-

ages are available, multi-view stereo algorithms [12] are ap-

plicable to explicitly reconstruct the 3D scene which can

then be utilized to synthesize novel views. An alternative

approach recently proposed by Flynn et al. [11] uses deep

networks to learn to directly interpolate between neighbor-

ing views. Ji et al. [19] propose to rectify the two view

images first with estimated homography by deep networks,

and then synthesize middle view images with another deep

networks. In case of single input view, Garg et al. [13] pro-

pose to first predict a depth map and then synthesize the

novel view by transforming each reconstructed 3D point in

the depth map. However, all these approaches only utilize

the information available in the input views and thus fail in

case of disocclusion. Our method, on the other hand, not
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Figure 2. Transformation-grounded view synthesis network(TVSN). Given an input image and a target transformation (3.1), our

disocclusion-aware appearance flow network (DOAFN) transforms the input view by relocating pixels that are visible both in the in-

put and target view. The image completion network, then, performs hallucination and refinement on this intermediate result(3.2). For

training, the final output is also fed into two different loss networks in order to measure similarity against ground truth target view (3.2).

only takes advantage of implicit geometry estimation but

also infers the parts of disocclusion.

Another line of geometry-based methods utilize large in-

ternet collections of 3D models which are shown to cover

wide variety for certain real world object categories [22,

34]. Given an input image, these methods first identify the

most similar 3D model in a database and fit to the image

either by 3D pose estimation [34] or manual interactive an-

notation [22]. The 3D information is then utilized to synthe-

size novel views. While such methods generate high qual-

ity results when sufficiently similar 3D models exist, they

are often limited by the variation of 3D models found in

the database. In contrast, our approach utilizes 3D models

only for training generation networks that directly synthe-

size novel views from an image.

Image generation networks. One of the first convolu-

tional networks capable of generating realistic images of

objects is proposed in [8], but the network requires explic-

itly factored representations of object type, viewpoint and

color, and thus is not able to generalize to unseen objects.

The problem of generating novel views of an object from a

single image is addressed in [49, 23, 37] using deep convo-

lutional encoder-decoder networks. Due to the challenges

of disentangling the factors from single-view and the use of

globally smooth pixel-wise similarity measures (e.g. L1 or

L2 norm), the generation results tend to be blurry and low

in resolution.

An alternative to learning disentangled or invariant fac-

tors is the use of equivariant representations, i.e. transfor-

mations of input data which facilitate downstream decision

making. Transforming auto-encoders are coined by Hinton

et al. [16] to learn both 2D and 3D transformations of sim-

ple objects. Spatial transformer networks [18] further in-

troduce differentiable image sampling techniques to enable

in-network parameter-free transformations. In the 3D case,

flow fields are learned to transform input 3D mesh to the tar-

get shape [50] or input view to the desired output view [51].

However, direct transformations are clearly upper-bounded

by the input itself. To generate novel 3D views, our work

grounds a generation network on the learned transforma-

tions to hallucinate disoccluded pixels.

Recently, a number of image generation methods intro-

duce the idea of using pre-trained deep networks as loss

function, referred as perceptual loss, to measure the feature

similarities from multiple semantic levels [20, 26, 38, 25].

The generation results from these works well preserve the

object structure but are often accompanied with artifacts

such as aliasing. At the same time, generative adversar-

ial networks [14, 33], introduce a discriminator network,

which is adversarially trained with the generator network to

tell apart the generated images from the real ones. The dis-

criminator encapsulates natural image statistics of all orders

in a real/fake label, but its min-max training often leads to

local minimum, and thus local distortions or painting-stroke

effects are commonly observed in their generated images.

Our work uses a combined loss function that takes advan-

tages of both the structure-preserving property of perceptual

loss and the rich textures of adversarial loss (See Fig. 1).

Deep networks have also been explored for image com-

pletion purposes. Examples of proposed methods include

image in-painting with deep networks [32] and sequential

parts-by-parts generation for image completion [24]. Such

methods assume the given partial input is correct and focus

only on completion. In our case, however, we do not have

access to a perfect intermediate result. Instead, we rely on

the generation network both to hallucinate missing regions

and also refine any distortions that occur due to inaccurate

per-pixel transformation prediction.

3. Transformation-Grounded View Synthesis

Novel view synthesis could be seen as a combination of

the following three scenarios: 1) pixels in the input view

that remain visible in the target view are moved to their cor-

responding positions; 2) remaining pixels in the input view

disappear due to occlusions; and 3) previously unseen pix-

els are revealed or disoccluded in the target view. We repli-

cate this process via a neural network as shown in Figure 2.

Specifically, we propose a disocclusion-aware appearance

flow network (3.1) to transform the pixels of the input view

that remain visible. A subsequent generative completion

network (3.2) then hallucinates the unseen pixels of the tar-

get view given these transformed pixels.
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Figure 3. Visibility maps for different rotations: the first column in the first row is an input image. Remaining columns show output images

and corresponding masks for rotations from 20 to 340 degrees in 20 degree intervals. The second, third and fourth rows show visibility

maps Mvis, symmetry-aware visibility maps Ms-vis, and background masks Mbg, respectively. The input image is in the pose of 0 elevation

and 20 azimuth. The visibility maps for the rotations from 160 to 340 show the largest difference between Mvis and Ms-vis. For example,

Ms-vis shows the opposite side of the car as visible and allows it to be filled in by the network based on the visible side.

3.1. Disocclusionaware Appearance Flow Network

Recently proposed appearance flow network (AFN) [51]

learns how to move pixels from an input to a target view.

The key component of the AFN is a differentiable image

sampling layer introduced in [18]. Precisely, the network

first predicts a dense flow field that maps the pixels in the

target view, It, to the source image, Is. Then, sampling ker-

nels are applied to get the pixel value for each spatial loca-

tion in It. Using a bilinear sampling kernel, the output pixel

value at spatial location I
i, j
t equals to:

∑
(h,w)∈N

Ih,w
s max(0,1−|F i, j

y −h|)max(0,1−|F i, j
x −w|),

(1)

where F is the flow predicted by the deep convolutional

encoder-decoder network (see the first half of Figure 2). F
i, j
x

and F
i, j
y indicate the x and y coordinates of one target loca-

tion. N denotes the 4-pixel neighborhood of (F i, j
y ,F

i, j
x ).

The key difference between our disocclusion aware ap-

pearance flow network (DOAFN) and the AFN is the pre-

diction of an additional visibility map which encodes the

parts that need to be removed due to occlusion. The original

AFN synthesizes the entire target view, including the disoc-

cluded parts, with pixels of the input view, e.g. 1st row of

AFN results in Figure 1. However, such disoccluded parts

might get filled with wrong content, resulting in implausi-

ble results, especially for cases where a large portion of the

output view is not seen in the input view. Such imperfect re-

sults would provide misleading information to a successive

image generation network. Motivated by this observation,

we propose to predict a visibility map that masks such prob-

lematic regions in the transformed image:

Idoafn = Iafn ⊙Mvis, (2)

where Mvis ∈ [0,1]H×W . To achieve this, we define the

ground truth visibility maps according to the 3D object ge-

ometry as described next.

Visibility map. Let Mvis ∈R
H×W be the visibility map for

the target view, given source image Is and desired transfor-

mation parameter θ . The mapping value for a pixel in the

target view corresponding to a spatial location (i, j) in Is is

defined as follows:

M
(PR(θ)x

(i, j)
s )h,(PR(θ)x

(i, j)
s )w

vis =

{

1 c⊤R(θ)n
(i, j)
s > 0

0 otherwise
(3)

x
(i, j)
s ∈ R

4 is the 3D object coordinates and n
(i, j)
s ∈ R

4 is

the surface normal corresponding to location (i, j) in Is,

both represented in homogeneous coordinates. Since we

use synthetic renderings of 3D CAD models, we have ac-

cess to ground truth object coordinates and surface normals.

R(θ) ∈ R
3×4 is the rotation matrix given the transforma-

tion parameter θ and P ∈R
3×3 is the perspective projection

matrix. The superscripts h and w denote the target image

coordinates in y and x axis respectively after perspective

projection. c ∈ R
3 is the 3D camera center. In order to

compute the target image coordinates for each pixel in Is,

we first obtain the 3D object coordinates corresponding to

this pixel and then apply the desired 3D transformation and

perspective projection. The mapping value of the target im-

age coordinate is 1 if and only if the dot product between

the viewing vector and surface normal is positive, i.e. the

corresponding 3D point is pointing towards the camera.

Symmetry-aware visibility map. Many common object

categories exhibit reflectional symmetry, e.g. cars, chairs,

tables etc. AFN implicitly exploits this characteristic to ease

the synthesis of large viewpoint changes. To fully take ad-

vantage of symmetry in our DOAFN, we propose to use a

symmetry-aware visibility map. Assuming that objects are

symmetric with respect to the xy-plane, a symmetry-aware

visibility map Msym is computed by applying Equation 3 to

the z-flipped object coordinates and surface normals. The

final mapping for a pixel in the target view corresponding

to spatial location (i, j) is then defined as:

M
i, j
s-vis = ✶

[

Mi, j
sym +M

i, j
vis > 0

]

(4)

Background mask. Explicit decoupling of the fore-

ground object is necessary to deal with real images with

natural background. In addition to parts of the object being
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disoccluded in the target view, different views of the object

occlude different portions of the background posing addi-

tional challenges. For example, transforming a side view to

be frontal exposes parts of the background occluded by the

two ends of the car. In our approach, we define the fore-

ground as the region that covers pixels of the object in both

input view and output view. The rest of the image belongs

to the background and should remain unchanged in both

views. We thus introduce a unified background mask,

M
i, j
bg = ✶

[

Bi, j
s +B

i, j
t > 0

]

, (5)

where Bs and Bt are the background masks of the source and

target images respectively. Ground truth background masks

are easily obtained from 3D models. Examples of back-

ground masks are presented in Figure 3. When integrated

with the (symmetry-aware) visibility map, the final output

of DOAFN becomes:

Idoafn = Is ⊙Mbg + Iafn ⊙Ms-vis (6)

3.2. View Completion Network

Traditional image completion or hole filling methods of-

ten exploit local image information [9, 2, 45] and have

shown impressive results for filling small holes or texture

synthesis. In our setting, however, sometimes more than

half of the content in the novel view is not visible in the in-

put image, constituting a big challenge for local patch based

methods. To address this challenge, we propose another

encoder-decoder network, capable of utilizing both local

and global context, to complete the transformed view in-

ferred by DOAFN.

Our view completion network is composed of an “hour-

glass” architecture similar to [30], with a bottleneck-to-

bottleneck identity mapping layer from DOAFN to the

hourglass (see Figure 2). This network has three essential

characteristics. First, being conditioned on the high-level

features of DOFAN, it can generate content that have con-

sistent attributes with the given input view, especially when

large chunk of pixels are dis-occluded. Second, the output

of DOAFN is already in the desired viewpoint with impor-

tant low-level information, such as colors and local textures,

preserved under transformation. Thus, it is possible to uti-

lize skip connections to propagate this low-level informa-

tion from the encoder directly to later layers of the decoder.

Third, the view completion network not only hallucinates

disoccluded regions but also fixes artifacts such as distor-

tions or unrealistic details. The output quality of DOAFN

heavily depends on the input viewpoint and desired trans-

formation, resulting in imperfect flow in certain cases. The

encoder-decoder nature of the image generation network is

well-suited to fix such cases. Precisely, while the encoder is

capable of recognizing undesired parts in the DOAFN out-

put, the decoder refines these parts with realistic content.

Loss networks. The idea of using deep networks as a

loss function for image generation has been proposed in

[26, 38, 20, 6]. Precisely, an image generated by a network

is passed as an input to an accompanied network which

evaluates the discrepancy (the feature distance) between the

generation result and ground truth. We use the VGG16 net-

work for calculating the feature reconstruction losses from

a number of layers, which is referred as perceptual loss.

We tried both a pre-trained loss network and a network with

random weights as suggested in [15, 39]. However, we got

perceptually poor results with random weights, concluding

that the weights of the loss network indeed matter.

On the other hand, adversarial training [14] has been

phenomenally successful for training the loss network at

the same time of training the image generation network.

We experimented with a similar adversarial loss network

as in [33] while adopting the idea of feature matching pre-

sented in [35] to make the training process more stable.

We realized that the characteristics of generated images

with these two kinds of loss networks, perceptual and ad-

versarial, are complementary. Thus, we combined them to-

gether with the standard image reconstruction loss (L1) to

maximize performance. Finally, we added total variation

regularization term [20], which was useful to refine the im-

age:

− logD(G(Is))+αL2(FD(G(Is)),FD(It)))+

βL2(Fvgg(G(Is)),Fvgg(It))+ γL1(Is, It)+λLTV (G(Is)) (7)

Is, G(Is) and It is the input, generated output and corre-

sponding target image, respectively. log(D) is log likeli-

hood of generated image G(Is) being a real image, esti-

mated by adversarially trained loss network, called discrim-

inator D. In practice, minimizing − logD(G(Is)) has shown

better gradient behaviour than minimizing logD(1−G(Is)).

FD and Fvgg are the features extracted from the discrim-

inator and VGG16 loss networks respectively. We found

that concatenated features from the first to the third convo-

lutional layers are the most effective. L1 and L2 are ℓ1 and ℓ2

norms of two same size inputs divided by the size of the in-

puts. In sum, both generated images G(Is) and ground truth

image It are fed into D and VGG16 loss networks, and we

extract the features, and compute averaged euclidean dis-

tance between these two.

The discriminator D is simultaneously trained along with

G via alternative optimization scheme proposed in [14].

The loss function for the discriminator is

− logD(Is)− log(1−D(G(Is))) (8)

We empirically found that α = 100, β = 0.001, γ = 1, and

λ = 0.0001 are good hyper-parameters and fixed them for

the entire experiments.
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Figure 4. Results on synthetic data from ShapeNet. We show the

input, ground truth output (GT), results for AFN and our method

(TVSN) along with the L1 error. We also provide the intermediate

output (visibility map and output of DOAFN).

4. Experiments

4.1. Training Setup

We use rendered images of 3D models from

ShapeNet [4] both for training and testing. We use

the entire car category (7497 models) and a subset of the

chair category (698 models) with sufficient texture. For

each model, we render images from a total of 54 viewpoints

corresponding to 3 different elevations (0, 10, and 20)

and 18 azimuth angles (sampled in the range [0,340] with

20-degree increments). The desired transformation is

encoded as a 17-D one-hot vector corresponding to one of

the rotation angles between input and output views in the

range [20,340]. Note that we did not encode 0 degree as

it is the identical mapping. For each category, 80% of 3D

models are used for training, which leaves over 5 million

training pairs (input view-desired transformation) for the

car category and 0.5 million for the chair category. We

randomly sample input viewpoints, desired transformations

from the rest 20% of 3D models to generate a total of

20,000 testing instances for each category. Both input and

output images are of size 256×256×3.

We first train DOAFN, and then the view completion

network while DOAFN is fixed. After the completion net-

work fully converges, we fine-tune both networks end-to-

end. However, this last fine-tuning stage does not show no-

table improvements. We use mini-batches of size 25 and 15

for DOAFN and the completion network respectively. The

Table 1. We compare our method (TVSN(DOAFN)) to several

baselines: (i) a single-stage encoder-decoder network trained with

different loss functions: L1 (L1), feature reconstruction loss using

VGG16 (VGG16), adversarial (Adv), and combination of the latter

two (VGG16+Adv), (ii) a variant of our approach that does not use

a visibility map (TVSN(AFN)).

car chair

L1 SSIM L1 SSIM

L1[37] .168 .884 .248 .895

VGG .228 .870 .283 .895

Adv .208 .865 .241 .885

VGG+Adv .194 .872 .242 .888

AFN[51] .146 .906 .240 .891

TVSN(AFN) .132 .910 .229 .895

TVSN(DOAFN) .133 .910 .230 .894

learning rate is initialized as 10−4 and is reduced to 10−5 af-

ter 105 iterations. For adversarial training, we adjust the up-

date schedule (two iterations for generator and one iteration

for discriminator in one cycle) to balance the discriminator

and the generator.

4.2. Results

We discuss our main findings in the rest of this section

and refer the reader to the supplementary material for more

results. We utilize the standard L1 mean pixel-wise error

and the structural similarity index measure (SSIM) [44, 28]

for evaluation. When computing the L1 error, we normal-

ize the pixel values resulting in errors in the range [0,1],
lower numbers corresponding to better results. SSIM is in

the range [−1,1] where higher values indicate more struc-

tural similarity.

Comparisons. We first evaluate our approach on syn-

thetic data and compare to AFN. Figure 4 shows qualitative

results.1 We note that while our method completes the dis-

occluded parts consistently with the input view, AFN gen-

erates unrealistic content (front and rear parts of the cars in

the 1st and 2nd rows). Our method also corrects geometric

distortions induced by AFN (3rd and 4th rows) and better

captures the lighting (2nd row). For the chair category, AFN

often fails to generate thin structures such as legs due to the

small number of pixels in these regions contributing to the

loss function. On the other hand, both perceptual and ad-

versarial loss help to complete the missing legs as they con-

tribute significantly to the perception of the overall shape.

In order to evaluate the importance of the visibility map, we

compare against a variant of our approach which directly

provides the output of AFN to the view completion network

without masking. (For clarity, we will refer to our method

1The results from the original AFN [51] paper are not directly compa-

rable due to the different image size. In addition, since the complete source

code was not available at the time of paper submission, we re-implemented

this method by consulting the authors.
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Figure 5. When a visibility map is not utilized (TVSN(AFN)),

severe artifacts observed in the AFN output get integrated into

the final results. By masking out such artifacts, our method

(TVSN(DOAFN)) relies purely on the view completion network

to generate plausible results.

as TVSN(DOAFN) and to this baseline as TVSN(AFN).) Fur-

thermore, we also implement a single-stage convolutional

encoder-decoder network as proposed in [37] and train it

with various loss functions: L1 loss (L1), feature reconstruc-

tion loss using VGG16 (VGG16), adversarial loss (Adv),

and combination of the latter two (VGG16+Adv). We pro-

vide quantitative and visual results in Table 1 and Figure 1

respectively. We note that, although commonly used, L1 and

SSIM metrics are not fully correlated with human percep-

tion. While our method is clearly better than the L1 base-

line [37], both methods get comparable SSIM scores.

We observe that both TVSN(AFN) and TVSN(DOAFN)

perform similarly with respect to L1 and SSIM metrics

demonstrating that the view completion network in general

successfully refines the output of AFN. However, in cer-

tain cases severe artifacts observed in the AFN output, es-

pecially in the disoccluded parts, get smoothly integrated

in the completion results as shown in Figure 5. In con-

trast, the visibility map masks out those artifacts and thus

TVSN(DOAFN) relies completely on the view completion

network to hallucinate these parts in a realistic and consis-

tent manner.

Evaluation of the Loss Networks. We train our network

utilizing the feature reconstruction loss of VGG16 and the

adversarial loss. We evaluate the effect of each loss by train-

ing our network with each of them only and provide visual

results in Figure 6. It is well-known that the adversarial loss

is effective in generating realistic and sharp images as op-

posed to standard pixel-wise loss functions. However, some

artifacts such as colors and details inconsistent with the in-

put view are still observed. For the VGG16 loss, we experi-

Figure 6. We evaluate the effect of using only parts of

our system, VGG16 in TVSN(VGG16), and adversarial

loss in TVSN(Adversarial), as opposed to our method,

TVSN(VGG16+Adversarial) that uses both.

mented with different feature choices and empirically found

that the combination of the features from the first three lay-

ers with total variation regularization is the most effective.

Although the VGG16 perceptual loss is capable of generat-

ing high quality images for low-level tasks such as super-

resolution, it has not yet been fully explored for pure image

generation tasks as required for hallucinating disoccluded

parts. Thus, this loss still suffers from the blurry output

problem whereas combination of both VGG16 and adver-

sarial losses results in the most effective configuration.

4.3. 360 degree rotations and 3D reconstruction

Inferring 3D geometry of an object from a single image

is the holy-grail of computer vision research. Recent ap-

proaches using deep networks commonly use a voxelized

3D reconstruction as output [5, 46]. However, computa-

tional and spatial complexities of using such voxelized rep-

resentations in standard encoder-decoder networks signifi-

cantly limits the output resolution, e.g. 323 or 643.

Inspired by [37], we exploit the capability of our method

in generating novel views for reconstruction purposes.

Specifically, we generate multiple novel views from the in-

put image to cover a full 360 rotation around the object

sampled at 20-degree intervals. We then run a multi-view

reconstruction algorithm [12] on these images using the

ground truth relative camera poses to obtain a dense point

cloud. We use the open source OpenMVS library [1] to

reconstruct a textured mesh from this point cloud. Fig-

ure 7 shows multi-view images generated by AFN and our

method whereas Figure 8 demonstrates examples of recon-

structed 3D models from these images. By generating views

consistent in terms of geometry and details, our method re-

sults in significantly better quality textured meshes.

4.4. 3D Object Rotations in Real Images

In order to generalize our approach to handle real im-

ages, we generate training data by compositing synthetic

renderings with random backgrounds [36]. We pick 10,000

random images from the SUN397 dataset[36] and randomly
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Figure 7. Results of 360 degree rotations

Figure 8. We run a multi-view stereo algorithm to generate tex-

tured 3D reconstructions from a set of images generated by AFN

and our TVSN approach. We provide the reconstructions obtained

from ground truth images (GT) for reference.

crop them to be of size 256×256×3. Although this simple

approach fails to generate realistic images, e.g. due to in-

consistent lighting and viewpoint, it is effective in enabling

the network to recognize the contours of the objects in com-

plex background. In Figure 9, we show several novel view

synthesis examples from real images obtained from the in-

ternet.

While our initial experiments show promising results,

further investigation is necessary to improve performance.

Most importantly, more advanced physically based render-

ing techniques are required to model complex light interac-

tions in the real world (e.g. reflections from the environ-

ment onto the object surface). In addition, it is necessary

to sample more viewpoints (both azimuth and elevation) to

handle viewpoint variations in real data. Finally, to provide

a seamless break from the original image, an object seg-

mentation module is desirable so that the missing pixels in

background can be separately filled in by alternative meth-

ods, such as patch-based inpainting methods [2] or pixel-

wise autoregressive models [40].

5. Conclusion and Future Work

We present a novel transformation-grounded image gen-

eration network. Our method generates realistic images and

outperforms existing techniques for novel 3D view synthe-

sis on standard datasets of CG renderings where ground

truth is known. Our synthesized images are even accurate

enough to perform multi-view 3D reconstruction. We fur-

ther show successful results for real photographs collected

Figure 9. We show novel view synthesis results on real internet

images along with the predicted visibility map and the background

mask.

from the web, demonstrating that the technique is robust.

We observed that some structures in the generated novel

views, such as headlights and wheels of cars, would consis-

tently resemble common base shapes. This is more apparent

if such structures are not observed in the input view. We be-

lieve the reason is the inherently deterministic nature of our

encoder-decoder architecture, which can be alleviated by in-

corporating approaches like explicit diverse training [27] or

probabilistic generative modeling [47, 48, 29, 43].

We hope that the proposed image generation pipeline

might potentially help other applications, such as video pre-

diction. Instead of pure generation demonstrated by re-

cent approaches [28, 42], our approach can be applied such

that each frame uses a transformed set of pixels from the

previous frame[43, 3, 10] where missing pixels are com-

pleted and refined by a disocclusion aware completion net-

work, where disocclusion can be learned from motion esti-

mation [43, 10].
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