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TRANSFORMATION GROUPS IN NET SPACES 

V. A. Dorodnitsyn UDC 517.958+519.63 

We consider formal groups of transformations on the space of differential and net 
(finite-difference) variables. We show that preservation of meaning of difference 
derivatives under transformations necessarily leads to Lie-B~cklund group. We 
derive formulas for extension to net variables and formulate criteria for preserva- 
tion of uniformity and invariance of differences of the network and a test for the 
invariance of difference equations. With the help of formal Newton series we con- 
struct the ideal of the algebra of all Lie-B~cklund operators on a uniform net- 
work which is used to derive tests for the conservatism of difference equations 
on the basis of a discrete analog of Noether's identity. 

INTRODUCTION 

In this paper we make an attempt to adapt the ideas of group analysis to the study of 
finite-difference equations. It is known that one and the same system of differential equa- 
tions can be approximated (to given order) with the help of an infinite number of difference 
schemes. Hence in finite-difference modeling there is always a question about the choice 
of schemes preferred from some point of view. As criteria of choice must frequently funda- 
mental physical principles present in the original model appear, such as certain conserva- 
tion laws holding, variational principles, etc. In connection with this qualitative con- 
siderations acquire great value in the construction of numerical algorithms permitted one 
to introduce "physical content" of the object studied into the numerical method of studying 
its mathematical model. Such a view led to the creation of methods of construction of con- 
servation and completely conservative difference schemes, to the integrointerpolational ap- 
proach, to variational methods of construction of schemes, and other methods [8]. 

Invariance of differential equations with respect to a continuous group of transforma- 
tions is undoubtedly a deep property of these models and reflects homogeneity and isotro- 
picity of space-time, the validity of Galileo's principle, and other symmetry properties 
of physical models intuitively (or on the basis of experiments) established by their crea- 
tors. Hence the reflection of a symmetry property in finite-difference models adequately 
reflecting symmetry of the original differential model is an important problem of the theory 
of difference schemes and can serve as a criterion for the choice of which we spoke above. 

The attractiveness of the group-theoretic approach to the creation and study of differ- 
ence schemes is that group analysis has powerful infinitesimal criteria of invariance of 
manifolds. This becomes apparent in that the problem of finding (or studying) a continuous 
group of transformations reduces to the solution (study) of a linear system of equations in- 
dependent of the linearity or nonlinearity of the original model. 

Yanenko and Shokin (cf. [11-13]), the first to pay attention to the possibility of using 
group consideration in the study of difference schemes, proposed using the first differential 
approximation (FDA) of difference schemes for this purpose. The FDA of difference schemes 
is a differential equation which occupies an intermediate position(in the sense of approxi- 
mation) between the original differential model and its finite-difference analog. The FDA 
carries some information about the difference scheme (in the form of the coefficients of the 
scheme and the difference steps of the net for example) and being differential equations is 
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entirely suitable for classical group analysis. With such an approach one chooses those 
difference schemes whose FDA admits the same group as the original continuous model. Many 
authors developed approaches to group properties of difference schemes based on the analysis 
of differential-difference equations (cf., e.g., [12]). In all the indicated cases one con- 
siders local objects. 

In contrast with the papers cited, in the present paper we make the first step to the 
analysis of group properties of finite-difference objects directly. We find out how a con- 
tinuous group of transformations acts on the difference derivatives and equations after which 
we impose the requirement on the finite-difference equations that they admit the same group 
as the original differential equations, i.e., the group acting on the net space but isomorphic 
to the original. 

Finite-difference operators, in contrast with differential ones are defined on a finite 
collection of points (on the difference template) from the countable number of all points 
(difference net) on which we are interested in solving the problem. Such (nonlocality) of 
operators (from the physical point of view, the presence in the problem of characteristic 
scale sizes) leads to the presence of specific properties of difference operators missing 
in the local differential model. This appears in particular in the presence of "right" and 
"left" differentiation and the corresponding translations, in the existence of uniform and 
uniform and nonuniform nets, in the specifics of the Leibniz difference rule. The nonlocal- 
ity of difference operators leads to the fact that a group of transformations may distort 
the proportions of the difference template. Hence in a test for invariance of difference 
equations it is necessary to also include the invariance of the difference template (or net) 
on which they are written. 

We also note that finite-difference equations being a discrete model of the original 
differential model can have specific discrete ("crystalline") symmetries. One such symmetry, 
the group of reflections in the case of uniform nets, is easily discovered (cf. Sec. 7). How- 
ever the search for such symmetries lies beyond the limits of our studies, since we are 
aiming to preserve in finite-difference equations invariance with respect to the continuous 
group of transformations isomorphic to the group of the original differential equations. 

i. Formal Power Series and Formal Groups 

We consider the space Z of sequences (x, u, ul, u 2 .... ), where x is a simple (indepen- 
dent) variable, u, ul, u 2 .... are differential variables (we shall call u s the derivative 
of s-th order). By z we shall mean any finite number of coordinates of the vector (x, u, ul, 
u2,...) by z i its i-th coordinate. 

In the: space Z we define a map ~) (differentiation), acting according to the rule: 
~)(x)=l, ~)(u)=Ul. ~)(us) =us+l, s=l, 2 ..... Let ~ be the space of analytic functions /~-(z) 
of a finite number of variables z. Identifying ~ with the action of the first order linear 
differential operator 

0 0 0 0 
= ~ + ui ~ -  + u2b~ ~ + . . .  + u~+, a-~ + . . . .  

we extend the differential ~ to functions from ~%~, where:~(~'(z))~. 

We consider sequences of formal power series in one symbol a (the parameter): 

/ '  (z, a) = ~ A~ (z) a~,i = 1,2 . . . .  ( 1 ) 
k=O 

w h e r e  A~ (z)E~r w h i l e  A01 = z i ,  z i b e i n g  t h e  i - t h  c o o r d i n a t e  o f  a v e c t o r  f r o m  Z. 

We d e n o t e  t h e  s p a c e  o f  s e q u e n c e s  o f  f o r m a l  power  s e r i e s  ( 1 ) :  

( f l  (z, a), f~ (z, a) . . . . .  / ~  (z, a) . . . .  ) 

by  7 .  S e q u e n c e s  ( x ,  u ,  u x ,  u 2 . . . .  ) a r e  a s p e c i a l  c a s e  o f  s e q u e n c e s  o f  s e r i e s  ( 1 ) ,  Z c 7.. 
In Z by definition we define addition, multiplication by a number, and product of formal 
series which coincide with the corresponding operations for convergent series, and also dif- 
ferentiation of series (i): 

.~) A~ (z) a k = .,~ .~) (A• (z)) a k, 
k=O k~O 
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0-$ A~ (z) a ~ = kA~ (z) a k-l, 
k=O 

0-s ~ = A~ (z), i = 1, 2, .. 
k =0 a = 0  

In Z we consider transformation 

z i * = f f ( z ,  a), i = 1 ,  2 . . . . .  (2)  

carrying the sequence z i into the sequence z i*. 

The operations on series (I) introduced let us consider composition of transformations 
of the form (2): 

2 zi**-=-f'(z *, b ) = ~  A~(z*) o k =  A ~ ( f ( z ,  a))O k, i = l ,  2 . . . . .  
k = 0  k = 0  

Such composition generally leads out of one-parameter series (i) from Z. We shall consider 
only those series (I) [and the corresponding transformations (2)], the structure of whose 
coefficients assures the closedness in Z of the transformations (2): 

f i f f ( z ,a) ,  b)=f~(z,  (a-k-b)), i=1,  2 . . . . .  (3)  

The property (3) of formal series (i) means that the transformations (2) form a formal one- 
parameter group in Z. 

Property (3) is equivalent to each of the following two relations (cf. [2, 4]): 

1) A ~ ( f  (z, a ) ) = = ~  (k+t),  A~ kt z!" ~+' (z)at' (4) 
l=O 

~=I, 2 ..... ~ = 0 ,  I, 2 ..... 

2) z ~* ~ e ax (z9 =- Tf- X(~) (zi)' i = 1, 2 . . . . .  (5)  
S~0  

where X is the infinitesimal operator (generator) of the group. 
oo 

i = l  

g~ (z) = O f  oa(z' a) [a_o, ~ (z) E,#, i -~ 1, 2 . . . . .  

(6) 

. Taylor Group~ Introduction of Net Variables 

We consider the group of transformations (2) in the space Z of formal series with tan- 
gent field 

~ .  + u2 o--~7+ . . . .  

The transformations (2) of this group are defined by the action of the operator 

Ta ~ ea~): 

z~*=e "~ (z~)-  ~ ~ (zg. 
s~O 

The p o i n t  z*EZ has  t h e  f o l l o w i n g  c o o r d i n a t e s :  

x* = T ~  ( x ) = x + a ,  

U* = T a  (u)----~ a* ~- Us, 

a s 

u*, = r o (ul) = ~ ~r u,+,, 
s>O 

(7) 

(8) 

�9 �9 ~ . . ~ �9 �9 ~ ~ ~ 

u k--  Ta (uk) = Z gf tt~+~, 
s>l  
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The transformations (8) are the expansion in formal Taylor series of the function u = u(x) at 
the point x + a so the group with operator (7) was called the Taylor group [2]. 

The Taylor group is a nontrivial Lie-Bicklund group, i.e., is not the extension to 
of a group of pointwise or tangent transformations [4]. 

The Taylor group is a convenient instrument for the study of invariant properties of 
finite-difference objects. 

We fix an arbitrary value of the parameter a = h > 0 and with the help of the tangent 
field (7) of the Taylor group we form a pair of operators which we shall call, respectively, 
the operators of discrete translation to the right and left: 

2 2 S=ehg>_~ h* (--h) ~ ~')s 
+h s=o_~_.t .q)s, S = e - h g ) _ _ .  Sl - -  " 

--k s=O 

The operators S and S commute with one another and T a while S. S=S.S =1. Moreover, 
+h -k +h --~ --h +h 

(S)n=Tala~+n~, n = O ,  1 , 2  . . . . .  
.+h 

With the help of S, S we form a pair of operators of discrete (finite-difference) differ- 
+ h  --h 

entiation to the right and left: 

~ ) :  +~ X h(s-D 

1--S 2 . ~ =  -h _ (--h)(~-O @~. 
-h  h - -  s! 

$=1 

The operators S, S, ~0, ~, Ta commute in any combination, while 
+h --h +h --h 

~ = ~ . S ,  ~) = ~).  S.  

We introduce formal power series of special form: 

u ~ = ~ ' ( ~ ) ,  u~=Y>~O(~O, ~ = Y ~ O ~ ( ~  . . . . .  
h +h h --h+h h +k--h+h 

we shall call u s the finite-difference (discrete, net) derivative of s-th order. In the odd 
h 

case we shall call the formal series U2k+1 the right difference derivative. If necessary one 
h 

can introduce left difference derivatives of order by the formula 

or the derivative with weight 

We shall denote the set of points x=-~S=(x), ~-~-0, • _+2 .... by ~ and call it a uniform 
+h h 

distance net. We shall denote sequences of formal series: (Ul, ~2, ~,...) by Z, the product of 
the spaces h Z and Z - ~ by: ~ h a h 

2 = ( x ,  u, u~, u2 . . . . .  ui, u2 . . . .  ). 
h h h 

If the series u converges then we shall call it the continuous representation of the dis- 
h s 

tance derivative Us. We note that formal series u are not represented in exponential form 
h h s 

(5), so they do not form a group with parameter h and it is impossible to write down tangent 
fields. 

We extend the action of the discrete translation S (by definition) to functions fromi~: 
• 

s ~ r ( z ) = ~ r ( S ( z ) ) ,  
•  •  
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this lets us find the difference derivatives of ffs 

~ ( S ( z ) ) - - ~ ( z )  

.~  (~" ( z ) ) =  ~ • 
• - -  h 

Starting from this definition it is easy to establish the discrete (difference) Leibniz 
rule: 

(F. 0)=~ (r} O+ r~ (0)+ h~ (F)~ (a), 
+~ +h +h 

--h --h --h --h 

where F ,  Q@9r 

We consider how to extend the Taylor group to Z. In Z we define a transformation of the 
variables u s as follows: h h 

h 
h 2 * * __ * * I h 

{u, = . ~  ( u ) - # 1 +  ~ u2-r- ~ ~ +  . . . .  
[ h  2 + k  

$ h ~ ,  �9 �9 �9 

�9 . o , . �9 , ~ , , o . . . . .  , 

where u s are formal series of the form (i) with tangent field of the Taylor group: 0o:] 
Oa ~ = o = U ~ + ~ '  s = l ,  2 . . . . .  

~ S  = 

The tangent field for the variables ~s will be as follows: 

Ou* I h I h h 

h " ~ (9 )  
; 2 = ~ (u2) . . . . .  ;~ = ~ (u~) . . . . .  

h h h h 

Thus, the tangent field of the Taylor group extended to 7 can be identified with the operator 
h 

oo 

O = X " ~  (zi)  O , 
f = 1  Ozi ) 

where z i are the cooordinates of the vector (x, u, Ul) u2 ..... Ul) u2 .... ). 
h h 

We note that the coordinates (9) are formal power series in h so the series ff:=~:(h, a) 

are formal power series in two symbols, "group" in a and "nongroup" in h. 

Now we consider the result of action of the operator of discrete translation S on the 

net space Z-~-(x, ~, ul, U2 .... ): • 
h h h 

S ( x ) = x  + t~, 
+h 

S(u)=u+h - - - ~ ( u )  -~u+hff~. 
+ 4  

Analogously we get 

S (u) = u - -  kS (uO = u-- h#, + k~u~. 
- -h  - - h h  h h 

In exactly the same way as a result of the action of S on Uk, k = i, 2, .... we find the for- 
• h 

mal series u s . As a result we get the table of action of the discrete translation operator 
h 

on the net space Z, of. Table i. 
h 

From Table 1 one easily gets the table of the action of the discrete differentiation 

S--I 
operator ~=+ • on the point (x,u, ul, u2 .... ), cf. Table 2. 
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TABLE i. Action of the Discrete Translation Operator S 
• 

( x ,  tt, u .  u~ . . . .  )~Z 
h It h 

S 
-h left translation S+hright translation 

S ( x ) = x - - h  
- - h  

S (u) =~- -hu~  + h~us 
- - h  It h 

S (uO=u, - -hus  
- - h  h It It 

S (atS) =ate--hitS nU hst t4 
--it  h h It h 

S (usm-,)=us~l--husl~+s 
- - h  It It h 

S (ttt~),=usk+s--lms~+s + hSus~+~ 
- - h  h It h h 

S ( x ) = x + h  
+ i t  

S (u) =u + hu~ 
+ h  h 

+ h  It 

S (us)=us + hu~ 
+ a  It It h 

S (usk+,) =atsk+, + hust~+~ + hSus~s 
+it h It ~ tz 

S (ats~)=usk+s + hu~k+~ 
+ h  h It h 

TABLE 2. Action of the Discrete Differentiation 
Operator on Coordinates of a Point (x, at, ate, us .... )6Z 

h h It 

~O right differentiation ~ghleft differentiation + i t  

(x) = 1 
--it  

~) (u)-=u,--hats 
- -  h It h 

~0 (u~)=ats 
--it  h 

- - h  

(usk+l) -----at~,~+s 
--h It It 

(u:k+2) =atst~-3--hus~+4 
--it  It "It It 

m(x)=1 
+h 

m (u)  =at, 
+it h 

~O (uO----us + h% 
+h It It It 

+ i t  It h 

(ad~ 0 ~ u s ~  + hu~k+, 
+h h It h 

~) (u~+s)----usk+s 
+ h  h h 

Under the action of the Taylor group on Z the point z=(x,u, ut, u2,...,u~,u2 .... ) as a grows 
h ~ h 

describes a one-parameter curve, the orbit of the point z. 

Since (S)n----Ta[a_• n=0, • I, • .... an orbit of the Taylor group is a "continuous trans- 
• 

lation" drawn through the "discrete translation"(S) n. Under the condition of convergence 
~h 

of the formal series considered one can speak of the geometrical meaning of the net vari- 
ables u s . In particular, u I is the tangent of the angle of inclination of the chord join- 

h h 
ing the points u and S(~ in the (x, u) plane where the orbit of the point z of the Taylor 

+h 
group is projected. 

3. A Criterion for the Invariance of a Net 

A uniform distance net ~ is the most wide-spread method of discretization of the space 
h 

of independent variables. Transformations of the formal one-parameter group varying x can 
distort the net depriving it of uniformity which one can tell from the finite-difference 
equations written in terms of ~. Hence we single out the class of admissible transformations 

h 
preserving the uniformity of the net. 

Suppose given on ~ a formal group of transformations G: 

x* = / (z, a), ~ = ~2 (z, a), 
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u* = ~ (z, a), ~ ; = , ,  (z, a), 

* * ~  Z ~ ) ,  U , = ~ I  (Z, a), ~ ,2 ( , 
. . . ~ , . ~ 

The group G is completely defined by the operator 

0-~7 § ~ 0~7[" (10)  

We supplement the space 7. with new variables, right step h+ and let step h- at the point z. 
h 

h+ and h- transform (by definition) as follows: 

h+--s (x*)-x* = ( s -  1) f (z, ~), 
+h  +a 

h*=(--Sq-1)x*=(l--S)f(z,a), ~*' h*l - - h  
- " + [ a = O ~  - - l a = O ~  " 

- -h  -.-/l 

The supplementary coordinates of the operator (i0) will be: 

a% 

oi,*_- i a,  ~=o= (1 - s )  ~ (z) = ~ ( z ) -  ~ ( s  (D) = h~) (~). 
--h --h --h 

Knowledge of the tangent field for h+, h_ easily lets us derive the following fact (cf. [2]). 

THEOREM i. In order that under the transformations of the group G the net ~ remain uni- 
h 

form, i.e., h~ = h~ it is necessary and sufficient that at each point z6Z 

~) ~) (% (z))---- O. ( 11 ) 
+h --h 

Remark. The requirement of (ii) means the preservation of uniformity of an arbitrary net 
in the whole space Z. In considering a concrete difference equation ~(z)=O on a uniform net 

h 
one can relax (ii) replacing it by the condition: 

h 
~ ( ~ .  =o ( 1 2 )  +h-~ tz))J~ c=~=~ 

(An example  o f  such  a r e l a x a t i o n  w i l l  be g i v e n  b e l o w . )  

Examples o f  g r o u p s  s a t i s f y i n g  ( 1 1 ) .  

1. (11)  i s  s a t i s f i e d  in  p a r t i c u l a r  by a g roup  G w i t h  ~ = c o n s t ,  i . e . ,  t r a n s f o r m a t i o n s  
unde r  which  t r a n s l a t i o n  a l o n g  t h e  x c o o r d i n a t e  o c c u r s .  For  example ,  f o r  t h e  T a y l o r  

g roup  ~ = i ,  x* = x + a ,  h* = h = c o n s t .  

2. A s o l u t i o n  o f  (11)  in  p a r t i c u l a r  w i l l  ~ = Ax, A = c o n s t ,  i . e . ,  t r a n s f o r m a t i o n s  under  
which  d i l a t a t i o n  o f  t h e  x a x i s  o c c u r s .  Here h~ = h~ = eaAh, a b e i n g  t h e  p a r a m e t e r  

o f  t h e  g roup .  

3. (11)  i s  s a t i s f i e d  by a g roup  G f o r  which  g(x  + h) = g (x )  i s  a p e r i o d i c  f u n c t i o n  w i t h  

p e r i o d  h.  

4. I n  t h e  more g e n e r a l  c a s e  ~(S(z))=~(z), i . e . ,  g ( z )  i s  i n v a r i a n t  w i t h  r e s p e c t  t o  t h e  
•  

d i s c r e t e  t r a n s l a t i o n  S. 
•  

5. (11)  i s  s a t i s f i e d  by t h e  f u n c t i o n  $ ( z )  = A ( z ) x  + B ( z ) ,  where A(z )  and B(z)  a r e  a r b i -  

t r a r y  i n v a r i a n t s  o f  t h e  d i s c r e t e  t r a n s l a t i o n  S. 
•  

Example o f  a g roup  ( o f  p r o j e c t i v e  t r a n s f o r m a t i o n s )  n o t  s a t i s f y i n g  ( 1 1 ) :  

X=x~D + .... 

Theorem 1 shows that one can only preserve the uniformity of a net for a rather small 
class of transformations. Hence if we want to preserve in a net space all groups present in 
the " " "contlnuous space Z then we must necessarily consider nonuniform nets. 
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Now suppose given in Z a nonuniform net ~. At each point zEZ there is given a pair of 
h h 

numbers, a right step h+ and a left step h_; the operators S, S, ~9, ~D lose commutativity 
+ h  - -k  + h  --h  

and become "local," i.e., depending on the point z. 

Suppose we are given a right step h+ as a function of x: h+-----(p(x). The left step is the 
right step at the point displaced by h_ to the left: h_=~(k--h_) hence one can restrict 
oneself to consideration of h+ only. Conversely, if there is given a function ~(x) and a 
point x 0 with which discretization of the x axis starts, then one can uniquely recover the 
angles of the net m. Under the action of the group G the size of x will change and with it 

fi 
the variables h+, h_ too. After transformations of G the new step h+ will be expressed gen- 
erally with the help of another function of x*: 

h+=~(x*). 

We shall say that a given uniform net ~ is invariant with respect to transformations of 

G in the space Z =(x, it, ui, u2 ..... ul, t~ ..... h+, h_)if 
k h h 

k+=q~ (X) (13) 

is an invariant manifold, i.e., in the new variables it will still be valid that ~h~=~(x*). 
The following theorem which is easily obtained with the help of the operator (i0) gives a 
test for the invariance of the manifold (13). 

THEORFM 2. In order that the difference net ~ defined by (13) be invariant with respect 
n 

to transformations of G with the operator (i0) it is necessary and sufficient that the fol- 
lowing condition hold: 

(S (z))-- ~ (z) (1 + o~ ~)[(13) =0. (14) +h 

Example. We consider projective transformations defined by the operator X-----xZ~-~+ .... 

The criterion for preserving uniformity does not hold: ~)~(x2)=2 so it is necessary to con- 
-h +h 

sider a nonuniform net h+-----~(x). We extend the operator by h+ and h- 

X =  X z (15) 

It is easy to construct an invariant net starting from the invariants of the group G: J1==x+ 
X 2 .~2 

h-~' 52=x--~_. We construct, for example, an invariant nonuniform net on the interval (0, 

L0). Taking L0=J1 we get the equality 
X 2 

h+=Lo__ x, (16) 

the left step is determined from the equation,h_=~(x--h_): 

g 2 

h_= L0 +----- ~ �9 (17) 

It is easy to verify that (16) and (17) give an invariant manifold with respect to the opera- 

tor (15). One can see that the ratio h+ L,+x also gives an invariant manifold, i e. the 
b -  L , - - x  " ' - 

transformations of G preserving the invariance of the net preserve the proportions of the 
difference pattern. 

Theorem 2 admits generalization to the case when the net m depends on a solution. 
fi 

Let a net be given by the equation h+=~(z), where ~(z)6~. Then the criterion for its 
invariance will look as follows: 

(s (z))- ~ (z ) -  x +n (q) (z)) In+=~(,)=0, (18) 

where X i s  an opera tor  of the  form (10) .  
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4. Transformations Preserving the Meaning of the 

Finite-Difference Derivatives 

We consider a formal one-parameter group G of transformations in 
h 

x * =  f (z, a) ~ ;=~ l ( z ,  a) 

t t*=g(z ,  a) . . . . . . .  
u~=g, (z, a) ~ = ~ ( z ,  a) 

u~=e~(z, a) 

(19) 

We define the transformation of the difference variables u as follows: 
h s . 

where 

�9 >~ ~! g.(z ,  a ) = u T + ~ u ~ +  . . . .  

Z Z h 2 t, s ~  g*+~ (z, a) . . . . .  
l>][ s > l  

h%=(S-1) f (z, a), hi=(1--S) f (z, a), 
- - h  

w h i l e  t h e  o p e r a t o r s  S, S a r e  " l o c a l , "  i . e . ,  r e p r e s e n t  t h e  c o r r e s p o n d i n g  t r a n s l a t i o n s  w i t h  
+ h  --h 

s t e p s  h+ and h_.  

I n  o r d e r  t o  a p p l y  t h e  f o r m a l  g roup  G (19)  t o  f i n i t e - d i f f e r e n c e  o b j e c t s  we a l s o  need  
t o  c h o o s e  f ,  g,  g ~ , . . ,  f o r  wh ich  p r e s e r v a t i o n  o f  mean ing  o f  t h e  f i n i t e - d i f f e r e n c e  d e r i v a -  
t i v e s  occurs. As the definition of difference derivatives we take Table i, for example, the 
first difference derivative preserves its meaning if the equality 

a~h+=S (u)--~ ( 2 0 )  
a + a ,  

i s  an i n v a r i a n t  m a n i f o l d  o f  t h e  g roup  G ( 1 9 ) .  By a n a l o g y  w i t h  g r o u p s  o f  t a n g e n t  t r a n s f o r m a -  
t i o n s  ( c f .  [ 4 ] )  we c a l l  (20)  t h e  f i r s t  o r d e r  d i s c r e t e  t a n g e n c y  c o d n i t i o n  and t h e  f o l l o w i n g  
rows of Table 2, respectively, the second, third, etc. order discrete tangency conditions. 

Let the group G correspond to the operator: 

2 = ~ + n ~ +  ~ 0 0 ; ~  0 + ~  ; , ~  ~>,. + ( ~ ( S ( z ) ) - ~ ( z ) )  +~ + ( ~ ( z ) - ~ ( S ( z ) ) ) o ~ ,  -~ (21) 

where ~, N6~ and ~s and ~l are power series in h with coefficients from ~. 
h 

THEOREM 3. Let G be a formal one-parameter group with operator (21). At each point 
of Z let (20) represent an invariant manifold of G. Then for the coordinates of the operator 

h 
(21) one has the following chain of relations: 

~ = ~ ( q - - ~ u l ) q - ~ u ~ + l ) ,  s = l ,  2 . . . .  , (22)  

i . e . ,  t h e  f o r m u l a  o f  L i e - B ~ c k l u n d  g r o u p s  ( c f .  [ 4 ] ) .  

The invariance of (20) guarantees the preservation of meaning of the first difference 
derivative under transformations of G (19) and as (22) which is obtained in Theorem 3 shows, 
the preservation of the meaning of all "ordinary" derivatives u I, u 2, .... Does such a group 
preserve the meaning of the second, third, etc. difference derivatives? The next theorem 
gives the answer. 

THEOREM 4. Suppose given a formal one-parameter group G (19) with operator (21) and 
suppose at each point of Z (at each node of the net ~) the relation (20) be invariant. Then G 

h 
preserves discrete tangency of any finite order (cf. [2]). 

Thus, a formal group G preserving the meaning of the first difference derivative is a 
Lie-Bgcklund group in Z and extends to Z while preserving the meaning of all difference 

h 
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derivatives of finite order. We note the nonlocality of the given interpretation of Lie- 
B~cklund groups: two points on a smooth curve located at a small but finite distance from 
one another go into two points on the image of this curve (in the multidimensional case Lie- 
Bicklund transformations carry a neighborhood of the point z of the locally analytic manifold 

into a neighborhood of the manifold ~*). 

We give extension formulas for finite-difference derivatives obtained by successive ac- 
tion of the operator X (21) on the rows of Table i: 

h 
;~ = ~ (~)-- u,~ (~), 
n + h  �9 + h  

- ~  ~ ~ - ~  ( 2 3 )  
~2~ = ~ (~_~)-- u ~  (~ ) ,  
h - -h  h h - -h  

~+~ =~ (;2~)-- t t ~ + ~ )  (~), /e = 1, 2 . . . . .  
+ h  h h + h  

We note that the recurrent chain of formulas (23) goes formally into the Lie-B~cklund 
groups formulas as h + 0. 

5. Two-Dimensional Case: Extension Formulas; Invariant Nets 

Let Z be the space of sequences (x, u, u, u .... ), x={xl}, i----I ..... n; u={u~}, k=|, 2 ..... m; 
! 2 

U={U~} be the collection of mn partial derivatives of first order, u be the collection of 
I 2 

second order derivatives, etc. 

The extension formulas obtained earlier generalize easily to the case of several depen- 
dent variables uk: for this it suffices to treat them as the component-wise description of 
the vector u k. 

Essential changes occur in passing to several variables x i. In order to avoid involved 
formulas we restrict ourselves to the case n = 2: x l, x 2. We shall omit the index k = i,..., 
m for u k. 

We consider two forms differentiation: 

0 0 0 0 
~)1----- O-Tr-~ ux ~ + U , ,  ~ +U21 0~ + . . . .  (24)  

~2=O+u2Tx~ 0 0 0 ~ + u ~ 2 ~  +u22~ + . . . .  

where 

Ou d2u O~u 
Ul~O-'~-, U11=(0--77 ~, U21----Ox~Ox,, . . . ,  

w h i l e  in  (24 )  summat ion  o v e r  t h e  m i s s i n g  i n d e x  k i s  u n d e r s t o o d .  

The o p e r a t o r s  ~1 ,  ~ g e n e r a t e  two commuting T a y l o r  g r o u p s  whose  f i n i t e  t r a n s f o r m a t i o n s  
1 

a r e  d e t e r m i n e d  by t h e  a c t i o n  o f  Ta-~-e  a~Dl and T2a-----ea~. F i x i n g  two a r b i t r a r y  v a l u e s  o f  t h e  
two p a r a m e t e r s  h x > 0 and h 2 > 0 we f o r m  two k i n d s  o f  d i s c r e t e  t r a n s l a t i o n  o p e r a t o r s :  

S ---- e• ---- X ( + h,)* ,~s 
• - - $ . > 0  ~ 'z/'~l ~ 

S=e• (+a,) s ,~s (25)  

Z/z, s~>O ~ zz '2 " 

Correspondingly we shall have two pairs of difference differentiation operators: 

S--I 
~---- + • 
• - hi ' i=I,2. 

The operators S, S, ~, ~ commute in any combination. 
• • • • 

The set of points in the (x I, x 2) plane: 

{ S=(xg, S~(x=)}, ~, [i=O, 1, 2 . . . . .  
• "+at 

(26) 
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will be called a uniform difference net and denote by ~. 
h 

Analogously to the one-dimensional case we introduce the difference derivatives 

u~ = . ~  (u), us = ~ (u), ul: = . ~  . ~  (u), 
h +h, h +h, h --h, q-h, 

//-12=~ ~(/~), g1~-~-~-~ ~(ht), and t.d.; 
h q-h: +hi h --hi +hi 

Correspondingly one generalizes Tables 1 and 2 of discrete translations and differentiations. 

Let Z be a sequence of formal power series with analytic coefficients: 
h 

zJ*----~A[(z)a 3, A~----zS, (27) 
3=0 

z j are the coordinates of the vector (x, e, ~, u,..., ~i, ~2, gll, ...). We shall treat the sequence 
l 2 h h h 

of series (27) as a transformation in 7. Among the sereis of the form (27) as before we 
h 

shall be interested only in those which form a formal one-parameter group and are described 
by infinitesimal operators 

oo oo 

2 = ~  o-~-+~ - ~  + n ~  Z.i~'"" + Z . i ~  .... ' ,  o ~ -  ' L, it={1, 2}. (28) 
h " 3OlZ i~ . . . , i s  h l , . . . i l  

3=1 l=1 

Supplementing 7. with the variables hl, h 2 we extend the operator (28): 
h 

0 
2 .... + hi m (~) ~ + h2 m (~=) ~. 
h +h~ ua, +h, 

We calculate the coordinates of the operator (28) for the difference derivatives. 

For this we consider in 7. a two-dimensional surface (as before, we omit the index k in 
u k) : h 

U--  ~p (X I, X2). ( 2 9 )  

Let the formal group G of transformations 

x l =  f l  (z, a), x 2 =  f2  (z, a), u = t p  (z, a) . . . . .  

whose tangent field is defined by the operator (28) act on Z. Under the action of the group 
h 

G the manifold (29) goes into ~*-----~* (x I*, x 2~) or 

(])(Z, a)=%p* (fl(z, a), f2(z, a)). ( 3 0 )  

We a c t  on ( 3 0 )  by t h e  o p e r a t o r  (S - 1 ) :  
-t-h, 

(S- -1 )  q)(z, a)=xp* (S(f'), +Sh(f2)) -- **  ( f l ,  f2)= 
+ht 

(tl~*( S ( f i ) ,  S ( f ~ ) ) - - ~ * (  S ( f l ) ,  fa ) )  

| ( S - -  1)f ~ ( S - -  1 ) / ~  -}-** ( S ( / i )  ' f 2 ) _ _ * *  ( / I ,  /2) .  

0 a=O to the equality obtained, we get Applying the operation 

whence 

( S - -  1) ('q) = S (us)( S - -  D (~)--}-;4t~ + ul ( S - 1) (~), 
+h, +h, +h, h h +h~ 

~, =~ (~)-- u ~  (~I)_ S (us) ~ (~2), (3 i) 
h +h I h +h I +h I +hl 

@u 
where S(~2) is the "continuous" derivative u2-----0-~ at the point shifted to the right by the 

+h, 

step h I along the x I axis (on the discrete representation in Z of the "continuous" deriva- 
tives, cf. below), h 

Analogously we get the following extension formulas: 

~ = ~ (n)-- S (u,) ~0 (gl)_ u ~  (g2), (32) 
h +~, +h,  +ha h +h2 
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~lr ---~ ~ O1)--2u, r ~  (~t) _ I S (u2) ~0 (~2)+ ~ S (u2) 9 (~'), (33 )  
--h~+h, h +hi ~ +Iz, +h~ --Iz, --k~ 

--h,+h, a +a, ~-" (34) - +h, + h ~  z --h, --h, 

~12~--.~)~)(n)--U12(.~)(gl)--]-~)(g2)) ~-~; S(/~l)~(gl)- -~ - S(/~2)~)(~2), (35) 
h +h2+h,  h +h~ + h ,  +h~ +It,  2 +h~ +t t ,  

We note that the extension formulas (32)-(35) can be obtained with the help of the Lie- 
B~cklund groups formulas just as in the one-dimensional case (cf. above). 

A uniform rectangular difference net ~ is characterized by the pair of relations 
h 

h+=h[, h+=h;. (36) 

The requirement of invariance of the relations (36) leads to 

~ ( S (z)) - -  2~ ~ (z)  + ~ ( S (z)) = O, 

+~' -~' (37) 
~2 ( S (z)) - 2~ ~ (z) + ~ ( S (z)) = o. 

+~ --~ 

In the case of a nonuniform net rectangular net 

/ ~+ = %  (x~)' (38) 
+ = 

the requirement of its invariance leads to the following relations: 

+hl 

(39) 

~4=U. 

One easily get an invariant 
$i--ff4. For example, in the 

(40) 

o'P~'/I - o  

Analogously one can also consider invariant curvilinear difference nets. 

We consider an example of an invariant net. Suppose given in the (x, y, u) space the 
operator of projective transformations 

X ~ x'2 0~ -i- x y ~-- ~. 

This operator does not satisfy (37) so the uniform rectangular net will be noninvariant. 
We construct an invariant rectangular nonuniform net. 

We extend the operator (40) by h + and h + 

. . . .  +(2x+h  +)h+ O. +xtt+ 0_. 
oh7 oh~ 

In (x,  y,  u, h +, h +) space  t h e r e  a re  fou r  i n v a r i a n t s :  

3 ' , = ~ ,  ~,2=-~--, J 3 =  h+ ' 

We need to write down an invariant manifold of the form (38). 
representation of the manifold (38) in terms of the invariants 
form: 

~ t h + = y ,  o < y < + ~ .  

6. Invariance of Difference Equations 

Let Z be the space of sequences of net variables (x, u,=1, u 2 .... ), ~%Z be the space of ana- 
h h k k 

lytic functions of a finite number of variables z from Z. Then a finite-difference equation 
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is an invariant manifold of the group G. 
looks as follows: 

(or system of equations when u:u k, k = l,...,m) can be written as follows: 

X (z) to = O, X ( z ) ~ .  (41)  
a 

This equation is written on a countable number of points of the difference net ~ (uniform 

or nonuniform)., 

Suppose given in Z extended by the variable h (one or several), a formal one-parameter 
h 

group G, a Lie-B~cklund group with operator X, which is extended to h by the formulas ob- 
tained previously. 

We shall say that (41) is a hpmogeneous difference equation if at each point of m it 

admits transiation to a neighboring node (c~. [SJ): fi 

S~'(z) 

In this condition we do not include invariance with respect to discrete translation of the 
net m since it itself is obtained by discretization of the space of independent variables, 

i.e., by the action of S = on some "starting" point. However an arbitrary net m will not 

necessarily be an invariant manifold of the group G. Let ~ be given in Z by the equation 
h 

~(z,h)=0, ~6~ . Then we shall say that the difference equation (41) admits the group G if 
h h 

x (z) = 0, 
~(z,h)-~-0, (42) 

A criterion for invariance of the manifold (42) 

XBr 1(42)--0, X~I(42)=0. (43) 
h 

The proof  of  t he  v a l i d i t y  of  t he  c r i t e r i o n  (43) i s  a complete  r e p e t i t i o n  of  t h e  proof  of  
the corresponding criterion of [4] for the invariance of a manifold with respect to Lie- 
B~cklund groups. 

The process of creating a difference scheme is a change of variables in Z from Z to Z 
h h 

in which one imposes requirements of approximation to the necessary order (cf. [8]) and pre- 
servation of the original group on the change of variables. 

We consider examples of such transformations. 

i. The ordinary differential equation 

u i = e  ~ (44) 

admits the two-parameter pointwise group defined by the operators 

o 0__2__0 
X l  ----- b-2x' X2 = x Ox O~" 

We make the approximating change of variables 

X--->- ~ ,  /g-">" 7), Ul-->" "01' //'2---> ~1"~' .... 
h 

Equation (44) becomes 

and the  co r re spond ing  o p e r a t o r s  which we extend  by h + and h- w i l l  look as fo l lows :  

O 0 0 0 ,.+d ,._ 0 
X , - - ~ ,  X ' = Y w - - - 2 - ~ - - - ~ '  h o g  ov ,~ ~ ,  V__--2j T0~1T-ylz ~ j - t t  ~ ,  

Both operators satisfy the criterion for preservation of uniformity of a net (ii) so the 
uniform net which one can write as h + = h- will be invariant. 

The invariance criterion (45) on the uniform net ~ gives 

Xlh (~.ih, - -  e9 ](45),~ = O, 
/t 

(45) 

(46) 
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�9 v I X2(vl i - -e  ) h 1(45),o h a (~),~ - ~ - 2 ( v 1 7 - e v ) ]  ~0.  

h h 

We note that one can construct invariant difference equations in Z starting from a complete 
h 

collection of invariants and finite-difference invariants (discrete analogs of the differen- 
tial invariants) of the group G in the net space. For the operators X, ,  X2 in (y, 4, 41, ~ff, h) 
space we have three invariants h ~ h 

J x : v , e  2, ~ 2 : v l i e - ~  ' 3 3 . ~ _ h 2 e t  
h h 

Equation (~5) is equivalent to the invariant representation J2= i From these invariants it is 

also possible to compose other invariants by approximating (44) to the second order while 
guaranteeing the invariance property. For example, the equation 

v f i ~ e v + h 2 e  2v, 
h 

equivalent to $ 2 = 1 + $ ~ ,  will admit the operators (46) and the equation 

4 - = e ~ + h2e ~ 
t~ II 

is not invariant with respect to the operator ~2. 

2. We consider the simplest second order linear equation 

u2=0. (47) 

It is known (cf. [7]) that it admits an 8-parameter pointwise group among whose operators in 
particular there is the following one: 

0 

In Z we consider the finite-difference equation ~iT=0which approximates (47) to the second 
h 

order. The corresponding operator 

x =  4 o (2h+4, -34,)3 

does not satisfy the criterion for preserving of uniformity of the net: ~)(~)sAO. 
--h+h 

one can all the same use a uniform net. Indeed, we write our manifold in the form of two 
equalities: 

h §  -, (49) 

and  we e x t e n d  t h e  o p e r a t o r  ( 4 8 )  by  h + and  h -  
+ ~ _ ~ 0 0 

X = . . .  + h  
h 

(48) 

However, 

where avF is the left difference derivative of first order, 4-=vl'--h-v.~. We act by the 
h ! k h ~' 

operator (50) on the manifold (49): 

h+v,--h-v: [ =0. 
h h I (49) 

The i n v a r i a n c e  o f  t h e  s e c o n d  e q u a t i o n  f o l l o w s  f r o m  ( 4 9 )  and  f r o m  t h e  e q u a t i o n  

Thus, the uniform net is not invariant in the entire space Z but admits the operator 
(50) on the manifold (49). h 

3. The equation of nonlinear thermal conductivity 

u,=Cu ~ Ux)x (51) 
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admits (cf. [6]) the four-parameter group defined by the operators: 

0 0 0 O 
X ~ = ~ - / ,  X~--=--57, X a - - 2 t  q - x ~ 7 - ,  

0 0 
X~ = ~t ~ -- u aa-- 

We make t h e  change  o f  v a r i a b l e s  in  Z~' x-+fix, t-+-t, u ~ v ,  ux-~%, ate*%, Izxx-*%~,. . . .  
h h ~ h 

o p e r a t o r s  (52)  in  Z in  e x t e n d e d  fo rm w i l l  l o o k  as  f o l l o w s :  
h 

y 0 

o 0 0 0 
X a = ~  + x ~  -~---2v~-=-- - -  +2~ + h  ... .  
a Ox ~ or,  , or,  - - 2 v f i  Ov~ Oh' 

h "~ 

The 

(52) 

(53) 

.,~ ,,~"4=z e v e e _ _ e _ ~ _  e e 
h o ? - -  N - ( ~ +  1)v~-~, -v~  + o *  

We n o t e  t h a t  a l i  f o u r  o p e r a t o r s  p r e s e r v e  u n i f o r m i t y  o f  t h e  n e t  m. 
h,~ 

In Z we consider the difference scheme approximating (51) to order (~ + hf): 
h 

vl = -~ (k (~) ~ ) =  k (~) ~r, + ~ (k (~)) :o,, (54)  
T q-~ h h q-h h 

where  z~---S(z) i s  t h e  v a r i a b l e  z on t h e  " u p p e r  l a y e r "  w i t h  r e s p e c t  t o  t ,  k ( v )  i s  t h e  d i f f e r -  

ence approximation of the coefficient of thermal conductivity u ~ The scheme (54) of di- 
vergent type uses a six-point t e m p l a t e  ( c f .  [ 8 ] ) .  We c h o o s e  t h e  f o l l o w i n g  a p p r o x i m a t i o n  o f  
t h e  c o e f f i c i e n t  k = u ~ 

( v ) =  2- [ v ~ + S  (.v~)], 
--h 

1 (S(v~)--S(v~)) and the scheme (54) looks as follows: so ~ (k (v))- 
+,% +h -1~ 

~ [S ( v o ) - S  (v~,)] :o~. (54* )  % - -  1/2 ivY+ S (v:)] vr~ + :);  
--h +h --h h 

We extend the operators (53) by the variables ~, ~h, S(v~), S(v~): 
h +~ --a 

o _ 2  ^ o Xa -~ �9 �9 - -  'v 1 " 
h h 06, ~h a6-' 

it h 1i 

X 4 = - - S ( v )  o _51, o --~1 o - o 
~,+~, o ( s ( v )  _ (v)o(s(,)) i, -g~v,--~ 5 o~-; 

+h - -h  h k 11 

(X1, X2 a r e  n o t  e x t e n d a b l e )  The d i f f e r e n c e  e q u a t i o n  (54 *) o b v i o u s l y  a d m i t s  XI and X> We 
h h " /z h ' 

verify its invariance in relation to X3 and X4: 
h h 

23 (v, - 0.5 [v~+ s (~01 ~r, - 0.5 (h)-' [s (v~)-  s (v~ ~ )  l (~4.) = - 2 {v~ - 0.5 [v~+ s (~)1 ~ -  
h ~ --h h + h  - -h  h ~ --h h 

- 0 . 5  (h)-' is ( v o ) - s  (~)1 ~,)I c~*)--o. 
+ h  --h h 

X4h (TI~ - - 0 . ~  [TJgq  -_Sh(YJg)]  ~h [ |  - -  2-h- + h  --h h 

Here  we h a v e  u s e d  t h e  f a c t  t h a t  S commutes w i t h  any  f u n c t i o n  f rom ~t. 
=~h h 

The i n v a r i a n c e  o f  t h e  f i n i t e - d i f f e r e n c e  e q u a t i o n  ( 5 4 ' )  l e t s  u s ,  j u s t  as  i n  t h e  d i f f e r -  
e n t i a l  case, construct its invariant solutions. However the nonlocality of the discrete equa- 
tions leads to some singularities of this procedure. The difference equation is given on a 
finite collection of points of the difference net, on the difference template, so under a 
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map into the space of invariants of the group it is necessary that the difference net and 
template agree in the space of invariants. 

In (t, x, v) space the operator X I has two invariants: x, v. An invariant solution 
v(x, t) = 9(x) is a stationary solution defined by the equation 

k (v) % + ~ (k (v)) Vl = O, 
h + h  h 

while the step of the net h must remain the same as in the original space. 

Analogously one gets a homogeneous solution by the operator X2. A solution which is 
invariant with respect to the operator 

0 0 

is the difference running wave: v(x, t) = 9(~), ~ = x - ~t. The step of the difference net 
A% along the I axis should be consistent with the original steps h, �9 and the velocity of 
the wave ~: 

h 
~-- u A%----h. 

These relations mean that the lines ~ = const pass through the nodes of the original (x, t) 
plane. The compatibility of the difference templates can be achieved for ~ = k(h/~), k = 
i, 2 .... , i.e., when the velocity of the running wave is a multiple of the difference velocity 
h/~. Difference running waves of the equation of thermal conductivity were first considered 
in [9]. 

We consider a self-similar solution of (54*) which is invariant with respect to the one- 
parameter group of dilatations corresponding to X~. The invariants will be: ~, v~ and we 
seek a solution in the form v(x, t) = 9(~)/(~)i/o. 

Substitution of the invariant representation of v(x, t) into (54*) leads to an equation 
for 9(x) on the (n + l)-st layer with respect to n = t/~ 

(~~ + 2hn (1/-h-r+ n - -  1) ~(~)  = O. ( 5 5 )  
h h 

In this equation the step of the net h coincides with the original one. Solving (55) we find 
a solution of the original equation from the formula 

v(x, t )=v(x)((n+l)~) -~1~, ~ = 0 ,  1, 2 . . . . .  

7. Newton Group, Commutation Properties and Factorization of 

Lie-B~cklund Operators in Net Space 

The Taylor group defined in Z by the operator ~ allowed us to extend the action of a 
h 

formal group to the net variables (ul, u2 .... ). In the theory of Lie-B~cklund groups [4] the 
h h 

Taylor group also plays an essential role. With the help of a generalization of it, groups 
defined on Z by the operators ~, (z)6~ admitted by the differential equations one makes 

h 
a transition to the quotient:algebra of Lie-Bgcklund operators. The representatives of 
this quotient-algebra have independent variables as invariants and the extension formulas 
for them have simple and convenient form. 

In this section in the simplest case of one independent variable x and uniform net 
we consider the difference analog of this construction, h 

One constructs a group of transformations on the net space, the Newton group, which is 
isomorphic to the Taylor group. With the help of the Newton group one constructs an ideal 
of the algebra of all Lie-B~cklund operators on the net space. The ideal constructed is 
used for factorization of the set of operators admitted by the finite-difference equations. 

An orbit of the Taylor group, i.e., a one-parameter curve in Z obtained as the trajec- 

tory of an arbitrary point (x, u, ul,...) under the action of the operator Ta=e ~ at the 
points a = • (n = 0, i, 2,...) coincides with the points obtained by the action of the 
discrete translation (S)L In other words, an orbit of the Taylor group is a "continuous 

• 

translation" drawn through a "discrete translation." The question arises of the inversion 
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of this procedure, obtaining a continuous translation through the discrete, or in other 
words, the question of representation of the Taylor group on the net space Z. The following 

h 

heuristic considerations let us find out which power series should be used for such a repre- 
sentation. 

If translation along an orbit of the Taylor group for a = h gives a discrete transla- 
tion S then in order to get translation by a ~ _+nh we act on a point in Z by the operator 

+h 

S "a nonintegral number of times," i.e., we introduce fractional powers of the operator S. 
~ h  +h 

Leaving aside the question of convergence of the operator series which arise, we decompose 
(S)a/h in a power series: 

a9 a __ ~q_ . . . .  (S)~/~-----(l+h~O)a/h:lq-~h+h+h - - 1  21 +h 
+ h  + h  

__ s ~  1 +h ---l+a~O~+h a(a--h)2! .~2.~ a(a--h)(a--2h)3~ . ~ ) a + .  �9 �9 = 1 +  (a--teh) ~-.. (56) 
+ h  - + h  = (k=0 " 

s - - 1  

The quantities alsl.=l-I. (a--kh) figuring in ( 5 6 )  are called generalized powers of a (cf. [i, 
k=O 

5]). 

Under the action of the operator series (56) the x coordinate goes into x* = x + a, 
the u coordinate into 

u* = u ~ a u ~  -~ a (a--h) 

h "21 (u~+h hu3)+~ . . . .  

i.e., is the Newton series decomposition of the function u = u(x) at the point (x + a) on 
the uniform net of nodes x, x + h, x + 2h, .... 

Analogously we get a decomposition into a series of the fractional power of the operator 
of discrete translation to the left (a > 0) 

(S)~ ~-(1--h~O)~ = 1 + ~  ( k i t - - a )  . (57) 
--h - - h  s = l  (k=O " 

The action of the series (57) on the u coordinate gives the decomposition into a Newton se- 
ries of the function u = u(x) at the point (x - a) on the uniform net of nodes x, x - h, 
x - 2h ..... 

The action of the operator series (56)-(57) on the point (x, u, u I, u 2 .... ) coincides 
with the action of the Taylor group at the points a = +nh. (We note incidentally that at 
these points the series (56)-(57) break off, have a finite number of terms.) 

N+la=.h---- 1 q - ~  (a--leh ----(S) n , 
a # = 1  I . k = 0  a = n h  +tt  

,_, /e: I 
a s = l  = s /  l a = n h  - a  

We regroup the formal operators of the series (56)-(57) in powers of the parameter a: 

~o a~ (--h)~-' N + =  ~ ~9 n , 

a = . = ~  " + h  / ( 5 8 )  

N - =  ~ ( - - a y  h "-1 ~O~ z.a SI 
- s = 0  ' \~-~-~7" 

T h u s .  t h e  o p e r a t o r s  ( 5 8 )  a r e  d e f i n e d  i n  Z ~ ( x ,  u, tfi, tt2 . . . .  ) a n d  c a n  be  r e p r e s e n t e d  i n  e s s e n t i a l  
form (5) : h h h 

N+=e+h, N - = e  -k, ( 5 9 )  
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where 

§ ~ +~ - - /z  n -h 
n = l  n~l ( 6 0 )  

The representation (59)-(60) means that the action of the operators N § N- on the point 
a a 

(x, U, Ul, u2 .... ) forms a pair of formal groups of transformations on Z: 
h n h 

( X* ~-- X -5 a, *=u+a~(u)+a'~. ~2-- (U)+_ . . . .  

-- +h 

" .  . . . . .  _ . . . .  : 5  . . . . . . .  

The second row of these transformations is the formal expansion (to the right and left) of 
the function u = u(x) at the point (x = _+a) in a Newton series. The remaining rows can be 
obtained by term-by-term difference differentiation, since the operators ~9, ~9 and 9, ~) 

+h --h -~h --h 

commute. We shall call the group (61) the Newton group. 

One can treat the action of N+and N-for a > 0 as formal Newton interpolation (respec- 
G 

tively, to the right and left) on an infinite number of equidistant nodes; for a<0 N + and 
a 

N-give, respectively, extrapolation to the left and right. We calculate the tangent field 
a 

of the pair of formal groups (61), the Newton group: 

O a  la=O - -  

~ 0_~/u* _ ( 6 2 )  

- o,, a = o -  + ~b (,z), + h  

o,41 
~• - ~ = + ~ (u,) ..... 
hl --Oa [a=0 --• 

Instead of the pair of tangent fields (62) we shall consider the infinitesimal operators of 
the Newton group: 

h OX +h +h h 

~ - : - -  - -  (it) - -  (~ , )  ~ - - - . . . ,  ( 6 3 )  
h h 

oo 

~b = ~ ( ~- "Y- '  ~ " .  
. 

•  n = l  :t:h 

In the operator ~)-we retained the sign "-" since ~)- defines translation to the left for a 
n h 

positive value of the parameter a. Thus, with the help of heuristic considerations we have 
constructed[ a formal group on Z, the Newton group. Its orbit coincides with the orbit of the 

h 
Taylor group at the points a = kh. 

Now we show that the Newton group (61) with tangent field (62) is really a "discrete" 
representation of the Taylor group on Z. 

h 

It is known that the finite transformations of a continuous group are related in a one- 
to-one fashion with infinitesimal (infinitely small) transformations. In the case of point- 
wise groups this relation is expressed with the help of a finite system of Lie equations. 
In the case of Lie-Bgcklund groups the corresponding relation is expressed by an infinite 
chain of Lie equations whose solution is given by the unique recurrent sequence of coeffi- 
cients of formal series (cf. [4]). In both cases the solution of this system can be repre- 
sented in the form of an exponential map. In the case of Zn a finite transformation of any 
coordinate z i is given by (5): h 
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eo 

". a X  . i" ~ a s  
z '*=S (zO=--e tz ~ L T X(~) (zg. 

a $ ~ 0  

(64) 

One can invert the series (64), i.e., establish an infinitesimal transformation aX(z) from 
the finite transformation S(z) in the form of the logarithmic series (cf., e.g., [i0]): 

a 

[a S ( S - -  1)2 a 

=X(zg=ln[l+(S--1)](zg--  ( - - 1 )  2 k 
a 

" ' "  -}- ( - -  1)"-~ n -[- �9 �9 �9 (zO---- ( _  1 ) ~ - 1  a ( # ) .  ( 6 5 )  
s = l  S 

We apply the process of reconstruction of the tangent field X from the finite transfor- 
mations to the Taylor group, taking as value of the parameter a = h: 

whence 

~'~,,~ = h ~  -- - -  

+Iz 

ea'~/~=h=S= I +h~), 
+k +h 

+h l p - '  +h + .  2 + ' " ( -  . "" 

oo ~)=~ ( - - h ) : - '  ~)~, 
n (66) 

n = l  -]-h 

i.e., we get an expression which coincides with the operator ~. In (66) we have omitted 
+n 

argument z i on which the corresponding operator acts. If z~6Z then it is understood that 
h 

on the left side of (66) the difference derivatives are expressed by series; if z~6Z then it 
is necessary to express the operator ~9 in terms of e h~). Equation (66) gives the action of 

+h 

the tangent field of the Taylor group on the coordinate z i. The infinitesimal operator of 

the Taylor group on Z can be written as follows (we note that ~(x)=1 ) 
+h 

a - a 0 ( 6 7 )  

h +h h +h h h s 

Analogously for a = -h we get 

oo h (n-D -n - 

n=I ( 6 8 )  

o 
�9 . .  a ~ +  . . . .  

h --h -- h -- h 

Thus, a Taylor group having the tangent field 

a ~7+u 2 0 0 ~=~+u~__ ~+...+us§ . . . .  

on 7. can be represented in the 7. Newton group with a pair of tangent fields (62)-(63), i.e., 
h 

the Taylor group and the Newton group are isomorph, ic. If we are given a transformation from 

Z to Z then the coordinates of the infinitesimal operator of the Taylor group is replaced 
h 

with the help of the operator series ~ which can be written as a relation: 
+h 

(69) 

The upper part of the formula uses Newton series to 

Equation (69) has been known for a long time (cf., 
by Lagrange [14]. Clearly the fact that (69) gives 

the right, the lower to the left. 

e.g., [5]). It was apparently first obtained 
a connection between the coordinates of 
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infinitesimal operators of the corresponding groups was not known since at that time the 
concept of group had not even been formlated. 

Now we consider some commutation properties of operators on net spaces. 

Suppose given two Lie-Bicklund operators on the same uniform net to 
h 

otO , zO O 
X , = ~  ~ n  ~ + [ ~ ( n i ) - u ~ m ( ~ ' ) l  ~ + . . .  +hm(~ , )o ,~ ,  

iz +12 12 +t2 

i = I , 2 .  

F o r  a n y  two o p e r a t o r s  X1, X 2 we i n t r o d u c e  an o p e r a t i o n  o f  m u l t i p l i c a t i o n  ( c o m m u t a t i o n )  by  
the usual formula: [XI, X 2] = XiX 2 - XzX x. The commutator [XI, X 2] does not contain differ- 
entiation of higher than the first order and hence is an operator of the formal group: 

@ 
[X~, X21 = (X ,  ( ~ 2 ) _  X2 (~1)) ~ -{- (X ,  (n2) - X2 (111)) ~ -~- 

+ . I X , ( m ( r  . . .  + l X , ( a ~ ( ~ ) ) - x 2 ( h ~ o ( ~ ) ) l  �9 ( 7 0 )  
+12 12 +12 +12 12 +12 12 +12 +12 

Is the commutator [XI, X2] a Lie-Bieklund operator? For this it suffices to verify whether 
it preserves "discrete tangency" of first order (i.e., the meaning of the first difference 
derivative at each point of to) 

h 

d u  = u l  h ,  (71) 
12 12 

where d~-S.--|. 
12 +h 

Extending the operator (70) by the variable du according to the formula (cf. [2]): 
h 

O (du*) a=O h = h ~  (x~ ( q 9 -  X2 (n ~)), 
Oa +;z 

we a c t  by  i t  on ( 7 1 )  w h i c h  g i v e s  t h e  f o l l o w i n g  c o n d i t i o n :  

~gX~ (q2)_  ~)X2 (q~) - -  X ~ O  012) + X2~O (~)  - -  ~0 (~)  ~9 (~2) + ~ (~2) ~ (q~) = O. ( 7 2) 
-+-t~ +~ +/~ 5-/z +12 +h +h +12 

To prove the validity of (72) we need to calculate [ X , + ~ h I ~ - - X ~ - - ~ X .  The expression X(q) is 
+12 +~ 

a function from ~, i.e., an analytic function of a finite number of variables from Z if 
12 h 

N65g. By the definition of discrete differentiation of a function from ~ we have: 
h h 

(x  ( ~ ( n ) ) -  x (n)), +~ 

hence 

[X,  ~ ) 1 =  - -  -~) (~)-~). ( 7 3 )  
+a +h +h 

Substitution of (73) into (72) turns the latter into an identity. Thus, the commutator (70) 
preserves discrete tangency of the first order. Since an operator of a formal group which 
preserves at each point of to discrete tangency of the first order also preserves tangency of 

h 
any finite order, [XI, X2] preserves any finite discrete tangency and is thus a Lie-B~cklund 
operator. Thus the following theorem is true. 

THEOREM 5. The set of Lie-B~cklund operators defined on the same uniform net to forms 
a Lie algebra with multiplication h 

[X~, Xz] =XIX2--X2X1. 

Now we consider the tangent field of the Newton group, i.e., the pair of operators 

~_!_+ ., m+_ _o_ + fo (u) a + .~ (u~) a,,~ "" 

h - - O x  +a ou +n n n ( 7 4 )  

a,, -12-120 o,,, . . . .  
12 +i~ 12 
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where oo 

~ ~ ,  
+ h  n ~ l  •  

We note that to one tangent field of the Taylor group in 

o o o.A__ + 
= O-~ + u~ Oy +tt2 ou~ " ' "  

corresponds the pair of fields (74) in the net space Z. This doubling of objects, the emer- 
h 

gence of "right" and "left," is a characteristic feature of net spaces and concerns not only 
the operators of the Newton group (74), but also the discrete translation S =e -+h~) discrete 

• 

differentiation ~ etc. This doubling is connected with the presence of a specific discrete 
• 

group, the group of reflections: x + -x leading to a change of sign of the step of the net 
h: h + -h. Hence, instead of a pair of Newton groups with operators (74) one can consider 
One, which means factorization by the group of reflections. Thus, in the one-dimensional case 
for a uniform net m passage from the Taylor group in Z to the Newton group in Z means passage 

h h 
to an isomorphic continuous group with the addition of the group of reflections. 

We also note that the Newton group being a representation of the Taylor group is a non- 
trivial Lie-B~cklund group (cf. [4]). 

where 

We consider the Lie-B~cklund operator 

0 0 ~_~ 0 0 0 
X = ~  ~ + ~I ~-~ .'%, "% "%' +~ 

$d7, + ~-0-~7~. + " ' " + ~ Y )  (~) 8 F ,  

~=~(~)-u, m(~), ~=~(~,)-u~(~) . . . . .  (75) 
lz +,% II + h  h --'% k "% - - h  

The formulas (75) ~1, ~2 . . . .  guarantee the preservation of meaning of the finite-difference 
h '% 

derivatives under transformations of the group. 

It is easy to see that the operators (74) satisfy the constraints (75), i.e., the Newton 
group preserves the meaning of the finite-difference derivatives of any finite order. 

Multiplying a Lie-Bicklund operator on the left by a function ~(z)~ generally we leave 
h 

the set of Lie-B~cklund operators. We introduce a special operation of multiplication on the 

left of a Lie-B~cklund operator by an analytic function ~(z)C~:~*X. In the operator ~*X 
the first coordinates are multiplied by ~ '% 

5x=  a - o ~ - + ~ - ~  + . . . .  

and the remaining coordinates are constructed so that they define a group which preserves 
the first order finite-difference derivatives (and hence also any difference derivative of 
finite order). Thus, ~* X must satisfy the formulas (75): 

+ . . .  + 
+ h  h + h  h t 

(76) 

and not coincide with the operator ~'X. The same operation of multiplication on the left by 
~(z) can be introduced into the "continuous" space Z requiring preservation of tangency of 
infinite order. Suppose given in Z=(x*,~*,u{,u" . 2,..) a Lie-B~cklund operator 

where 

~ = ~' ( ~ -  ~ux) + ~us+, =m (~s-O-- u,~ (~), 

~----~- +u~ ~ ~o-'~-~+ . . . .  

Then the operation of multiplication (*) gives': 
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It is easy' to see that 

+ . . . .  

0 7' 
s : ~ l  n = l  

i.e., in order that the Lie-Bgcklund operator can be multiplied on the left by an arbitrary 

function ~65g without leaving the set of operators preserving the condition of tangency of 
infinite order, it is necessary and sufficient that $ = Su I. The coordinates of the operator 
~9 of the Taylor group satisfy this condition. Thus, the operator ~) is the unique Lie-B~ck- 
lund operator which can "with impunity" be multiplied on the left by ~(z)Es~. 

This situation does not hold in the net space Z; it is impossible to multiply the tan- 

gent field of the Newton group ~)-+ on the left by ~(z)E~ which is connected with the spe- 
h 

cifics of the Leibniz difference rule. Hence it is necessary to use (75), that is, to 
construct an operator of the form 

a -- +a (77) 

+ . .  +h (D 0 

-- Oa, +h +h •  h +h h 

We note that in (77) the coordinate of h~)(~)defining the deformation of the step of the net 
+h 

which is equal to zero in the operator ~9• of the Newton group, appears. 
h a 

We consider the commutation properties of the Lie-B~cklund operators X, ~9• ~*~0 -+ in 
the net space Z. h h 

h 

LEMMA i. For the Lie-Bicklund operators X and ~9 +- defined on the same uniform net 

one has the following relation: h h 

[X, ~ 1  = -- [~)~ (~)]*m% (78) 
h h h " 

LEMMA 2. For any Lie-B~cklund operators X, ~,~)• ~(z)@~ defined on the same uniform 
h h 

net ~ one has the following commutation relation: 
h 

[~*~)~, X] = ~*~)-+ ($) -- X ($))*~)• ( 79 ) 
h h h 

The v a l i d i t y  of  (78) and (79) i n d i c a t e d  in Lemmas 1 and 2 i s  e s t a b l i s h e d  by d i r e c t  c a l c u l a t i o n  
of coefficients of 8/8x and 8/8u; the coincidence of the remaining coefficients is guaranteed 
by Theorem 5, since Lie-Bicklund operators stand on the left and right in the indicated 
equalities. 

The multiplication (*) introduced above and Lemma 2 let us make the following assertion. 

THEOREM 6. The set of operators of the form 

0 
+ . . .  (80) 

h •  

with arbitrary coefficients ~(Z)6,9~ form an ideal in the Lie algebra of all Lie-B~cklund 

operators {X} on the net m. 
h 

Hence :instead of the Lie algebra of operators 

A_+ 
. . .  

one can c o n s i d e r  the  q u o t i e n t  a l g e b r a  by the  i d e a l  (80) .  

As representatives of the indicated quotient algebra we shall consider operators for 
which the coordinate $ = 0 

X = n ~ -  . . . .  (81) 
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where the coordinate ~ = q - - ~ ( U ) .  We shall call the operators (81), just as in the contin- 
+k 

uous case (cf. [4]), canonical operators. For them the extension formula have simple form: 

h + h  h --h + h  

We note that the independent variable for the canonical operator X is invariant, so the step 
of the net (the coordinate of 8/3h in the oper!tor X is equal to zero) is also invariant. 
By virtue of Lemma i, the canonical operators X commute with the operators ~+, ~g)-. 

h h 

The canonical operators X will be used in the following section in formulating a cri- 
terion for conservation of difference equations admitting a group of transformations pre- 
serving the uniformity of the net m. 

h 

8. Discrete Analog of Noether's Theorem for a Class of Transformations 

We consider conservative properties of difference equations in the simplest case, one 
independent variable and uniform net m. 

h 

The Eulier operator in Z = (x, u, u I, u 2 .... ) 

where 

can be represented in Z. 
h 

U,~l)Egr defined on the net ~. 
h h h 

we get 

- - o . §  u, a ~ §  �9 �9 �9 §  aT ,+  . . . .  

We shall assume that it is applied to functions of the form ~(x, 

s = l ,  2 . . . . .  

Noting that 

0 d~,tt 0 h s-' 0 

h h 

oo 

~ = ~  nt" sl --d= -n  ' ( 8 2 )  

where ~ is the operator of difference differentiation to the left. We note that in (82) 

" c o n t i n u o u s "  p a r t i a l  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  ~1 i s  a p p l i e d  f i r s t  and  a f t e r w a r d s  " d i s -  

crete" differentiation to the left. 

We shall call the finite-difference equation 

8_~ 0_~_.~) (0__~) _~_ 0 
~-7=a-g _~ a~,, ( 83 )  

the discrete Euler equation, the function ~=~(x, tt, ttl)the net (discrete, finite-differ- 
h 

ence) Lagrange function, any solution of (83) an extremal. 

I ~2q-eu so the Euler equation (83) will be as follows: Example. Let ~-~ 

U~T - -  e u ~ O. 
h 

Suppose given on the net m a finite-difference functional 
h 

L--~-~--W(X, tt, ttl) h, ( 8 4 )  
h ~ h 

h 

where summation is over a finite or infinite domain ~Co. 
h 

Suppose given in Z=(x, u, ul, u2,..., h) a one-parameter group of Lie-B~cklund transforma- 
h h h 

tions G defined by the operator 
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We shall call the sum 

0 
~ + ' "  + ~ ( ~ )  ~h, (85) 

u*, (86) 
h ~2" h 

h 

w h e r e  t h e  d o m a i n  o f  s u m m a t i o n  ~"~ i s  o b t a i n e d  f rom t h e  d o m a i n  ~ by t r a n s f o r m a t i o n s  of  t h e  
h h 

g r o u p  G, t h e  t r a n s f o r m e d  v a l u e  o f  t h e  n e t  f u n c t i o n a l  ( 8 4 ) .  

We s h a l l  c a l l  t h e  n e t  f u n c t i o n a l  L i n v a r i a n t  w i t h  r e s p e c t  t o  t h e  g r o u p  G i f  f o r  a l l  
h 

t r a n s f o r m a t i o n s  o f  t h e  g r o u p  G and  a n y  d o m a i n s  o f  s u m m a t i o n  ~ one  h a s :  
h 

(87) 
h O* 

h h 

We find out under what conditions on the discrete Lagrange function ~(x, u, ul) (87) 
h 

holds. We make a change of variables in (87) under which on the right one will have summa- 
tion over the "old" domain 

h 

.~ (x,  u, ul) h = ~ .~ (e "x (x), e ~x (u), e ax (uO) e "x (h). 
f l  h o h 

h h 

Since the domain of summation ~ is arbitrary, the last equality is equivalent to the 
following : h 

.~(x, u, u,)h=~(x*, t~*, tOh*. (88) 
/l h 

Equation ( 8 8 )  means that the function --~(x, U, ul)h is an invariant of the group of transfor- 
h 

mation G in the space Z=(x, =, =,, ~= ..... h). 
h h 

We write down a necessary and sufficient condition for the invariance of this function 
with the help of (85): 

X (.~ (x, u, u,), h)=O 
h 

o r  

0s+ n a s .  ~ t~)-- u1~ (D] a s  
~-x 0--fTt+h' " h +h ~ +~)(~)----0.+n (89) 

Thus we have the following theorem. 

THEOREM 7. In order that the net functional (84) be invariant with respect to the 
formal one-parameter group G with operator (85) it is necessary and sufficient that (89) 
hold. 

Equation (89) is analogous to the corresponding condition in the "continuous" case [4] and 
tends to it formally as h + 0. If necessary (89) is easily generalized to "left" difference de- 
rivatives ~-=~1--hu2, half-sums of steps h, etc. 

h I h h 

Example. Suppose given a one-parameter dilatation group G with operator X = x(3/Sx). 
We extend it to net variables ~i, u,7, h (we take the net ~ uniform) 

h h 

0 0 ~ 0 . , 0  
O X  h OU, h 012,~ O n .  

We c o n s i d e r  t h e  L a g r a n g e  f u n c t i o n  .q~=(xq-h)tt1% We v e r i f y  ( 8 9 ) :  
h 

xul  2 -  2ttl 2 (x + h) + htt~ 2 + (x + h) ul 2 = 0 
h h h 

i . e .  t h e  n e t  f u n c t i o n a l  w i t h  i n d i c a t e d  f u n c t i o n  , ~  w i l l  be  i n v a r i a n t .  We c a l c u l a t e  t h e  d i f -  
f e r e n c e  v a r i a t i o n a l  d e r i v a t i v e  o f  L 
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Thus, 
equation 

a---~----- --2~0 6 (x + h)u0 = --2 (x~,7 +~0.  
h 

the Euler equation for_CP-~(x+h)ul~ will be the second order finite-difference 
h 

,.~Ul~ "~- U l  = 0 .  
h h 

This equation naturally admits the same group G: 

x + , , o  + o = o =  
h hl t  h 

Suppose given on the net ~ the finite-difference equation 
h 

~'(x, ~, u~, ,~0=o. (9o) 
h 

We shall say that for Eq. (89) there exists a conservation law if there exists a function 
A(x, u, u~)6~ such that on any solution of (90) one has: 

h h 

~)-+h (A) lsv=~ (91) 

where ~• is the tangent vector of the Newton group: 
h 

~ +  . . . .  
h =i:/z •  I* h 

is "Lagrangian differentiation": 
• 

= 

+k  n = l  •  

We note that in the one-dimensional case which we consider (91) is equivalent to the 
fact that A(x, u, u l) is an invariant of the Newton group on Eqs. (90). One can rewrite 
this fact in finite form: 

S:(A(x'• a, u0) ~=o=A(x, u, ~01sr=o, t z= l ,2  . . . . .  (93) 

where S are the discrete translation operators. Considering that ~)= _+(S- l)/h one can 
+h • • 

also rewrite this equation in another way: 

~O(A(x, ~, uOl~-:o=O. (94) 
lh h [ 

A conservation law in the form (94) is a finite algebraic expression on the net ~. If it 
h 

holds on ~-=0 this means that it is an algebraic consequence of the latter. 

We consider the special case of a one-parameter group G on the net space Z whose trans- 
h 

formations do not affect the independent variable. The corresponding operator has the form 

x = n ~  ~-~+ . . . .  (9s) 
h 

where q(z) is a function from ~. 

We shall consider, as before, Lagrange net functions depending on a difference deriva- 
tive of at most first order. 

LEMMA 3. The following operator identity holds: 

The validity of (96) is established by direct calculation. 

We note that as h + 0 (96) formally coincides with the corresponding Noether identity 
since as h ~ 0 the operators of discrete translation tend to the identity operator. 

Equation (96) lets us relate the conservativeness of a difference equation with the 
invariance of the corresponding dicrete functional. 
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THEOREM 8.  Let the Euler equation ~s 0 be invariant with respect to the group G with 
h 

operator (9!5). The functions A(x, ~, ~)=~_S (~,)/0s satisfy a conservation law if and only if 
the variational functional (84) with ~=~(x' ~, ~I)is invariant on extremals (i.e., on solu- 

te' O~ tions of ~___ )" 

Example. The finite-difference equation ~T=0 admits in particular the operators 

0 0 0 U _ 0 x~=~; x~=~aT+~ ~<, ~ a77. 
h h 11 

1 
We take .~=,~Un~. The corresponding Euler equation ~F=O also admits X z, X z. Calculations 

from the formula A=~]S(O~)for_a X1 gives A=~V-----~I--~Iy w h e r e a .  ~ on extremals the condition 

(89) of invariance of ~h holds so ~(=F)]~,[=0. For X= A-----~[ however the variational func- 
-I-~ h 

l g 2 does not satisfy the invariance condition (89) on solutions of uff-----O so tional with ~-----~ a~ 

u~V does not generate a conservation law. 

It was shown above that any formal one-parameter group of transformations on Z with 
operator h 

0 

under the condition 

D D (%) = 0 
--h +h 

can be adequately described by factored operators of the form 

%---s + . . . .  ( 9 7 ) 
h 

where V" 
+ h  n > l  /1 

We rewrite (96) for the operators (97): 

o o o ~o o +~[(n-~-~(.))s (98) 
(n--B~(u))+h a~+~)(~--B-~ (u)) a a ; + h  +n ~ ~-(~--B~(u))+h bT---h xn/j(a~' L +h -h , " 

The i d e . n t i t y  ( 9 8 )  l e t s  u s  r e f o r m u l a t e  T h e o r e m  8 f o r  a g r o u p  G o f  t r a n s f o r m a t i o n s  Z p r e -  
s e r v i n g  uniformity of the net ~. h 

h 

6~ 0 THEOREM 8*. Let the Euler equation ~= be invariant with respect to the group G with 
operator 

x--~ 
+ h  h + h  h + h  

while 

The functions A(x,u,~l)=(1]=~(~))S(a~_~h satisfy the conservation law 
+~ -h  ~~ , ) 

~)(A)]~=0=0+~ if and 

only if the net functional (84) with ~=~(x, u, ul) is invariant on extremals with respect to 
the operator a 

X=n ~++n(n)6~ ~ + .... ~=n--~ (u). 
h +h 
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Example. We consider on the uniform net ~ the finite-difference equation 
h 

h 

This equation admits, as is easy to see, the following operators: 

0 .  0 ~  0 0 ' k O. 
X , = ~ ,  X ~ = x ~ + u b ~ - - ~ -  e b-s 

h 

1 ~2 which preserve uniformity of the net ~. As Lagrange net function we take ~=-~i" 
h 

In using Theorem 8* we need the extended manifold [F] obtained from ~----0 by successive 
difference differentiation ~): 

• 

The canonical operator X~ 
ton group ~)+: 

where ~i------~ (t~). 

[F]:u2=O, u , = 0 ,  u4=0 . . . . .  
h h k 

is obtained by factorization of X I by the operator of the New- 

21 -~?~ + (~/0 .o + ~ (~0 ~ + . . . .  

1 
We show that ~-----~ ~ is invariant with respect to X'I 

since 

h 
(u,)l + ~_ ~3 (u,)l+ . . .  �9 ~ (Ul) = - @  (Ut)[ __ ~ -  ..~2 ' ( 9 9 )  

+ k  /z + h  t~ I IFI  +t~ h I IFI  + n  ,~ / [F I  

Each summand on the right side of (99) is equal to zero on [F], for example: ~)(ut) = 
+t~ ~ IPl 

u2+hu~ = 0 .  
k ,~' IF!  

Theorem 8* gives us the density of the conservation law in the form of a series: 

h 

We see that A I generates the conservation law: 

(A,)  ,,+, ,, ,, +,, 

It is necessary to factorize the operator X m by the operator 

0 0 0 
+~ ~ l ] ~ + . . . + h  ~ .  

h 

As a result we get the following operator: 

25 = (u - x~o o~ + ~+~ (u - ,  x~l) ~~ + ~o_h +~(u - xft) ~~ + . . . .  
h h 

I u~ i n  r e l a t i o n  t o  X2 on [ F ] :  We see the invariance of ~=-2h 

. t ~ ( . - x ~ )  = ~ l ( ~ - ~ - ( x + h ) ~ ( ~ l ) )  =o .  
h + k  IIFI h + k  k [FI  

The b r a c k e t  on t h e  r i g h t  s i d e  i s  e q u a l  t o  z e r o  on [F]  by  v i r t u e  o f  ( 9 9 )  and  t h e  f o l l o w i n g :  

u~-u;I = ~ - ~  _ n' ~)'(ut) + . . . .  0. 

By Theorem 8", a function A m generating a conservation law will be Am=(u--xffOu C. 
h 

Indeed, 

= .+++ ( ,+ -  + ( ' -  "+';) = o ,  
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since hUIflO(U--XU~)[FI=0+h by virtue of (i00). 
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