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The symmetric spaces constitute the most important class of Riemannian
manifolds; some of them have been the standard spaces in various branches of
geometry, and many authors threw light upon their deep properties. Still there
seems to be no thorough study of general transformation groups L (other than
the isometry groups H, but containing G) of compact(2) symmetric spaces M,
which we call geometric transformation groups of M in this introduction. Its
need will be patent if it will reveal interrelations of symmetric spaces, and if L
will be the automorphism group of some geometric structure of M, more or
less closely related with the Riemannian structure of M, by which M is geomet-
rically distinguished from the other symmetric spaces.

Let us observe a few examples. Let M be the sphere as a symmetric space.
M has the projective [respectively, conformai] structure; it can be thought of
as the set of all geodesies [respectively, the function which gives the angles be-
tween two tangent vectors at the same points] of M. This can be defined, of
course, for any Riemannian manifold, but the automorphism group L, or the
projective [respectively, conformai] transformation group, differs from the
isometry group G for the sphere M, and by this fact, M is distinguished from
all other symmetric spaces (except the real projective space which is locally
isometric with M), as asserted by E. Cartan [Oeuvres complètes, Partie I,
Vol. II, Gauthier-Villars, Paris, 1952, p. 659]. (See [7], [8] for the proof.)
M is the standard space in the projective [respectively, conformai] differential
geometry. And, à la F. Klein, this group L on M gives rise to the (real)
projective [respectively, conformai or Moebius] geometry. Next, to observe
another example, we select a compact hermitian symmetric space for M. The
structure is the complex structure connected with the Riemannian metric in a
certain way. The automorphism group L is the holomorphic transformation
group. Lis a complex Lie group whose complex structure essentially determines
that of M.
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(2) If M is a symmetric space of non-compact type, there will not exist such a group L, as

is illustrated by the fact that the holomorphic transformation group of a bounded symmetric
domain is contained in the isometry group. The proof will appear elsewhere.
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We wish here to remind the reader of an outstanding characteristic which is
common to these examples. Let M be one of the above spaces of compact type,
and M' its noncompact form. Then there exists an isomorphism (with respect
to the structure) of M' onto a bounded domain D of the euclidean space of the
same dimension; more precisely, the hyperbolic space can be diffeomorphically
mapped onto an open ball D in such a way that every geodesic is mapped onto
a segment in D [respectively, every angle between two vectors is preserved],
and any hermitian space of noncompact type can be holomorphically imbedded
onto a bounded domain D (E. Cartan and Harish-Chandra). (When the dimension
of M is 2, the last two examples are nothing but the Poincaré realization.)

Now one may ask whether other symmetric spaces admit geometric trans-
formation groups L, whether there are any common significant properties pos-
sessed by the pairs (L,M), and what are the geometric structures with the auto-
morphism groups L. This paper is to answer the first two questions, as follows.

If M is the direct Riemann product of Mx and M2 and if each Ma, a = 1,2,
admits a geometric transformation group L„, then the group L= Lx x L2 is
naturally a geometric transformation group of M = Mx x M2. When this is the
case, we say that (the operation of) L on M (and also M) is decomposable. So,
in general, L and M axe direct products of indecomposable factors. We should
study indecomposable factors only. Roughly speaking(3), the fundamental
theorem, which is the union of Theorems 3.1, 3.5 and 4.2, states the following
(I) to (V): (I) if a compact symmetric space M admits an indecomposable geo-
metric transformation group L and if the center of G is of dimension ^ 1, then L
is the isometry group of another symmetric space containing M, or, more
precisely, P = L\G is an irreducible symmetric space of noncompact type into
which M is G-equivariantly and isometrically imbedded. (II) Conversely, if an
irreducible symmetric space P = L/G of noncompact type has a G-orbit M which
is a symmetric space with respect to the induced Riemannian metric from P,
then L can act on M so that all the assumptions of (I) are satisfied. (Ill) The
operation of L on M mentioned in (I) is essentially unique. (IV) Under the as-
sumptions of (I), the involutive automorphism of G (which makes M symmetric)
extends to that of L, a simple group, and £, which denotes the group consisting
of the elements left invariant by the extended automorphism of L, contains a
one-dimensional vector group Z in its center (or, equivalently, the linear isotropy
group f is reducible). (V) And, conversely, if Lis simple and L/£is an affine sym-
metric space with reducible linear isotropy group £, then there exists (by Berger
[2]) a maximal compact subgroup G which is invariant under the involutive

(3) Indeed, we are confusing manifolds with their finite coverings and even with their
connected components. Moreover, the assumption of indecomposability in (I) must be replaced
by a slightly stronger one. We will begin with a much stronger assumpion in order to make
proofs short following the referee's suggestion. The possibility of weakening the assumption
will be discussed in the appendix.
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automorphism of L and L can act on M = G/K, X = £ nG, so that the as-
sumptions of (I) are satisfied.

This fundamental theorem will enable us to study the structure of the pair
(L,M) somewhat in detail. For instance, L/£ is L-equivariantly diffeomorphic
with the cotangent bundle of M on which Lacts naturally. In particular, in terms
of any coordinate system, a transformation in L is uniquely determined by its
expression at any point with the third and higher derivatives neglected. Also
we will examine the Lie algebra structure of L. If L,G, etc., denote the Lie al-
gebras of L,G, etc.(4), under the assumptions of (I), and if L= G + P [respec-
tively, G = K + M] is the Cartan decomposition for the symmetric space LjG
[respectively, G/K = M], then there exists a nonzero element z in P with [X,z]=0.
(z generates Z in (IV).) This will imply the vector-space direct sum decom-
position (the "Cartan decomposition" for the affine symmetric space L/£):
L= M+1 + M_! + £, where Me = [m + e[z, m] \m e M), e = ± 1, and
£= X + [[z,M],M]. Moreover, Me and £ are the eigenspaces of adLz corre-
sponding to the eigenvalues e and 0. It will turn out that £ is the Lie algebra of £
and M_! + £is that of H, the isotropy subgroup for Lading on M (a part of
Theorem 4.6). So the structure of L is quite similar to that of the holomorphic
transformation group of a compact hermitian space. In this special case iz, i2 = — 1,
belongs to the center of X, giving rise to the complex structure. Another example
to illustrate the Lie algebra structure stated above. Let M — G/K be the Grass-
mann manifold SO(m)/SO(p) x SO(<?), m = p + q, pq > 0. G is the automor-
phism group of the oriented real m-dimensional metric vector space, which we
here denote by U. The symmetric space M is interpreted as the space of p-di-
mensional oriented subspaces of U. Let V be one of those subspaces, and W
its orthogonal complement. X is then interpreted as the subgroup of G consisting
of the automorphisms of U which leave F invariant (hence W also). If L denotes
the special linear group SL(m,R) of U, Lis an automorphism group of U with
the metric disregarded and its Lie algebra L consists of the linear mappings of
U into itself with vanishing trace. The elements of L send the oriented subspaces
of U onto the oriented subspaces. In particular, L acts on M, containing G prop-
erly. The operation is effective. But we find it convenient to consider L as a
space of linear operators on U in order to explain the Lie algebra structure of L.
G consists of the skew-symmetric operators in L, while the symmetric operators
in L form the space P in the Cartan decomposition of L. The element z of P is
defined by z(x + y) = ax 4- b y for x e V and yeW, where a, b are scalars deter-
mined by pa + qb = 0 and a — b = 1. The space M in the Cartan decomposition
of G with respect to the symmetric-space structure of M consists of the operators
fin G with the properties/(F) c Wandf(W) c V. M+1 consists of the operators

(4) Always we will denote the Lie algebras and their subspaces by (the corresponding)
boldface letters.
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/in 1 with f(U) c W and f(W) = 0, M_ x off with f(U) <= V and /(F) = 0, the
subalgebra F off with/(F) c F and/(IF) c IF, and fl of/ with/(F) c V.

Furthermore, the classification of all the (local) pairs (L,M) can be formulated
in two ways by means of the two parts (I) + (II) and (IV) + (V) of the funda-
mental theorem. As an application we shall prove the generalization of the reali-
zation mentioned above by defining an "isomorphism" of the noncompact form
M' of M into M and using Harish-Chandra's method for the hermitian case.
As the reader may suspect from the part (I) + (II), (L, M) has some connection
with the theory of spherical functions (in the framework of E. Cartan), hence
with elliptic differential equations. In fact, z denoting the vector field on M which
generates Z, there exists a real spherical function f on M such that its exterior
differential, df, is identified with z by the Riemannian metric. (In the imbedding
of M into P, the origin of M is sent to expz.) As another application of the fun-
damental theorem, it will be shown that the function / has nice properties from
the viewpoint of the Bott-Morse theory. Other applications will be published in
subsequent papers under joint authorship with S. Kobayashi.

Since the proof of the fundamental theorem is rather complicated, we put the
Lie algebra arguments in §1. (The postulates (P. 1-5) there on which they are
based will turn out to characterize the infinitesimal situation of (L,M).) §2 is
the first half of the demonstration of the fundamental theorem, which will be
completed in §3. §4 is devoted to the structure theorems. In §5 we will classify
all the pairs (L,M). The list at the end of this section indicates a number of im-
beddings of compact symmetric spaces into others obtained with the classification
together with (I). Some of them were used successfully by several authors. The
last two sections, 6 and 7, are for the two applications.

We refer the reader almost exclusively to [4] for the necessary knowledge
and the original papers to which we owe much.

Finally we express our profound gratitude to N. Tanaka (Nagoya University)
for many valuable suggestions and conjectures which have been indispensable
for our study.

1. Preliminary lemmas.
Definition. Given a Lie algebra G and an automorphism a of G, (G,a) is

called a symmetric pair when a is involutive and a is different from the identity.
(G,a) is said to be compact when some G generated by G is compact.

Definition. A homogeneous manifold M = G¡K, on which G is almost ef-
fective, is called a Riemannian [respectively, affine'] symmetric space by a
symmetric pair (G,a) when (1) a is induced from an automorphism of G, (2)
Gx= K, and (3) X' is compact [respectively, noncompact], where Ga is the set
of fixed points of a and X' is X modulo (the transformations which act trivially
on M). As regards symmetric pair and space, we refer the reader to Helgason [4].

A symmetric pair (G,a) gives rise to the so-called Cartan decomposition:
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G = GX + G_a, where G_x is the eigenspace of « corresponding to —1. So we
have lGx,Ga-] c Ga, [Ga>G_J c G,, and [G_.,G_ J c Gx.

The following postulates (P. 1-5) are fundamental in this section.
(P. 1)    (G,a) and (L,ß) are symmetric pairs.
(P. 2)     L is simple.
(P. 3)    G = Lß.
(P. 4)    G is a maximal compactly imbedded [4] subalgebra of L.
(P. 5)    There exists an element z (/0) in  L^p with [G^z] = {0}.
The Killing form B = BL of L is positive [respectively, negative] definite if

it is restricted to L_ß [respectively, Lf].

[z,Q] = {0}, where Q denotes the orthogonal complement

of [z,G_J in  L_ß with respect to B.

Since [_z,Q] is contained in G, (1.1) follows from

B(\_z,0],G) = B(Q,[z,GJ) = P(ô,[z,G_J) = 0,
the second equality being due to (P. 5).

(1.2) [z,G_J has the same dimension as G_a.

Let Mx be the kernel of adz|G_a. We have to show Mx = {0}. [Ga,Mx~] is
a subspace of Mx by (P. 5). M2 denoting the orthogonal complement of Mx in
G_a with respect to B, we have [M2,MX~\ = {0} owing to the fact that
B([M2,Mx-\,Gf) = B(M2,lMx,Gf]) c B(M2,MX) = {0}. Thus [G^M^ is con-
tained in [M^M^. Hence Gx = \_MX,MX~\ + Mx is an ideal in G. Let Px denote
the orthogonal complement in L_ß of the space spanned by z. By (P. 4) and
[z,Gt] = {0}, we have [G^P^ c Px. Naturally, L_ß is a G-module which is
simple by (P. 1-4). On the other hand, \GX, L_ß~] is a sub-G-module. By
[G^PJ c Px and [Gl5z] = {0}, [Gx, L_ß~\ cannot contain z, hence it equals {0}.
Thus Gx is a proper ideal in L, which gives Mx czGx = {0} by (P. 2). (1.2) is
thus proved.

(1.3) [*,[*.<?-JQ = G_a.
The left-hand side is contained in G. Moreover, it is contained in G_a because

ofP([z,[z,G_J],GJ = P([z,G_J,[z,GJ) = {0} which is due to (P.5). Let B'
be a symmetric bilinear form on G_x defined by

B'(mx,m2) = B([z,\z,mxY\,m2)) = -B(\z, miJ, [z, m2])

for any mx, m2 in G_a. B' is negative definite by (1.2). (1.3) thus follows.

(1.4) [[z,G_a],[z,G_J]crGa.

In view of [G_a,G_a] c Gx, (P. 5) implies lz,[z,[G-a,G-aJJ] = 0. The left-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965]      TRANSFORMATION GROUPS ON COMPACT SYMMETRIC SPACES      433

hand side equals  [[z,[z,G_J],G_J + [[z,G_a],[z,G_a]],  while the first is
contained in Ga by (1.3).

Lemma 1.1. Under the assumptions (P. 1-5), the automorphism a of G ex-
tends to an involutive one, also denoted by a, of L so that Lx= Gx + Q and
L^x = G_x + \_z,G_x], where Q is the orthogonal complement of [z,G_x~\ in
L_p with respect to B.

The lemma will be true if we can establish the following three assertions:

(1.5) The space F = Gx + Q is a subalgebra.

(1 -6) [£,C., + [ï,ff.J]cC.,T [z,G_J.
(1.7) [G_, + [z,G_ J, G_x + [z,G_J] c £.

To verify (1.5), it is sufficient to see

(1.8) £ coincides with the centralizer C of z in  L.

In fact, C contains £ by (P. 5) and (1.1). And C is contained in F; otherwise
there would exist mx, m2 in G_x with [z, mx + [z, m2]] = 0, and mx + [z, m2] # 0,
which contradicts to (1.2) and (1.3), owing to the facts [z,[z,m2T\eG_x and
[z, G_ J n G_a = {0}. (1.5) is proved.

(P. 5) clearly implies [Ga,G_a + [z,G_J] c G_a + [z.G.J. Thus (1.6) fol-
lows from

(1.9) [Q,G_a]cz[z,G_a], [ß,[z,G_J]c:G_a.

To prove (1.9), let B denote the Killing form of L again. Since [Ö,G_J is
contained in Lf,ß([Q,G.J,Ö) = 5(6_í,[Q,o])cB(C_1)CnGa) = £(G_a,Ga)
= {0} by (1.8) and (1.3). Hence [Q,G_J c [z,G_J in view of the definition of
Q. This fact and (1.8) combined with (1.3) give that

[Q,[z,G_a]] = [z,[ö,G_a]] cz {z,{z,G_xJ\ = G_a.

Finally, to obtain (1.7), by (1.4), we have only to see

(1.10) [G_a,[z,G_J]czQ.

This is, however, obvious from £([G_a,[z,G_J],[z,G_J)=B([G_Œ,[z,G_a],
lz,G_J]) c B(G_a,G,) = {0} by (1.4).

Extending a to an automorphism of L, we have obtained a symmetric pair
(L,a) (Lemma 1.1). Thus a and ß commute on L. The automorphism a of L
extends to an involutive one, also denoted by a, of the complexification of L.
a leaves invariant its real subalgebra Lu= {a + ib\ ae Lß,be L_ß}, i2 = — 1,
and induces on it an involutive automorphism, again denoted by a.

Lemma 1.2.    Under the postulates  (P. 1-5),  the   above-defined symmetric
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pair (Lu,a) is compact and hermitian (see the proof). Moreover, either Lu is
simple, or G is simple and (G,a) is hermitian.

Proof. We have (LU)X = GX + iQ,Q as in Lemma 1.1, and (£„)_„ = G_a
+ i[^z,G_x~]. The center of (Lu)x contains a nonzero element iz. In this sense
(L„,a) is hermitian. By (P. 2), Lu is semisimple. The Killing form of L„is negative
definite, and thus (L„,a) is compact. Suppose Lu is not simple. Lu is then iso-
morphic with G x G and G is simple. In this sense, (G, a) is irreducible. L can be
identified with the complexification G+jG, j2=—l. Since z belongs to
L-fi = jG, jz belongs to G, which is simple, and to Gx by (P. 5). Therefore Gx
contains jz in its center. Hence, (G,cc) is hermitian.

Lemma 1.3. Under the hypotheses (P. 1-5), z in (P. 5) can be so chosen
that

(1) restricted to G_a, (adz)2 is the identity,
(2) [[z,mx],[z,m2j]= -\_mx,m2] for any mx,m2 in G_x,
(3) the space Me = {m + e[z,m]| meG_x}, e=l or —1, is an abelian

subalgebra of L.

Proof. We preserve the notations in the proof of Lemma 1.2. In case Lu is
simple, (Lu,oc) is hermitian and therefore there exists a real number c such that
(adicz)2 is —(identity) on (£„)_„ = G_a + i[z,G_J. In case Lu is not simple,
G is simple by Lemma 1.2, and therefore there exists a real number c such that
(adjcz)2 is —(identity) on L_p =jG. In both cases, we replace z by cz and obtain
(1). Hereafter cz shall be denoted by z. Then (2) immediately follows from

0 = [z» [z> Oí» »2]]] = [[z, [z, mxJ], m2] +2[[z, ifij], [z, m2T\ + \mx,[z, [z, m2]]~].

(3) is readily derived from (2) and (P. 5).

Lemma 1.4.    The conditions (P. 1-5) imply:
(1) H = F-r-M.j, where F— Gx + Q, is the normalizer, N, of M_x in

L, Q and M-x being as in Lemmas 1.1 and 1.3.
(2) The adjoint representation, ad£, of L restricted to F, leaves Me, e =1

or —1, invariant and operates on it irreducibly.
(3) H is a maximal subalgebra of L.

Proof. ad£ leaves M+X,M_X invariant by (1.9), (1) of Lemma 1.3, and
(P. 5). From (3) of Lemma 1.3, it thus follows that H is contained in N. To prove
(2), assume that ad Fis reducible on M+1 or M_x. Then there exists a nontrivial
invariant subspace M' of G-x such that {m + e[z,m~\ | meM'} is a nontrivial
invariant subspace of Me. Also, since ad X is reducible on M, G is not simple
and Lu in Lemma 1.2 is simple. Hence ad(Lu)x is irreducible on (Lu)-X. On the
other hand, M' + i[z,M'~\ is a nontrivial invariant subspace of ad(Lu)x. This
contradiction proves (2). By  L= H + M+x, (2) implies that H is a maximal
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subalgebra of L, and (3) is proved. Since Lis simple by (P. 2), the subalgebra N
containing H does not coincide with L. Therefore (3) gives that H is N, and
Lemma 1.4 is proved.

2. Necessary conditions. Throughout this section, we shall assume the following
four conditions (A. 1-4) satisfied:

(A. 1) M = G/K is a connected compact symmetric space by a symmetric
pair (G,oí) on which the connected isometry group G operates effectively.

(A. 2) A connected Lie transformation group L operates on M effectively
and L properly inamely, ^ G) contains G as a transformation group of M,
so that G is a Lie subgroup of L.

(A. 3)    The center of G is of dimension ^ 1, and
(A. 4)   L is simple.
Actually the assumption (A. 3) is redundant; in fact, (A. 3) will follow from the

other assumptions (A. 1,2 and 4) in view of Lemma 2.1 below. But we like to
keep it here in order to refer to it in the appendix where (A. 4) will not be assumed.
All the lemmas and other assertions will be stated without mentioning (A. 1-4),
but with them kept in mind in this section.

Lemma 2.1.   G is a maximal compact subgroup of L.

Proof. Let G' be a maximal compact subgroup of L which contains G. G'
leaves invariant some Riemannian metric y on M. M is necessarily a symmetric
space with respect to y, since y is invariant under G. By compactness of G, it
follows that G is the connected component of the isometry group of y. Thus G
contains G', and G = G'.

Lemma 2.2.    The center C of Lis finite.

Proof. Let CiG) be the centralizer of G in the group of all differentiable trans-
formations of M. CiG) contains C. CiG) is isomorphic with N(X)/X, where
JV(X) is the normalizer of X in G [6]. iV(X)/X naturally contains the identity
component G0 of the center of G, and an infinite subgroup of N(X)/X has an
infinite number of elements in common with G0 by a property of a compact
symmetric space G/X. If C is infinite, CnG0 is therefore infinite, in particular,
G0 is a circle group by (A.3). Since Cn G0 is closed in G, it follows that C con-
tains G0, contrary to Lemma 2.2.

For later use in the appendix we note that Lemma 2.2 remains true if L is semi-
simple instead of (A. 4).

Lemmas 2.1 and 2.2 immediately give

Lemma 2.3. L\G is naturally an irreducible symmetric space of noncompact
type.

Lis almost effective on L\G by Lemma 2.4.
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Corollary 2.3.   G is a maximal connected Lie subgroup of L.

If M is oriented, a volume element tu on M is uniquely determined by a G-in-
variant Riemannian metric on M. We denote by V the group of differentiable
transformations of M which leave co invariant.

Lemma 2.4. Lis not contained in the volume-preserving group F(5). Hence
G is the set of elements in L leaving co invariant.

Proof. Let !F be the set of all complex-valued differentiable functions on M.
!fF is naturally a vector space over the complex field. For two functions fy,f2
in &, their inner product ify,f2) is defined by Jm/iÂto, where f2 is the complex
conjugate of f2. Any differentiable transformation t of M operates linearly on M
by tif) =/o i_1 for each/in $F. If t leaves co invariant, t is unitary in the sense
that the inner product in J* is invariant under t. Thus G is a unitary transfor-
mation group of SF. E. Cartan [3] showed that ¡F is the direct sum of finite-
dimensional subspaces, !P\, on which G operates irreducibly, and that the rep-
resentations of G on different spaces !Fk and J5",, are not equivalent.

By Lemma 2.3, L admits an involutive automorphism ß such that (L,/?) is a
symmetric pair with L/j= G in the notations of §1. Let P denote L_ß. We con-
sider Las a set of vector fields on M. We have [_G,P~\ cz P and \P,P~\ c G. The
former implies that

(2.1) the  space  P&x = {pf\ peP, fe&k} cz &  is  G-invariant.

From the above theorem of E. Cartan follows

(2.2) P&i is the sum of some finite number of J%'s,

(2.3) PxPzf = PiPif modJ^ for px,p2eP,feßrx.

This is a consequence of the relation [\P,P^ <= G. Let T be a Cartan subalgebra
of G. fBiX [respectively, pa] shall denote an arbitrary weight factor, in the space of
3?k [respectively, G-module P ® C = the complexification of P], corresponding
to the weight 0 [respectively, a] with respect to T. Then we have immediately that

(fe,»/*,?) »* ° implies 6 = eb, X = p,

Pje.x IS a weight vector corresponding to

the weight a + 9 iifit is different from zero).

Now we assume that Lemma 2.4 is false and that Lis a subgroup of V. Then
each px is skew-hermitian.

(5) This makes no sense if M is not orientable. In that case, we consider an orientable
covering space of M instead of M which will clearly satisfy (A. 1-4). This will be no loss
of generality for the main results.

(2.4)
and

(2.5)
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(2.6) // pxPßf9tx does not belong to #\, then oc = ß = 0.

In fact, then there exists some/fjl such that (paPpfe,i'f<i>,n) ̂0- Hence, cb equals
a + ß + 9 by (2.5). Since px is skew-hermitian, it also follows that (pßfB<k, PXU,¿) ¥=■ 0.
By (2.4) and (2.5), we thus obtain ß + 6 = a + cb, whence ß + Q = a + (a. + ß + 8)
and so a = 0. We also get ß = 0 by (2.3), and (2.6) is proved.

From (2.6), we infer that the weights of the representation of G on PPJ*A are
those for !FX. Hence PP!Fk is contained in 3F\ if !Fk is so chosen that the highest
weight for gFx is the lowest among the highest weights for all J5",, # #"0. ¡F^
being chosen as above, the space !FX + P^x is, therefore, invariant under
L=G + P, therefore under L. In other words, the simple group L operates
nontrivially on a finite-dimensional vector space as a unitary group. L is thus
compact, contrary to Lemma 2.1. The proof of Lemma 2.4 is completed.

Consider the mapping p-»div(p) of P into SF. The Lie derivative6(p) satis-
fies 6(p)co = (divp)co and 0(4>(p)) = (bO(p)cb~ '* if cb is a diffeomorphism of M
onto itself and also denotes the automorphism caused by cb of the space of all
the tensor fields on M. If cb belongs to G then it follows that div(c6(p)) = (divp) o cb,
so the mapping is a G-module homomorphism which, by Lemma 2.4, does not
map P into 0. Also j"(divp)co = 0, so P is isomorphic as a G-module to the real
form of some SFX. Thus we have proved(6)

Lemma 2.5.    The natural (= adjoint) representation of G on P is of class 1.

This lemma is known (E. Cartan [3]) to be equivalent to the condition that
there exists a nonzero element z in P which is left invariant by X, the isotropy
subgroup of G ; adL(k)z = z for each k in X. If (G, a) denotes the symmetric
pair corresponding to the symmetric structure of M = G/X, then the Lie algebra
K of X is Gx, in the notation at the beginning of §1. L admits an involutive auto-
morphism ß with G = Lß by Lemma 2.3. From the assumptions (A. 1-4) of
this section, we have thus deduced the postulates (P. 1-5) at the beginning of
§1; in fact, (P. 1) is implied by (A. 1) and Lemma 2.3, (P. 4) by Lemma 2.1, (P. 5)
by the above (or Lemma 2.5), and all those lemmas have followed from (A. 1-4).

3. The main theorem. Let si be the set of all the triple systems (G,K,L)
with M = G/X and L satisfying (A. 1-4) stated at the beginning of §2. Let 3P be the
set of all the pairs (M,P) of compact locally symmetric Riemannian homo-
geneous manifolds M = G/K and irreducible Riemannian symmetric spaces
P = L\G of noncompact type with L connected and effective on P such that M
is a G-orbit (# one point) in P.

Theorem 3.1. In these notations, there exists a mapping 3> of si onto 3P
such that (M',P) denoting (¡>(G,K,L), (1) there exists a subgroup K' (=> X)

(6) We owe this simple proof to the referee. We are grateful to him for it and many other
valuable suggestions.
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of G with finite index [X':X] and with M' = G/K', (2) P = L\G. (If ad denotes
the homomorphism of L onto its adjoint group, then ad(L) operates on P' ef-
fectively, P' = ad(L)/ad(G) and W = ad(G)/ad(X').)

Proof. For any element (G,K,L) in s/, the space P = L\G is an irreducible
symmetric space of noncompact type (Lemma 2.3). The adjoint group L' operates
effectively on P and we can write it as P = L'/G'. Lis a finite covering group
of L' (Lemma 2.2). As remarked at the end of §2, Land G satisfy the conditions
(P. 1-5). The subspace P = L_p is diffeomorphic with P by the exponential
mapping restricted to P, which is a G-equivariant diffeomorphism. Let y be the
mapping of G into P defined by y(g) = expo adL(g)z, where z is the one in (P. 5).
z is left fixed by adt(X). Thus y induces a mapping y* of M into P, which is an
immersion by (1.2). Hence y*(M) = G/K', which is a G-orbit (# one point) in
P, has M = G¡K as a finite covering homogeneous Riemannian manifold; in
particular, it is locally symmetric. Putting <5(G,X,L) = (y*(M),P), we thus
have a mapping <D of ¿é into SP. It remains to show that <1> is surjective. Let
(M',P) = (G'/X', L'lG') be any element of SP. Let p be a point of M' left fixed
by the isotropy subgroup X'. There exists a unique transvection z in L= L
such that p corresponds to exp(z) by the projection of L' onto P; z is a trans-
vection in the sense that, P being symmetric by (L,ß), z belongs to P = L_ß.
ad(X') operating on L leaves z invariant. Thus L,G (= G') satisfy (P. 1-5).
Let //' be the normalizer of M_j in L (see Lemma 1.4). //' is a closed subgroup
of L'. H' contains X'. X' is an open subgroup of H'C.G' which is compact.
Thus G'/X' is a finite covering space of G'\H' C\ G'. On the other hand, the
compact transformation group G' of LjH' has an open orbit. Hence,
L'///'= G'///'nG'. Therefore, some finite covering group L" of L' operates
on G'/X' and contains G' naturally. Finally some finite covering homogeneous
Riemann manifold G/X of G'/X' is a compact symmetric space on which some
finite covering group Lof L" operates containing G. G/X and Lsatisfy (A. 1,2).
Since we have L\G' = L/G and L¡G' is an irreducible symmetric space, they
also satisfy (A. 3). (A. 4) is satisfied. Hence (G,K,L) belongs to sé. Clearly we
have <D(G,X,L) = (M',P). Theorem 3.1 is proved.

Lemma 3.2. Under the assumptions (A. 1-4), there exists an element z
in P such that (1) z is ad(K)-invariant, (2) the vector field z on M vanishes at
the origin o, k(o) = o, and (3) (adLz)2 is the identity operating on the tangent
space M to M at o, where P denotes the orthogonal complement of G in L with
respect to the Killing form of L.

Proof. Land G satisfy (P. 1-5) by Theorem 3.1. There exists an element
z' in P satisfying the conditions (1) and (3) in Lemma 3.2, by Lemma 1.3. Suppose
z' does not vanish at o. Then G has a one-dimensional center Gy by (A. 3) and
a property of symmetric spaces. Let g y be a nonzero element of Gy. ad(X) leaves
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invariant and operates trivially on the subalgebra Lx of ¿generated by {z',gx}.
The orbit Lx(o) is Gx(o) which is a circle. Since [z',^] does not vanish at o by
(3) satisfied by z', it follows that some nontrivial linear combination z of
{z',[z',0x]} vanishes at o. This z satisfies (1) and (2). z also satisfies (3), if re-
placed by some scalar multiple, in view of the proof of Lemma 1.3.

Proposition 3.3. There exists a differentiable function f on M such that
the one-form df equals the dual-form of the vector field z in Lemma 3.2 with
respect to some G-invariant Riemannian metric on M, under the assumptions
(A. 1-4).

Proof. First we define the Riemannian metric. The space {n(o)\ we[z,M]},
M = G_x, coincides with the tangent space {m(o)| meM} to M at o, K(o) = o.
The subspace [z,M] of Lis left invariant by ad(X). Let n be the orthogonal
projection of Lonto [z,M] with respect to the Killing form B of L. We write
<[x(g(o)),y(g(o))} for B(n oad(g-l)(x), TroadCg-1)^)) for any x,y in Land g
in G, where x(g(o)) denotes the value taken by the vector field x on M at the
point g(o). This gives rise to a well-defined field of quadratic forms ( = a tensor
field of covariant degree 2) on M; in fact, B is invariant under ad(X), whose
elements commute with %. Moreover, < , > defines a Riemannian metric on M,
since B is positive definite on [z,M] and [z,M](o) is the tangent space to M
at o. This metric is invariant under G, as is readily seen. Now consider a function
f on M defined by f(g)(o) = B(ad(g)(z),z) for all geG. We are proving df=z,
or, more precisely, df(x(g(o))) = (x(g(o)), z(g(o)))> for any x in G and g in G. The
left-hand side equals x(g(o))/= -B([x, ad(_g)(zy],z) = B([z, ad(g' l)(x)l ad ig l)(z)).
Here we have \_z,ad(g 1)(x)~\ = noad(g J)(x) due to the facts ad(g 1)(x)eG
= K + M and  [z, X] = {0}.   Thus  we   obtain

x(g(o))f = B(7ioad(g~l)(x), ad(g> ) GO)

= ß(ir o ad(g-1) (x), n o ad(g~1) (z))   =  <x(g(o)), z(g(o))},

and Lemma 3.3 is proved.

Lemma 3.4. Under the assumptions (A. 1-4), the involutive automorphism
a of G extends to that of L.

Proof, a induces an involutive isometry a' of M. The function / in Propo-
sition 3.3 is invariant by a'; /o a' =/ (by §16 of Cartan [3]). Hence z = df is
invariant by a' (or, more precisely, the action of a' on the vector fields). Thus
a' leaves invariant L which is generated by {z}uGin the Lie algebra of all vector
fields on M. a' is an automorphism of L. Since Lis connected and effective, the
mapping I -» a'h' is thus an automorphism of L which is an extension of a.

Let si be as defined at the beginning of this section. Let F be the set of all
pairs (L,F) of a connected simple Lie group L which is isomorphic with its ad-
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joint group and a closed subgroup £ of Lcontaining a line ( = a one-dimensional
vector group) in the center of £ such that L/F is an affine symmetric space.

Theorem 3.5. In the above notations, there exists a mapping ¥ of sé onto
T such that, (£',£') denoting ¥iG,K,L), (1) L' = ad(L), and (2) G' = ad(G)
is a maximal compact subgroup of L' which is invariant under the involutive
automorphism a' of L, where ad is the projection of L onto its adjoint group.

Proof. For any iG,K,L) in sé, the involutive automorphism a of G extends
to that of L which is also denoted by a (Lemma 3.4). Let £ be the set of all elements
fixed under a belonging to H, where H is the isotropy subgroup of L at a point
left fixed by X, L\H = G IK. The one-parameter subgroup Z generated by z in
Lemma 3.2 is a line contained in £. From H r\G = K, it follows that £ n G = X.
Since the center of L is finite (Lemma 2.3), G' = ad(G) is a maximal compact
subgroup of L = ad(L) and Z' = ad(Z) is a line, a induces an involutive auto-
morphism a' of L' and £'= ad(£) is an open subgroup of the elements of L which
are invariant under a'. Since £ containing Z is not compact, neither is £'(Lem-
ma 2.3). L/£' is thus an affine symmetric space. Putting (£',£') = *P(G,X,L),
we thus obtain a mapping ¥ of sé into 3~, Conversely, given (£,£') in ^~ we
denote by G' a maximal compact subgroup of L' which is left invariant by the
inner automorphism a' of L' (Lemma 10.2 of Berger [2]). Put X' = £' nG'.
Then M' = G' IK' is a compact symmetric space. The line Z' in the center of
£' is not contained in X'; in fact, otherwise the closure of Z' would be a torus
of dimension > 1, which would be contained in the center of £', whence the
compact form of L' would not be simple, and G' would therefore be simple so
that the isotropy subgroup X' for the symmetric space G'/X' would contain at
most one one-dimensional subgroup in its center, a contradiction. It follows
that, ß denoting the involutive automorphism of If defining the symmetric ispace
L'jG', there exists a line generated by some z in L_ß such that X' is contained
in the centralizer of the line in L'. X' is an open subgroup of the intersection X"
ofthat centralizer and G', since G' is a maximal compact subgroup of L'. Theo-
rem 3.1 thus applies; (G'/X",L'/G') belongs to SP and there exists a iG,K,L)
in sé with et(G,K,L) = (G'IK",L'IG'). Clearly we have ¥(G,K,L) = (L,F')
and Theorem 3.5 is proved.

4. The structure theorems. We assume that L and G/K satisfy (A. 1-4) throughout
this section. Then (P. 1-5) are satisfied with K = Gx. Put M = G_a and P = L_ß.
We have seen that L is the direct sum G + P=K + M+ [z,M~\ +Q, where
Q = [[z,M~\,M~\ and z is as in Lemma 3.2. If Me denotes {m + e[z,m]| me Ai},
e = +1 or — 1, Lis also the direct sum M _j + X + Q + M_1. By the adjoint
representation of Lor Lon L, their elements operate on L. In this way the above
subspaces are all X-modules. The elements of L are considered as vector fields
on M. As before, we write, say, M(o) for the space of the values taken by the
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vector fields in M at the point o. M(o) is the tangent space M0 to M at o. Let
H be the isotropy subgroup L leaving the point oeM,K(o) = o. z belongs to
H and gives rise to a transformation of M0.

Lemma 4.1. Among the z's in Lemma 3.2 there exists a unique z such that
the linear mappingVz(o) of the tangent space M0 is the identity, and, in par-
ticular, that M+x(o) is M0, where M+x = {m + [z,m]| meM} by this z.

Proof. Let z be as in Lemma 3.2. Then F= K + Q leaves M + 1 and, as we
show now, H invariant. (Note that H is the Lie algebra of //. We are going to
show that H coincides with Ai_, + F in concurrence with the notation H in §1.)
For that, it is sufficient that H contains F. Though this is obvious from oc(z)= z,
this is seen from the fact that [£,z]= {0} and the operation of z on M0 is non-
degenerate ((3) of Lemma 3.2). £ is, moreover, irreducible on M+1 (Lemma 1.4).
Thus M+xr\H is either {0} or M+1. In the latter case, we change the notation,
writing z for —z, which is obviously as in Lemma 3.2. So we may suppose that
M+1n// = {0}. Since M+1 has the same dimension as M, it follows that
M+x(o) = M0 (and Lis the direct sum H + M+x).Any z as in Lemma 3.2 is
the identity transformation of M+1. To prove the uniqueness of z, let z' be an-
other one satisfying the conditions of the lemma. By z(o) = 0 and by the direct
sum decomposition P = [z,M~\+Q, we see that z' belongs to Q. Therefore
[z,z']=0 and ad z commutes with adz'. On the other hand, \z—z',M~\ is
contained in H, since both z and z' are the identity transformation of M0. For
any min M,[z — z',\_z — z , m]] thus belongs to//and equals m —(adz) (adz') (m),
which therefore belongs to X. Making adz operate on this element of X, we
obtain 0= [z,m] - [z,[z',m]] = [z,m] — [z',[z,[z,w]]] = [z,m] — [z',m].
It follows that [z — z', G U {z}] = {0}. Since G U {z} generates L and L is simple,
z—z' belongs to the center of L, which is zero. Thus z' = z.

Two remarks on the method of the proofs. The proofs hitherto given
would be considerably shortened and made clear if one could generalize, to
the case of 1-forms, the unique theorem of the zonal functions among spherical
functions on a compact symmetric space. This problem is to show [5] that, for
a symmetric space M = G/X, an irreducible representation of G, restricted to
X, contains at most once the linear representation of X on the tangent space M0
to M at o, K(o) = o. This problem is also equivalent to show that the space Q
of all 1-forms of M, on which G operates naturally, contains no two different
G-invariant subspaces which are isomorphic with each other as G-modules. Ac-
tually this is not true; in fact, if M is an hermitian symmetric space, any G-sub-
module of D. consisting of derived forms is isomorphic with some G-submodule
of Q consisting of coderived forms (the isomorphism being given by the almost
complex structure). So some modification is necessary for the formulation of
the problem.
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The arguments of space of functions in §2 are not indispensable. They can
be replaced by those of "proper" theory of Lie groups. Alternative proofs can be
given in a more general way by using Mostow's theorem on maximal subgroups
\On maximal subgroups of real Lie groups, Ann. of Math 74 (1961), 503-517]
according to a forthcoming report of H. Matsumoto (University of Tokyo).

Theorem 4.2. // two groups L and L' operate on M = G/X and these all
satisfy (A. 1-4) and if there exists an isomorphism of L onto L which leaves G
elementwise invariant, then L,L are the same transformation groups of M.

Proof. Take the unique vector field z [respectively, z'] in L [respectively, L']
satisfying the condition of Lemma 4.1. Since L [respectively, L'] is generated
by {z} UG [respectively, {z'} UG], we have to show that z and z' coincide as
vector fields on M. For any element g in G, we have the obvious relation
z(g-o) = dg(ad(g_1)(z)(o)), where dg is the differential of the transformation g
of M and o is the point fixed by X. ad(g-1)(z)(o) lies in L_ß, the orthogonal
complement of G in L. Let n be the (orthogonal) projection of L_ß onto [z,M]
with respect to the Killing form of L, or, equivalently, to the direct sum decom-
position L_ß = [z,M] + [M,[z,M]], where M is the transvections of M with
respect to o. Since Q = [M,\_z,Mj] leaves o invariant, we obtain
z(g'o) = dg(noad(g~1)z))(o). By using the fact (only) that z is the identity
transformation of the tangent space M0 to M at o, we can identify [z,M] with
M„ which is identified with M in a way independent of Lnor L'. So we have
to show that eb(noad(g^1)(z)) = n'oad(g~1)(z') for any g in G, where eb is
the isomorphism: L-* L given in the theorem. This equality follows from the
fact that L and L are isomorphic by eb and that z and z' are determined from
L, L up to ( ± l)-multiple in a way independent of the operations of L, L' on
M in view of the proof of Lemma 4.1, though eb in the equality must be replaced
by eb o ß in case eb(z) = — z'.

Theorem 4.3. Under the assumptions (A. 1-4), we assume that the isotropy
subgroup H of L at the point o, X(o) = 0, is connected. Let p be the (linear
isotropy) representation of H on the tangent space M0 to M at o. Then (I)
p(H) is irreducible, (2) there exists a closed subgroup F of H such that the
restriction of p to F is an isomorphism of F onto p(H), (3) the kernel of p is
a vector group, M_x, of dimension n, n = dimM, (4) there exists an n-dimen-
sional vector group, M+x, of L, such that the orbit M+x(o) is homeomorphic
with the n-dimensional euclidean space, (5) there exists an involutive auto-
morphism ß of L such that ß(M + x) = M_x, ß(F) = F, (6) M+l\J M-y gen-
erates L, (7) R denoting the radical of H, p(R) is the group of the real or "com-
plex" scalar multiplication group, and (8) X is a maximal compact subgroup
of F.

(This theorem is based on Tanaka's conjecture.)
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Proof. Let z be as in Lemma 4.1. Then L, G and z satisfy (P. 1-5). Let M, Me,
respectively denote G_a, {m + e[z,m]| meM], e= +1 or — 1. Then M_t is
contained in H and M+x(o) = M0. From the latter we infer that the orbit at o
of the connected (abelian) subgroup M + x generated by M+x is open in M. From
the former, we have dp(M_x) = {0} by the nullity of the covariant differentials
of the elements (= transvections) of M at o. Hence the connected subgroup
M_! generated by M_x is contained in the kernel of p. Since Q = [M,[z,M]]
is contained in H (see the proof of Lemma 4.1), it follows from M+x(o) = M0
that H is the direct sum M_x + Q+ K. F denoting Q + K,dp(F) is equivalent
to the restriction to F of the adjoint representation of L, operating on M+x,
by M+x(o) = M0 and (2) of Lemma 1.4. By this (2) again, dp(F) is therefore
irreducible and a fortiori p(H) is irreducible and (1) of the theorem is proved.
The connected group generated by £ in L is a closed subgroup, since £ is the
identity component of the centralizer of {z}. Any element f of F which is con-
tained in the kernel of p is contained in the centralizer of M+1 by the above,
/is also contained in the centralizer of M_x. Because M_t is a dual space to
M+1 by the canonical bilinear form B(mx + [z,mx~\,m2 — [z,m2~]), mx,m2eM
(which is negative definite as a bilinear form on M), and B is invariant under all
automorphisms of L, and, in particular, the operations of/(or ad(/)) on M+x
and M_! are adjoint with each other. Since L/£ is an affine symmetric space
and the operation of/ on the tangent space to L/£ at the point fixed by is the
above operation of ad(/) on M + x +M_X, we conclude that / is contained in
the center of L. Since L is effective, this implies that / is the identity element of
L. Therefore £ is isomorphic with p(F) by p. Since the connected group H is
£M_i (for M_! is a normal subgroup of H and H = £+M_1) and p(M_x)
is the identity, we have p(F) = p(H) and (2) is proved. The fact H =£M_1 com-
bined with the above gives that M_j is the kernel of p. Next, (5) is obvious if
we take as ß the involutive automorphism of L given by Lemma 2.5; in fact, ß
is the identity on M and we have ß(z) = —z. Using (5), we prove that M+1 and
M_! are vector groups. If M+x (hence M_x) is not a vector group, the abelian
group M+x is a torus by the irreducibility of the automorphism group ad(£)
of M+x (see (1) and (2)). Since the orbit M + x(o) is open in M, M must be acircle
by (A. 3). Then M-x = ß(M+x) is a circle group, £ = p(F) is a line group,and
so Lis a three-dimensional simple group containing a circle group M_x in the
isotropy subgroup. By means of the exact sequence of the homotopy groups for
the principal bundle L-+L/H, we are led to a contradiction. Thus M+X,M-X
axe vector groups. Thus the proof of (3) is completed. The rest of the proof of
(4) is analogous to the above; namely, if M+x(o) is not homeomorphic with a
euclidean space, then it is a torus by (1) and (2) and again M is a circle, whence
the vector group M+1 is not effective on M contrary to (A. 2). (6) is obvious
from arguments of Lie algebras: M+1 + M_x contains M and [z,Ai], while
[M,[z,M]] is Q which contains z. Since p(H) is irreducible, p(H) is reductive
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and p(R) is a group of scalar multiplications. Finally, (8) follows immediately
from the observation that the elements of dp(K) [respectively, dp(Qf] are skew-
symmetric [respectively, symmetric] with respect to the Killing form of L re-
stricted to M+1.

Theorem 4.4. Under the assumptions (A. 1-4), assume that the isotropy
subgroup of Lis connected. Then L operates transitively on the cotangent bundle
T*(M) of M in such a way that T*(M) becomes an affine symmetric space,
L is fibre-preserving and induces on the base manifold M the transformation
group Lin (A. 2). The restriction to G of the operation of Lon T*(M) coincides
with the operation of G obtained from that of G on M by taking the co differentials
of the transformations of M in G.

Proof. The notations being as before, M + 1 is naturally identified with the
tangent space M0 to M as an £-module. M_t is isomorphic with the dual space
to M+1 as an £-module. Since £ contains X, T*(M) is thus isomorphic with the
vector bundle G x. KM_y over G/K = M. This last bundle is isomorphic with
the fibre bundle L xH///£ over L/H = M, whose bundle space is L/£. In fact,
the principal bundle G -> G/X is a subbundle of the principal bundle L-* L/H
and the restriction to X of the operation of H on ///£ coincides with that of X
on M_y, since the subgroup M_y of Lis a vector group (Theorem 4.3) and so
the correspondence (m_l5/)->-m_t/gives a diffeomorphism of M_t x £ onto
H and the exponential map of M_y onto M_t is a X-equivariant diffeomorphism
The rest of the theorem is now evident.

Corollary. 4.5. Under the assumptions of (A. 1-4), the vector fields on M
contained in L are uniquely determined by the values of them and of their
first and second covariant derivatives taken at an arbitrary point.

The following theorem is obvious from the arguments up to here.

Theorem 4.6. Under the assumptions (A. 1-4), there exists a differentiable
function f on M such that (I) f is an eigenfunction of the Laplacians (= G-in-
variant differentiable operators) of M, (2) f is invariant under the reflection
with respect to a point o of M, in particular, the covariant differentiations of
f of any odd number of degrees vanish at o, (3) the second covariant differentia-
tion^"^'f coincides with the Riemannian metric tensor at o for some G-invariant
Riemannian metric of M, and (A) the Lie algebra of Lis generated by the trans-
vections M with respect to o and the vector field which is dual to the exterior
differentiation df with respect to the above Riemannian metric, f is unique for
a given o (and the Riemannian metric).

5. The classification. The fundamental theorem enables us to classify all the
pairs of Land M =[G/X with no distinction between M and its covering manifolds
in two ways.
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The first method is based on Theorem 3.5. and Berger's classification of locally
affine symmetric spaces [2]. Take out from his list all the affine symmetric spaces
L/F such that £ contains a vector group in its center. That is all; G and X de-
noting a maximal compact subgroup of L, £ such that the involutive automor-
phism of L leaves G invariant, L operates on G/X satisfying (A. 1-4) by virtue
of Theorems 3.5 and 4.3.

The second method is based on Theorem 3.1. Owing to E. Cartan, we know
the linear isotropy representation of G on the tangent space to the Riemannian
symmetric space L/G. On the other hand, the representations of class 1 of G with
respect» to any compact symmetric space G/X are determined by an unpublished
theorem of Sugiura (Osaka University). For (L, M), the first said represen-
tation of G is of class 1, and vice versa. Now Sugiura's theorem reads as
follows. Consider the Satake diagram (see [1]). For a white vertex / next
to a black, take the corresponding dominant form A(. For a white vertex next
to no black vertices take2A¡. For a white vertex i joined to another; by a line
with an arrow, take A¡ + A;. Then all these dominant forms (which are equal
to the rank of M in number) generate a semigroup which corresponds to the set
of all irreducible representations of G of class 1.

Here is the list of all the pairs (L, M), in which the same pair may appear under
different articles. (See [2] for the notations of groups. Some groups have been
replaced by locally isomorphic ones which are more popular.)

1. Group manifolds. M = U(n), SO(n), and Sp(n); L= SU"(2n), SO"(2n) and
Sp2"(n), respectively.

2. Products  of spheres.   M = S" x S9, p,q ^ 0. L= SOp+1(p+q+2).
3. Grassman manifolds. M = V(p + q)l\J(p) x\J(q),SO(p + q)ISO(p)xSO(q),

Sp(p + q)ISp(p) x Sp(q), and Sp(4)/Sp(2) x Sp(2). L= SL(p + q,C), SL(p + q,R),
S\J*(2p + 2q), El

A.  Direct products of a circle and other symmetric spaces M'.
M' = SU(2n)/Sp(n), SU(n)/SO(n), S" and £6/£4.
L = SO*(4n), Sp(n,P), SO\q + 3) and £?.

5. Hermitian symmetric spaces. M = U(p + q)¡\J(p) x U(q), SO(2 + <j)/SO(2)
xSO(q), Sp(n)/U(n), SO(2n)/U(n), £6/SO(2) x SO(10), £7/SO(2)x£6. Lis

the complexification of the isometry group.
6. The others.   M = £4/£4, and SU(8)/Sp(4). L=E% and E\.
Using the classification, we obtain

Theorem 5.1. Some finite covering space G/X of a compact connected
symmetric space Mx is G-equivariantly and deformably immersed into another
compact symmetric space M2 = LJG, if the diagram MX-*M2 is shown be-
low. This is true instead of Mx for the direct product of a circle and Mx if
MX^*M2 is shown below, (n, p, and q denote non-negative integers with
n = p + q.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



446 TADASHI NAGANO [June

1. Unitary cycle.   U(n)/U(p) x U(g) - SU(n) i»U(2n)/U(n) x U(n).
2. Mixed   classical   cycle.   SO(2n)/U(n)-> SO(2n),

SO(n)->SO(2n)/SO(n),x SO(n),
SO(n)/SO(p) x SO(o) -+ SU(n)/SO(n) $ Sp(n)/U(n) ->Sp(n)
-» Sp(2n)/Sp(n) x Sp(n),
Sp(n)/Sp(p) x Sp(q)^SU(2n)/Sp(n)i-SO(4n)/U(2n).

3. Orinogona/senes.SpxS?-^SO(p + q + 2)/SO(p+l)xSO(q + l).
SO (2 + g)/SO(2) x SO(g) -> SO(2 + g).

4. Freudenthal series.   f4/SO(9) -> £6 /£4 £ £7 /SO(2) x £6->£7.
5. TAe o//iers.    Sp(4)/Sp(2) x Sp(2) -+ £6/Sp(4).

£6/SO(2) x SO(10)^ £6.
SU(8)/Sp(4) - £7/SU(8).

6. Realizations of noncompact symmetric spaces  as  bounded  domains. The
following is well known for hermitian symmetric spaces.

Theorem 6.1. If L operates on a compact symmetric space G/X satisfying
(A. 1-4), and if G is semisimple, then the noncompact form M' = G'/X' of M
can be imbedded into M so that G' is a subgroup of L as a transformation
group of M.

Proof. Let G = K + M be the Cartan decomposition. With z as in Propo-
sition 3.2, we put G' = K + [z,M]. We have [X,z] = {0} and [[z,x],[z,)>Tj
= — [jc,j>]e K for any x,y in M. Thus G' is a subalgebra of Land the above
is the Cartan decomposition of the symmetric pair (G', a), where a is the extension
to L of the involutive automorphism of G (Lemma 3.4). (G',a) is dual to (G,a),
that is, its noncompact form. Let G' be the connected subgroup generated by
G' in L, and let X' be G' n H where H is the isotropy subgroup of L at the point o
with K(o) = o. The Lie algebra of X' is X. G'IK' = G'(o) is open in M.
K'0 denoting the identity component of X', G'\K'0 is the noncompact form of
G/X and a covering manifold of G'/X'. G'/X' becomes a homogeneous Rie-
mannian manifold which is locally isometric with G'\K'a by the projection. More-
over, G'/X' admits reflections (which coincide with those of G/X restricted to
G'/X'), since G' is invariant under a. It follows that G'/X' is the noncompact
form of M = G/K. Besides, G' is effective on G'/X', since L is effective and
G'/X' is open. Theorem 6.1 is thus proved.

Theorem 6.2(6). Suppose L operates on M = G/K satisfying (A. 1-4),
where G is assumed to be semisimple and X connected. Then the noncompact
form M' = G' ¡K of M is a bounded domain of M+1(o) by the identification
M' = G'(o).

(6) H. Matsumoto (University of Tokyo) also proved this, according to his letter.
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Proof. The method is so similar to that of Harish-Chandra described in §7,
Chapter VIII in [4] that we can omit the details. First, the existence of the in-
clusion exp[z,M] c M+XFM-X = M+XF, which means G'(o)cz M+x(o), is
readily verified with the arguments on p. 318 of [4]. Thus there exists an im-
bedding C of [z,M] into M+1 such that exp(m) belongs to (exp Ç(m)) • FM for
any m e \_z,M~\. On the other hand, the involutive automorphism a of G extends
to that of L (Lemma 3.4), hence to the complexification of L. Denoting the ex-
tended one by the same a, we see that (X + ¡'[[z,M],M] + iM + [z,M],oc) is
a hermitian symmetric pair of noncompact type. The above ( extends to an
imbedding of iM + [z,M] into the complexification M%x of M+1, as shown
with the same arguments. Now what Harish-Chandra finally showed is that the
image of ( is a bounded set in the euclidean space M\x. Therefore Ç([z,M~\) is
a bounded subset in M+x, and the theorem is proved.

7. The critical manifolds of /. Throughout this section (A. 1-4) are assumed,
and the notations in the preceding sections are freely used. Let / denote the
function mentioned in Theorem 4.6. It is explicitly given by f(g(o)) =B(ad(g)z,z),
geG (see the proof of Lemma 3.3). Due to the equality z = df, a point
m(o), eexpM, is a critical point off if and only if z vanishes at the point, or,
equivalently, m~1zmeH C\P = Q. Since m~xzm is contained in P, this last
condition is characterized by the invariance of m~^zm under a. Thus we have:

Lemma 7.1. A point m(o),mee\pM, of M is a critical point off if and
only if adL(m2)(z) = z.

Suppose p is a critical point off, i.e. z vanishes at p. Since the vector field z
is invariant under X, any point on the X-orbit X(p) is a critical point. On the
other hand, for any vector field v on M,v(p) is annihilated by the Hessian of /
at p if and only if [u,z] vanishes at p. In particular, for any m in M, this is
equivalent to [m,z~\eHp, where Hp is the Lie algebra of the isotropy subgroup
of L at p. Since z belongs to Hp, this implies m = \z,[z,mT\eHp. Since G is
transitive on M, it follows that

Lemma 7.2. A critical manifold is a K-orbit (or a connected component
of it) which contains a critical point, and is always a nondegenerate critical
manifold.

Lemma 7.3. Every critical manifold is a symmetric space with respect to
the induced metric from M.

Proof. To any point p of M, the origin o is carried by some meexpM. Let
p be a critical point. The symmetric ap of M at p is connected with the one oc'
at o by ap = ma'm~1 = m2a'. Since z is invariant under a' (Theorem 4.6), it
follows from Lemma 7.1 that z is invariant under ap. On the other hand, the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



T'T'Ö TADASHI NAGANO [June

critical manifold K(p) is given by the equation z = 0 near p. Thus X(p) is in-
variant under a„.

Lemma 7.4. The image of the immersion y* given in Theorem 3.1 is natu-
rally a symmetric space, or, what amounts to the same, Theorem 3.1 still holds
when the family 3P is replaced by its subfamily consisting only of (M,P) with
M (global) symmetric spaces.

We remember that y* was defined by y*(g(o)) — gzg~l= exp(adL(g)z), geG,
where z is the point of P corresponding to exp(z). Lemma 7.4 implies that y*(M)
satisfies (A. 1-4).

Proof of Lemma 7.4. Let M" denote y*(M). We define a reflection a" of M"
around z by putting a"(gzg~ l) = a(g)za(g)~1. We have to show that a" is well
defined; i.e., gzg~l = z implies a(g)za(g)~1 = z. Since P = L/G is a symmetric
space of noncompact type, gzg~l = z implies adL(g)z = z. Naturally, adL(g)
operates on the complexification Lc of L. So adL(g)(iz) = iz,i2 = —1. Thus
adL(g) commutes with ad(/z) operating on Lc. On the other hand, the isomorphism
a of G extends to that of L (Lemma 3.4). Hence a induces an automorphism
oeL of L, which is nothing but exp(7i ad(iz)) restricted to L. It follows that adL(g)
commutes with aL. Therefore we have a(g)za.(g)~1 = exp ((adL a (g))z)
= exp(aLo adL(g) o a¿ \z)) = expíalo a.;1 o adL(g)(z)) = exp(adL(g)z) =gzg ~l=z.
Thus a" is a well defined involutive diffeomorphism of M". Now M is a Riemannian
covering space of M". a" is clearly "covered" by the reflection a' of M. Hence
a" is an isometry with an isolated fixed point z . Lemma 7.4 is thus proved.

Lemma 7.5. // M ¿5 imbedded in P in the previously given way, i.e.,
M = y*iM), then o is the only point at which f takes the greatest value. For
any critical point p and any geodesic c joining o to p, the extension of c be-
yond p by the same length is a closed geodesic, viz., c is an arc of a circle in
M on which o and p are the antipodal points to each other.

Proof. Let p and c be as in the statement of the lemma. There exists a (unique)
element m in M such that c is an arc of the curve (exp tm) (o) with parameter
t, corresponding to the interval [0,1]. (In our case the point o = z.) We put
c(i) = (exp tm) (o). By Lemma 7.1 and the assumption y*(M) = M, we have
c(2) = o and the tangent c'(2) = c'(0) = mio). If A denotes adLm, we have
/(c(t)) = £((exp tA)z, z). We note that (expL4)z is a curve in P on which B is
positive definite and that exp(r^4) is orthogonal with respect to B. Since the exp-
map is injective on P, it is now obvious that /(c(t)) or the inner product of z
with (exp tA)z (of equal length to z) with respect to B takes the greatest value
at o and only at o. We have completed the proof of Lemma 7.5.

Let T be a maximal connected flat totally geodesic submanifold of M which
contains the origin o. Then T intersects with each critical manifold of/in a
finite number of points by Lemma 7.2. Lemma 7.5 thus implies there are at most
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2* critical manifolds where r denotes the dimension of T (which is the rank of
M). The number may be reduced by the action of the Weyl group of M acting
on T.

Appendix. In §2 our argument began with the assumptions (A. 1-4). But
the study of the transformation group L on a compact symmetric space M is
quite feasible under weaker ones, especially without the nongeometric condition
(A. 4) which requires L to be simple, though nothing particularly interesting
might be found. Here in the appendix we wish to offer a few remarks on this
account. (We shall need for proofs what we have proved in preceding sections.)
We will always assume (A. 1,2) so that L is a Lie transformation group of a com-
pact symmetric space M = G/K containing G properly. It will be convenient
for us first to observe an example.

Example 1. Let M' and M" be compact symmetric spaces and M be the
Riemannian product Tx M' x M" where Tis a circle ( = one-dimensional torus)
group. Let L',L" be semisimple Lie transformation groups on M',M" contain-
ing the connected isometry groups G',G", respectively. Assume L = G'. The
group T x L' x L" naturally operates on M. Let J5" be a finite-dimensional space
of functions on M'. L naturally operates on 3F. The elements/ of J5" can be con-
sidered as functions on M via the projection of M onto M'. Let t be a nonzero
element of T considered as a vector field on M. The vector fields /1 for all / in
¡F form a Lie algebra and generate a connected abelian transformation group
of M. Now the connected Lie transformation group, L, generated by R and
Tx L' x L" satisfies (A. 1,2) on M. Its radical is RT. (End of Example 1.)

Later we will prove that, under (A. 3), L and M axe just as mentioned in Ex-
ample 1 if Lis not semisimple and M is replaced by some finite covering space.
Moreover we will try to give some idea of the case where (A. 3) is not satisfied.

To discuss the case where L is semisimple, we have to introduce a notion:
as in the introduction, we say that a transitive Lie transformation group L of
a manifold M is (locally) decomposable into L' x L" if Lis the local direct pro-
duct of two nondiscrete normal subgroups L',L" whose orbits L'(x),L"(x) at
every point x of M are closed and have the tangent spaces complementary with
each other so that locally the transformation group Lis the direct product of the
transformation group L' on L'(x) and L" on L"(x) and that L is indecomposable
if not.

When Lis decomposable into L' x L" under (A.1,2), it is easy to see that
(A. 1,2) are satisfied by L' and L" acting on L'(x) and L"(x) with metrics induced
from M except that at most one of L',L" may coincide with the maximal con-
nected isometry group.

Proposition 1. Assume (A. 1,2) and that L is semisimple. Then L is simple
if and only if L is indecomposable.
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The "only if" part is obvious. Before the proof of the converse we make some
preliminary observation, supposing that L has a connected normal subgroup N.
Then the N-orbits N(x),xeM, form an L-invariant foliated structure, whose
leaves N(x) are the maximal integral manifolds of an L-invariant distribution
x -> N(x). (If, in particular, some N(x) is open, then N is transitive.) Since this
distribution is invariant by G, it follows that the tangent spaces to the AT-orbits
are invariant under the holonomy group. Moreover, it is easily seen that every
JV-orbit has the tangent spaces parallel with each other along any curve on it,
and thus the iV-orbits are naturally symmetric spaces. If N(x) is compact and
different from {x} and M, then it is also easy to see that G is decomposed into
G' x G" in such a way that G'(v) = N(y) for any point v of M. And N(x) is com-
pact if (A. 3) is satisfied or if the holonomy group leaves no nonzero tangent
vectors to JV(x). When N(x) is compact, we also note that the orbit space M/N
is a (global) symmetric space in a natural fashion. And L becomes a (not neces-
sarily effective) transformation group of M/N.

We feel it worth noting that if Lis primitive on M (i.e., Lleaves invariant no
nontrivial foliated structure on M) then (A. 4) is satisfied, and so is (A. 3). In
fact, otherwise, L would have a proper nondiscrete normal subgroup whose orbits
would form an L-invariant foliated structure.

Now to prove Proposition 1, we assume thatL is not simple. We will first show
that

(1)   Any connected simple normal subgroup L' of L is not transitive on M.
Proof of (1). Suppose L' is transitive. Let L" be the connected normal sub-

group of Lsuch that Lis the local direct product of L' and L". Since the center
of L is finite (Lemma 2.2 and the remark after its proof), we have the local product
decomposition G = G'G", where G',G" are the intersections of G with L',L"
respectively. Neither G' nor G" is discrete. We consider the case (i): L^G'.
Since G" is a compact normal subgroup of LG", L is a transformation group of
the orbit space M IG", denoted by M'. Since L' is simple, L' is almost effective
on M' unless G" is transitive (and hence L =G). To save notations, we assume
that L' is effective on M'. L on M' satisfies (A. 1-4). On the other hand, the
isotropy subgroup N' of L' on M at x, a point of M, is a subgroup of the isotropy
subgroup //' of L' on M' at the point G"(x). H' is transitive on G"(x)
as a transformation group of M, because L' is transitive on M. Since the ele-
ments of //' commute with those of G", both //' and G" are simply transitive
on G"(x). Hence A7' is a normal subgroup of //' and H '¡N' is isomorphic with
G". By Theorem 4.3 (or its proof), //' must contain a subgroup which is iso-
morphic with G" and which, moreover, is not contained in N' but in (the isotropy
subgroup at G"(x) of) G' operating on M'. Therefore G' is transitive on
G'G"(x) = G(x)= M. It follows that the symmetric space M is a local Riemannian
product of the group manifold G" and some symmetric submanifold. Thus, if G"
is a toral group, G' having a discrete intersection with G" cannot be transitive
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on M. If G" is not a toral group, G' contains a normal and nondiscretesubgroup
whose orbits are contained in those of G". Hence that subgroup acts trivially
on M', which is also a contradiction. And the case (i) never occurs. Now we
consider the other case (ii): L' = G'. M is then a simple group manifold, since
G' is now simple and G" is not discrete. In particular, G" is transitive. Since the
elements of L" commute with those of G' which is transitive, they must belong
to G". Thus we have L= G, a contradiction. (1) is proved.

Proof of Proposition 1. We have been assuming that L is not simple. Given
arbitrarily a connected normal simple subgroup of L, we denote by L' the maximal
connected subgroup of Lwhich has the same orbits as the given one. L' is a normal
subgroup of L, which is a proper subgroup by (1). L is a local direct product
of L' and some normal subgroup, L", of L. The transitive group G is decomposable
into G' x G" where these subgroups are the intersections of G with L',L", since
L has the center finite and G' must be transitive on L'-orbits by the definition
of L'. In order to prove that L is decomposed into L'x L" it suffices to show that
the triviality of the intersection / of the tangent spaces L'(x) and L"(x) to
L'(x), L"(x) at a point x of M. Clearly there exists a subspace C of the center
of G' such that / = {c(x)| ceC} (since G' is the maximal connected isometry
group of the symmetric space G'(x) = L'(x) and the isotropy subgroup of G '
is trivial on /). For each vector field c in C, there exists a vector field v in L" such
that v(x) = c(x). Both v and c axe invariant by G'. Hence we have v = c onL'(x).
This implies [L',c] = OonL'(x), or, in other words, C is an abelian ideal in the
semisimple Lie algebra L. Thus C = 0, whence 1 = 0, and the proposition is
proved.

Proposition 2. Assume (A. 3) beside (A. 1,2). // L is not semisimple, then
the identity component T of the center of G is not trivial and contained in the
center of L. Moreover, S denoting a maximal connected semisimple subgroup
of L, ST is transitive and decomposable into S x T. The radical R of L is given
by an invariant space of functions on M ¡T as in Example 1.

Proof. The P-orbits are circles by (A. 3). since the P-orbits are compact
symmetric spaces by (A. 3) which, as solvmanifolds, have euclidean spaces as
the universal covering spaces. In particular, T is not trivial but a circle group.
Let R' be the maximal connected subgroup of Lwhich has the same orbits as P.
P' is a normal subgroup of L containing RT. As a transformation group of its
orbit, R is a circle group (see (2) below), which is a normal subgroup of a con-
nected Lie transformation group R' of the orbit. This implies that as such R
is contained in the center of R'. Still as such R' is thus an abelian group. Hence
R' is abelian. Thus the normal subgroup R' coincides with R. Hence Rcontains
T in particular. Thus [T, L] c [X, L]cS. Since P is abelian, it follows
[J,[T, L]] = 0. Next we prove [L,T] = 0. Any element /of Lis of the form
ft + u where /is a function on M, t is a fixed nonzero element of T and h is a
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vector field on M which is perpendicular to the £-orbits. Locally u is a linear
combination (with functions as coefficients) of vector fields in the semisimple
part of G. Hence [f,u] =0 since [r,f] belongs to R. By [T\_T, L]]=0 proved
above,/satisfies ttf =0. A function on a circle with this property is necessarily
a constant. Thus we obtain [f, i] = 0. In particular, ST is a local direct product
of S and T. We can assume without loss of generality that S contains the semi-
simple part G' of G. To prove the contrary, we assume the orbits of S are dif-
ferent from those of G'. Consider the operation of S on M¡T. It satisfies (A. 1,2).
By Proposition 1 and the argument in its proof, G' must be transitive on M,
a contradiction. Therefore ST is decomposable into S x T. Now any element
r of R is of the form ft. fis constant along each T-orbitby [/?,T] c [L,T] = 0.
Hence/can be considered as a function on MIT. The space of all these functions
/are invariant under L; in fact, (í/)í = [í,/t]eR for every I in L.

(2) In general, a connected solvable Lie transformation group R of a circle
is a circle group if it is effective.

This fact is more or less well known, but a proof is given here, with the in-
duction on the dimension of R. The commutator subgroup C has the dimension
strictly smaller than that of R. When C is discrete, R is abelian and certainly
a circle group, for otherwise R would not be effective. Since C is a normal sub-
group and R is effective, C must be transitive on the circle. By the assumption
of the induction C is thus a circle group. It follows that C is contained in the
center of R, as is easily see from the completely reducible adRC. Hence the iso-
tropy subgroup of R centralizes the transitive group in particular, and therefore
it must reduce to the identity.

To understand better the meaning of Example 1, we note:
(3) Under the assumptions (A. 1-4), a finite-dimensional space 3F of func-

tions on M consists of constants only if it is invariant by L.
Proof. Let z be the vector field on M mentioned in Lemma 4.1. Consider

any integral curve c of z passing through a point near o but not o. c is contained
in an integral curve of some vector field v in M+1. On this curve any function/
in J* is bounded. / converges when a point on c tends to o and simultaneously
satisfies two linear homogeneous differential equations with constant coefficient
with respect to (different) coordinate systems on c; in fact, since J5" is finite di-
mensional, there exist polynomials P and Q for each / such that P(z)f= 0 and
Q(v)f= 0, where, by definition, z/and »/are the functions obtained by the usual
actions of vector fields on functions and zk+1f= z(zkf), etc. Thus / must be
constant.

Finally, we will give an example in which Misa torus and Lisa solvable group.
A torus M is a quotient space V/D of a vector group V over a lattice group D.
Given a linear form aeV* on the Lie algebra V, ca and sx shall denote the func-
tions on V defined by ca(exp x) = cos 2n ■ a(x) and sx(expx) = sin2n ■ a(x),
respectively.
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Example 2. Let £ be a finite subset of V* xV such that oc(D) consists of
integers for each (oe,x)eX and that a(y) = 0 for any two (oc,x), (ß,y) (distinct
or not) in E (hence a(x) = ß(x) = ß(y) =0. Let L be the space spanned by V and
the vector fields cxx, sax for all (a,x) in Z. L is then a solvable Lie algebra. Each
vector field in L is invariant by the natural action of D. Thus L generates on
the torus M = V/D a connected solvable Lie transformation group satisfying
(A. 1,2).

It would not be hard to show that, conversely, a connected solvable Lie trans-
formation group Lon a torus M subject to (A. 1,2) is obtained in this way.
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