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ABSTRACT 

This study compiles a generic database of seven parameters, including relative density and friction 

angle, for cohesionless soils from 176 studies, covering a wide range of reconstituted and in-situ 

cohesionless soils.  This database, labeled as “SAND/7/2794”, is dominated by data from 

laboratory reconstituted soils such as Erksak, Hokksund, Monterey, Ottawa, Sacramento River, 

Ticino, and Tonegawa sands.  About 15% of the data points in the database are in-situ samples 

obtained from tube sampling, block sampling, or ground freezing techniques.  The correlation 

behavior among some parameters in the database is consistent with existing transformation models 

in the literature.  Mine tailings, volcanic soils, railroad ballast, gravelly soils with significant 

cobble/boulder content, and soils with high fines contents are removed from the database because 

they exhibit inconsistent behavior.  Soils subjected to very high effective stresses are also removed 

from the database.  The generic database is adopted to calibrate the bias and variability of existing 

transformation models.  Transformation uncertainties are characterized based on their bias, 
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variability, and the range of applicability. 

Key words: SAND/7/2794; effective stress friction angle; relative density; cohesionless soils; 

transformation uncertainty 

 

INTRODUCTION 

Geotechnical design parameters are often estimated based on transformations from site 

investigation results (Phoon and Kulhawy 1999).  Transformation models in geotechnical 

engineering are obtained by empirical or semi-empirical data fitting using regression analyses.  

They are widely adopted in geotechnical engineering practice as a matter of practical expediency.  

Useful compilations of these models are available in the literature (e.g., Djoenaidi 1985; Kulhawy 

and Mayne 1990, Mayne et al. 2001).  Many transformation models are bivariate (pairwise) in 

nature.  The relationship between the effective friction angle (φ′) and SPT-N value proposed by 

Peck et al. (1974) is one classical example.  This example and many earlier models are thought to 

be conservative.  However, the degree of conservatism is difficult to judge, because the data and/or 

experience supporting these models are seldom described in detail.  Hatanaka and Uchida (1996) 

presented an updated correlation between φ′ and SPT-N value which is unbiased for the sands 

considered in their study.  For cohesionless soils, the effective friction angle (φ′) and relative 

density (Dr) are traditionally regarded as the key parameters in practice.  Table 1 summarizes some 

transformation models for cohesionless soils that are related to φ′ and Dr.  They are referred to as 

the Dr models and the φ′ models.  Been and Jefferies (1985) presented a critical state soil 
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mechanics framework to describe sand behavior.  The authors defined a sand state parameter (Ψ) 

as the vertical difference between the in-situ void ratio and the corresponding value on the critical 

state or steady state line.  This alternate framework is not considered in this study, because the 

state parameter is less frequently reported in the literature in comparison to the effective friction 

angle (φ′) and relative density (Dr). 

Some degree of transformation uncertainty will be introduced, as shown by the data scatter 

about the unbiased transformation model (Figure 1).  Moreover, some degree of bias may exist if 

the calibration database does not have sufficient coverage (or rules-of-thumb developed from a 

mixture of data, experience, and judgment).  The dashed line in Figure 1 shows an alternate 

transformation model that is biased on the conservative side.  A transformation model is biased if 

the majority of the data points fall above or below the curve.  It is clear that a general treatment of 

the transformation uncertainty will require the quantification of its bias (difference between model 

prediction and average of the data) and variability (data scatter about its average).  On top of those 

first and second moment statistics, it is important to characterize the form of the transformation 

uncertainty (e.g., additive or multiplicative) and its probability distribution type (e.g., normal or 

lognormal).  The form and the probability distribution type are related.  The common 

probabilistic model for the additive form is a zero-mean normal random variable.  The common 

probabilistic model for the multiplicative form is a unit-mean lognormal random variable.  In the 

literature, transformation models are typically presented as regression equations without explicit 

characterization of the four aspects identified above: (1) bias, (2) variability, (3) form, and (4) 
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distribution type.  Nonetheless, Honjo (2011) and Honjo and Otake (2014) showed that 

transformation uncertainty can be more influential than other sources of geotechnical uncertainties 

in realistic design problems.  Therefore, transformation uncertainty deserves more explicit and 

more rigorous treatment, particularly with regards to the four aspects mentioned above. 

It is challenging to calibrate the bias, variability, form, and distribution type of a 

transformation model because it requires a database that can effectively represent the target soil 

types and regions.  In principle, the bias and variability calibrated by a database are only 

applicable to the soil types and regions represented in the database.  If the goal is to calibrate 

“generic” bias and variability, a “generic” database not limited to a certain soil type or a certain 

region is required.  The current paper compiles a generic multivariate database for cohesionless 

soils of wide coverage.  The purpose is two fold: 

1. The bias and variability for existing transformation models will be calibrated by the generic 

multivariate database.  The form (additive or multiplicative) and probability distribution type 

for the transformation uncertainty will also be addressed.  This rigorous characterization of 

transformation uncertainty is valuable for reliability analysis and design. 

2. The generic multivariate database is useful in the future for the development of a multivariate 

probability distribution for cohesionless soil parameters. 

In the literature, generic multivariate soil databases have been compiled for clays.  Table 2 shows 

some such databases, labelled as (soil type)/(number of parameters of interest)/(number of data 

points).  Data points for cohesionless soils in the literature are significantly less than those for 
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clays, probably because it is very challenging to extract undisturbed samples.  The data points in 

the generic multivariate database will be first compared to existing transformation models in Table 

1.  This serves as the basic consistency check for the database.  Outlier data points will be 

detected based on this consistency check.  The appropriately screened database is adopted to 

calibrate the bias and variability of existing transformation models, and recommendation on suitable 

transformation models will be made. 

 

DATABASE SAND/7/2794 

This study compiles a generic database (SAND/7/2794) from the literature consisting of a 

significant number of data points for seven parameters of cohesionless soils.  From notational 

simplicity, we use “SAND” to broadly denote cohesionless soils, sands and gravels.  The 

SAND/7/2794 database consists of 2794 data points from 176 studies.  The number of data points 

associated with each study varies from 1 to 295 with an average 9.3 data points per study.  Unlike 

clay databases that are dominated by data from undisturbed in-situ clay samples, the SAND/7/2794 

database is dominated by data from laboratory reconstituted soils such as Erksak, Hokksund, 

Monterey, Ottawa, Sacramento River, Ticino, and Tonegawa sands.  Many of these reconstituted 

soils are clean sands.  The remaining (about 15%) data points in the database are in-situ samples 

obtained from tube sampling, block sampling, or ground freezing techniques.  The geographical 

regions for these in-situ samples cover Canada, Chile, Germany, Greek, India, Italy, Japan, Kuwait, 

Pakistan, Puerto Rico, Russia, Slovakia, Taiwan, United Kingdom, and United States.  The 
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properties of the data in SAND/7/2794 cover a wide range of median grain size (D50) (0.1mm to 

more than 100mm), uniformity coefficient (Cu) (1 to more than 1000), relative density (Dr) (-0.1% 

to 117%), and overconsolidation ratio (OCR) (1 to 15, but mostly 1).  The details for this generic 

database are presented in the Appendix (Table A1).  In this table, the third column “name of 

sand/region” shows the sand name if the soil sample is reconstituted and shows the region name if 

the soil sample is in-situ.  The fourth column “n” shows the number of data points.  The fifth 

column “type” indicates whether the soil is primarily sand or gravel and also indicates whether the 

soil sample is reconstituted or in-situ.  The next four columns show the ranges of the index 

parameters (Cu, D50, Dr) and OCR.  The next column is for the critical state friction angle φ′cv if 

this information is provided in the references.  The database only contains data from siliceous 

sands (sands composed primarily of silica).  Bolton (1986), McDowell and Bolton (1998), and 

Safinus et al. (2013) suggested that the dilatancy behavior for calcareous sands (sands composed 

primarily of calcium carbonate) is different due to particle breakage.  Therefore, the conclusions 

from this study are applicable to siliceous sands only.  This is in line with development of 

conventional transformation models listed in Table 1. 

Seven parameters are of primary interest, including D50, Cu, Dr, σ
'
v/Pa, φ′, qt1, and (N1)60.  They 

are categorized into three groups: 

1. Index properties: the median grain size (D50), coefficient of uniformity (Cu), and relative density 

(Dr). 

2. Effective stress and strength: the normalized vertical effective stress (σ'v/Pa) (σ
'
v is the vertical 
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effective stress, and Pa is one atmosphere pressure = 101.3 kN/m
2
) and effective stress friction 

angle (φ′).  The friction angle is the secant friction angle obtained in a triaxial compression 

test. 

3. In-situ tests: for cone penetration test (CPT), the normalized cone tip resistance qt1 = (qt/Pa)×CN 

is recorded, where qt is the cone tip resistance, and CN is the correction factor for overburden 

stress.  For standard penetration test (SPT), the normalized N value (N1)60 = N60×CN is 

recorded, where N60 is the N value corrected for the energy ratio.  The term “in-situ tests” may 

be somewhat misleading because qt1 and (N1)60 data may be obtained from laboratory 

calibration chamber tests.  Nonetheless, the term “in-situ tests” is still adopted in this paper for 

all CPT and SPT test results. 

Liao and Whitman (1986) proposed that CN = (σ
'
v/Pa)

-0.5
 and this formula is applicable for the 

range σ'v/Pa < 5.  Note that CN is unbounded near ground surface where σ
'
v approaches zero.  

Idriss and Boulanger (2008) suggested that an upper bound of 1.7 should be applied to CN.  For 

higher overburden stress, Boulanger (2003) proposed that CN = (σ
'
v/Pa)

-(0.7836-05208×D
r
)
 and this 

formula is applicable for the range σ'v/Pa ≤ 10.  In this study, we adopt the following formula to 

evaluate CN: 

( )

( ) ( )r

0.5

v a v a

N
0.7836 0.5208 D

v a v a

min P ,  1.7 For P 5
C

P For 5 P 10

−

− − ×

  ′ ′σ σ ≤  = 
 ′ ′σ < σ ≤  

(1)  

where Dr is in decimal, not in percentage.  The Liao-Whitman formula, namely CN = (σ
'
v/Pa)

-0.5
, 

is still adopted for the stress range σ'v/Pa ≤ 5 because this formula does not require Dr 
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information and does not significantly deviate from the Boulanger formula for this stress range.  

For scenarios with 5 < σ'v/Pa ≤ 10 and with unknown Dr, the Liao-Whitman formula can still be 

implemented as a first-order approximation because the Liao-Whitman formula is equivalent to 

the Boulanger formula with Dr = 54% (medium sand). 

There are in total 2794 data points in the database.  Each data “point” consists of a set of 

values stored in one row in the Excel worksheet.  The resulting database is not a genuine 

multivariate database.  The database is genuine multivariate if for all data points, all seven 

parameters are simultaneously measured.  However, such genuine multivariate data points are very 

rare in the literature.  For the SAND/7/2794 database, the seven parameters are typically not fully 

measured.  For instance, for some data points (Excel rows), (Cu, D50, Dr, φ′, (N1)60) are 

simultaneously measured, but for some other data points, (φ′, Dr, qt1) are simultaneously measured.  

There are 2794 such data points (or rows).  The majority of the data points (or rows) in the 

database can be categorized into four types: 

1. Laboratory triaxial compression test data alone (parallel CPT is not conducted).  The majority 

of the data is measured from reconstituted soils.  For these data points, Dr is recorded as the 

relative density prior to the consolidation stage (i.e., initial Dr), σ
'
v is the effective consolidation 

stress during the consolidation stage, and φ′ is the friction angle determined from the principle 

stresses at failure (σ'1f, σ
'
3f), namely φ′ = 2(tan

-1
[(σ'1f/σ

'
3f)
0.5
]-45

o
).  The set of values (Dr, σ

'
v, φ′) 

is recorded in the same data row, i.e., we treat them as the properties from the same soil. 

2. Laboratory calibration chamber CPT and SPT test data.  The majority of the data is also 
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measured from reconstituted soils.  For these data points, Dr is recorded as the relative density 

before applying the chamber pressure (initial Dr), σ
'
v is recorded as the overall vertical chamber 

pressure, and qt1 = (qt/Pa)×CN [or (N1)60 = N60×CN] is computed, where CN is evaluated by Eq. 

(1) with σ'v equal to the overall vertical chamber pressure.  The set of values (Dr, σ
'
v, qt1) [or 

(Dr, σ
'
v, (N1)60)] is recorded in the same data row. 

3. Laboratory calibration chamber CPT and SPT with parallel laboratory triaxial test data.  The 

majority of the data is also measured from reconstituted soils.  For these data points, the 

chamber test values for Dr, σ
'
v, qt1, and (N1)60 are recorded.  The φ′ obtained from the triaxial 

tests is also recorded.  The set of values (Dr, σ
'
v, qt1, φ′) [or (Dr, σ

'
v, (N1)60, φ′)] is recorded in 

the same data row. 

4. In-situ SPT and CPT with parallel laboratory triaxial test data.  The data are measured from 

in-situ soils.  Some are undisturbed samples obtain using the ground freezing technique and 

tested in laboratory.  For the data points of this category, Dr is recorded as the in-situ relative 

density, qt1 = (qt/Pa)×CN or (N1)60 = N60×CN is evaluated by Eq. (1) with σ
'
v equal to the in-situ 

vertical effective stress.  The value of φ′ from the laboratory triaxial test is adjusted to the 

in-situ σ'v by first fitting a (curved) failure envelope to all failure Mohr circles and locating the 

secant friction angle at σ′ = σ'v.  The set of values (Dr, σ
'
v, qt1, φ′) [or (Dr, σ

'
v, (N1)60, φ′)] is 

recorded in the same data row. 

Comparison to existing transformation models 

The data points in SAND/7/2794 can be compared with transformation models in Table 1 to verify 
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whether they exhibit consistent correlation behavior.  Some transformation models in Table 1 are 

selected to compare with the data points in SAND/7/2794.  Many of these models were developed 

based on certain databases limited to certain types of sands and gravels.  These databases may not 

be as generic as SAND/7/2794.  Therefore, some differences in the correlation behavior between 

the transformation models and SAND/7/2794 are to be expected.  It is possible that the differences 

arose because the SAND/7/2794 database covers a broader range of soils. 

The transformation models in Table 1 are further labeled using the template: (primary input 

parameter)-(target parameter) (2
nd
 column in Table 1). The (primary input parameter)-(target 

parameter) pairs are categorized into five types of models, SPT-Dr, CPT-Dr, Dr-φ′, SPT-φ′, and 

CPT-φ′ models, for this comparison.  The following observations can be made: 

1. SPT-Dr models.  Four models are presented in Table 1, and two models (Terzaghi and Peck 

1967; Kulhawy and Mayne 1990) are compared with the data points in SAND/7/2794 in Figure 

2.  In general, the majority of the data points follow the trends of the transformation models.  

There are two classes of data points that do not seem to follow the trends: 

(a) Volcanic soils (grey triangles).  Their data show low (N1)60 (mostly less than 20) and yet 

high Dr (mostly higher than 60).  It will be seen later that volcanic soils do not follow the 

trend for the SPT-φ′ transformation models (Figure 5), either.  Chen (2004) also concluded 

that volcanic soils behave fairly differently from normal sands and gravels. 

(b) In-situ gravels (grey diamonds).  They show fairly large scattering (note that there is a data 

point in the upper-left corner of Figure 2).  However, it will be seen later that they follow 
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the trend for the SPT-φ′ models (Figure 5).  It is likely that the Dr information of the data 

points is not reliable, given the fact that (emax, emin) for in-situ gravels may not be determined 

reliably owing to the lack of standardized procedures for gravels (Kudo et al. 1990; 

Cubrinovski and Ishihara 1999; Chen 2004; Chen and Kulhawy 2014). 

Other than the above two classes of data points, other data points show general consistency to 

the two transformation models (Terzaghi and Peck 1967; Kulhawy and Mayne 1990).  In 

particular, the Terzaghi-Peck model fits the overall data trend well.  It is known that the SPT-Dr 

relationship depends on the grain size.  The Kulhawy-Mayne model incorporates this 

dependency.  The two dashed lines in Figure 2 shows the model trends for D50 = 0.2 mm and 5 

mm (OCR = 1 for both cases).  The dashed line with D50 = 0.2 mm match well with the data 

trend for reconstituted and in-situ sands (reconstituted and in-situ sand data exhibit similar 

trend).  The dashed line with D50 = 5 mm match well with the data trend for reconstituted 

gravels. 

2. CPT-Dr models.  Two models are presented in Table 1, and both models (Jamiolkowski et al. 

1985; Kulhawy and Mayne 1990) are compared with the data points in SAND/7/2794 in Figure 

3 (the compressibility factor, QC = 1.0, is adopted for the Kulhawy-Mayne model).  There are 

no data points for gravels because CPT is not applicable to gravelly soils.  Data points with 

OCR < 2 and OCR ≥ 2 are plotted as different markers.  The Jamiolkowski et al. (1985) model 

fits to data points with OCR < 2 but does not fit well to those with OCR ≥ 2.  In general, the 

Kulhawy-Mayne (1990) model seems to provide a better fit.  The mine tailings data do not 
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follow the trends of the transformation models. 

3. Dr-φ′ models.  Two models are presented in Table 1, and one model (Bolton 1986) is compared 

with the data points in SAND/7/2794 in Figure 4.  Although Salgado et al. (2000) developed 

several Dr-φ′ models for sands with different fines contents, only their model for 10% fines is 

shown in Table 1.  Figure 4 shows the Bolton model and the data points in SAND/7/2794.  

The horizontal axis, p′f, is the mean effective stress at failure = (σ′1f+σ′2f+σ′3f)/3.  The four 

solid lines represent the dilation angle (φ′d) predicted by the Bolton model for Dr(%) = 25, 50, 

75, and 100.  The dilation angles (φ′d) of the data points are determined by subtracting the 

critical-state friction angle (φ′cv) from φ′.  The φ′cv values are commonly reported in studies 

involving reconstituted soils (see the φ′cv column in Table A1).  Even for reconstituted sand 

data points with unknown φ′cv, past experiences (e.g., Table 1 in Bolton 1986; Table 1 in 

Salgado et al. 2000; Table 4 in Ching et al. 2012) can be adopted to estimate φ′cv based on the 

sand type, mineralogy, angularity, grain size distribution, etc.  In contrast, studies that 

produced the in-situ sand/gravel data points generally do not report the value of φ′cv.  This is 

why there are no in-situ data points in Figure 4. 

Among all the data points in Figure 4, reconstituted gravelly soils with D50 > 40 mm (grey 

asterisks) do not seem to follow the trend for the Bolton model.  These soils contain a 

significant portion of cobbles or even boulders.  Other data points show general consistency 

with the Bolton model.  Moreover, reconstituted gravels with D50 < 40 mm, reconstituted clean 

sands, and reconstituted silty sands (fines content 5% ~ 20%) seem to roughly follow the same 
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trend. 

4. SPT-φ′ models.  Five models are presented in Table 1, and two models (Hatanaka and Uchida 

1996; Chen 2004) are compared with the data points in SAND/7/2794 in Figure 5. They are all 

in-situ soil data points because SPT is typically conducted in-situ.  Yoshida and Kokusho 

(1988) conducted calibration chamber SPT on reconstituted soils, but triaxial tests were not 

conducted.  Volcanic soil data are associated with high φ′ but low (N1)60 values, so this set of 

data is not consistent with the trends of the two transformation models and the rest of the data 

points.  Other data points show a general consistent agreement, except that ground-freezing 

sand data seem to exhibit slightly higher φ′.  In general, the Chen (2004) model provides a 

more satisfactory fit to the data because this model was calibrated by a broader database.  

Hatanaka and Uchida (1996) developed their model (solid curve in Figure 6) based on limited 

ground-freezing data points with (N1)60 < 60.  Later in 1998, this model was updated by 

Hatanaka et al. (1998) by specifying an upper bound of φ′ = 40o.  Among the five models in 

Table 1, only two models (Hatanaka and Uchida 1996; Chen 2004) are plotted in Figure 5 for 

two reasons: (a) Peck et al. (1974)’s and Schmertmann (1975)’s models are not based on (N1)60, 

hence they cannot be shown in the same plot; (b) Hatanaka et al. (1998)’s model is the same as 

Hatanaka and Uchida (1996)’s model with a 40
o
 upper bound.  Nonetheless, the biases and 

variabilities of all five models are calibrated using SAND/7/2794 in Table 1. 

5. CPT-φ′ models.  Two models are presented in Table 1, and one model (Kulhawy and Mayne 

1990) is compared with the data points in SAND/7/2794 in Figure 6.  There are no data points 
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for gravels because CPT is not applicable to gravelly soils.  Many data points in Figure 6 

overlap with the CPT-φ′ database adopted by Kulhawy and Mayne (1990).  These overlapping 

data points are shown as crosses in Figure 6.  Only one model (Kulhawy and Mayne 1990) is 

plotted in Figure 6 because the other model (Robertson and Campanella 1983) is not based on 

qt1, hence it cannot be shown in the same plot.  Nonetheless, the biases and variabilities of both 

models are calibrated using SAND/7/2794 in Table 1. 

Removal of outliers 

Based on the above observations, it is determined that the following classes of data points should be 

excluded from the SAND/7/2794 database.  The purpose is to exclude outliers with significantly 

different correlation behavior from the main population. 

1. Volcanic soils (13 data points): they do not exhibit trends consistent with the existing SPT-Dr 

and SPT-φ′ transformation models. 

2. Mine tailings (59 data points): they do not exhibit a trend consistent with the existing CPT-Dr 

transformation models. 

3. Gravelly soils with D50 > 40 mm (37 data points): they do not exhibit a trend consistent with the 

existing Dr-φ′ transformation model. 

4. The Dr information for all in-situ gravel data is removed because it may be unreliable. 

5. Cases with σ'v/Pa > 10 (98 data points) are excluded, because CN in Eq. (1) may not be 

applicable to data with σ'v/Pa > 10 and also because this high stress level is of limited interest in 

routine projects. 
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6. Cases with more than 20% fines content (98 data points) (e.g., data from Brandon et al. 1990) 

are removed, because the soil behavior may be dominated by the fines. 

7. Railroad ballasts (16 data points) are removed because they have relatively high frictional 

angles. 

The revised database contains data points from reconstituted and in-situ cohesionless soils, 

excluding volcanic soils, mine tailings, railroad ballasts, soils with significant cobble/boulder 

contents, soils subjected to very high stress levels, and soils with fines content greater than 20%.  

The basic statistics of for the seven parameters in the revised database are listed in Table 3.  The 

statistics are the mean value, coefficient of variation (COV), minimum value (min), and maximum 

value (max).  The numbers of available data points (n) are shown in the second column.  The 

number of data points is further divided into the numbers of reconstituted and in-situ data points.  

For instance, there are in total 1939 data points with Cu information.  Among them, 1793 are 

reconstituted soils and 146 are in-situ soils.  About 85% of the data points in the revised 

SAND/7/2794 database are reconstituted soils. 

 

QUANTIFICATION OF TRANSFORMATION UNCERTAINTY 

Additive versus multiplicative forms 

The data scatter about the transformation model can be quantified using probabilistic methods, as 

illustrated in Figure 1.  In this approach, the transformation model is typically evaluated using 

regression analyses.  The spread of the data about the regression curve can be modeled in many 
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instances as an additive form: 

( )actual target value b predicted target valueε = − ×
 

(2)  

where the actual target value = measured value of the design property and predicted target value = 

estimated value of the design property from a transformation model.  The product of a constant b 

(bias factor) and the predicted target value produces an unbiased prediction on average.  The bias 

of the prediction is captured by b, whereas ε only captures the variability of the prediction, not the 

bias.  For ε to only capture the variability without the bias, ε must have a zero mean.  Moreover, 

because ε can be negative, ε is usually modeled as a normal random variable (normal variable can 

be negative).  As a result, the additive form is usually associated with a zero-mean normally 

distributed ε.  The standard deviation of ε, denoted by σ, quantifies the variability of the 

transformation model.  Ching and Phoon (2014a) used a common alternative multiplicative form 

for the data scatter:  

actual target value

b predicted target value
ε =

×
 

(3)  

where the random variable ε now quantifies the ratio between the actual target value and the 

unbiased prediction.  For ε to only capture the variability without the bias, ε must have a unit mean.  

Moreover, because the ratio (actual parameter value)/(predicted parameter value) is usually positive, 

ε is also positive.  Hence, ε is usually modeled as a lognormal random variable (lognormal 

variable can only be positive).  As a result, the multiplicative form is usually associated with a 

unit-mean lognormally distributed ε.  The standard deviation of ε, denoted by σ, quantifies the 

variability of the transformation model.  Here, the standard deviation of ε is the same as its 
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coefficient of variation (COV), denoted by δ.  From a definition point of view, the multiplicative 

form is identical to the “model factor” in the reliability literature, which is typically defined as the 

ratio of a measured response (e.g., pile capacity) to the calculated response. 

For the additive form (Eq. 2), ε has the same unit as for the actual target value.  If the target 

value is Dr, ε has the unit of %, whereas if the target value is φ′, ε has the unit of degrees.  The 

standard deviation for ε has the same unit, either % or degree.  For the multiplicative form (Eq. 3), 

ε is dimensionless.  The standard deviation or COV of ε is also dimensionless. 

Calibration of the bias and variability 

The bias and variability of all transformation models in Table 1 are calibrated by the revised 

SAND/7/2794 database.  For the calibration of the CPT-Dr model proposed by Kulhawy and 

Mayne (1990), the secondary explanatory factor QC (compressibility index) is determined according 

to the fines content (FC): QC = 1.09 for clean sands (low compressibility), QC = 1.0 for 0% < FC ≤ 

10% (medium compressibility), and QC = 0.91 for 10% < FC ≤ 20% (high compressibility).  For 

the SPT-Dr model proposed by Kulhawy and Mayne (1990), there are two secondary explanatory 

factors: D50 and OCR.  Between them, D50 is typically known, whereas OCR is unknown for many 

data points in SAND/7/2794.  For those data points, OCR is assumed to be 1.  In general, the 

uncertainty in a secondary explanatory factor would be lumped into the calibrated variability, i.e., 

the variability may be higher without the knowledge of the secondary explanatory factor. 

For the multiplicative form (Eq. 3), the bias factor (b) for a transformation model is estimated 

as the sample mean of the ratio (actual target value)/(predicted target value).  For instance, for the 
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SPT-Dr model proposed by Terzaghi and Peck (1967) (the second model in Table 1), the actual 

target value is Dr(%), and the predicted target value is 100×[(N1)60/60]
0.5
.  The data points in the 

revised SAND/7/2794 database with simultaneous information of [Dr, (N1)60] are extracted.  

However, not all these data points are accepted because the Terzaghi-Peck model is only applicable 

to soils with (N1)60 < 60.  198 data points with simultaneous [Dr, (N1)60] information and with 

(N1)60 < 60 are finally adopted, and 198 ratios Dr/(100×[(N1)60/60]
0.5
) are computed.  The sample 

mean of these ratios is equal to 1.05 (b ≈ 1.05).  This means that b×predicted target value = 

105×[(N1)60/60]
0.5
 is the unbiased prediction for Dr for the multiplicative form.  The variability 

term ε = Dr/(105×[(N1)60/60]
0.5
) is computed for all 198 data points.  The sample COV (sample 

standard deviation divided by sample mean) of these ε values is 0.231 (δ ≈ 0.231). 

 For the additive form (Eq. 2), the bias factor (b) is first estimated as (sample mean of actual 

target values)/(sample mean of predicted target values).  For the SPT-Dr model proposed by 

Terzaghi and Peck (1967), b = (sample mean of 198 actual Dr values)/(sample mean of 198 

100×[(N1)60/60]
0.5
 values).  The bias factor b is estimated to be 1.03.  This means that 

b×predicted target value = 103×[(N1)60/60]
0.5
 is the unbiased prediction for Dr for the additive form.  

Then, ε = (actual target value) – (b×predicted target value) = Dr – (103×[(N1)60/60]
0.5
) is computed 

for all 198 data points.  Recall that ε has mean = 0 and standard deviation = σ.  The sample 

standard deviation of these ε values is 13.63(%) (σ ≈ 13.63%).  Note that the standard deviation is 

not dimensionless.  It has the unit of the design parameter: % for Dr and degrees for φ′. 

The distribution type for ε is also examined by the K-S (Kolmogorov-Smirnov) test (Conover 
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1999).  The common null hypothesis for the additive form is a normal random variable.  The 

common null hypothesis for the multiplicative form is a lognormal random variable.  If the p-value 

for the K-S test is larger than 0.05, the hypothesis is deemed acceptable (or more accurately, cannot 

be rejected at 5% significance).  The null hypothesis of a normal distribution is also tested for the 

multiplicative form, but the p-value is always less than the lognormal hypothesis, indicating it is 

more reasonable to adopt the lognormal hypothesis for the multiplicative form.  The p-values for 

all transformation models with variability assuming the additive normal and multiplicative 

lognormal forms are listed in Table 1. 

Calibration results 

Table 1 shows the calibrated bias and variability for various transformation models under the 

multiplicative lognormal and additive normal forms.  The data restriction (e.g., (N1)60 < 60) for 

each model is described in the rightmost column: only data in SAND/7/2794 fulfilling the 

restriction are adopted for the calibration.  There are a few models that have broad application 

ranges.  For these models, all data with the required simultaneous information are adopted for the 

calibration.  The number of available calibration data points is shown in the fifth column.  The 

number is further divided into the numbers of reconstituted and in-situ soil data.  It is clear that the 

SPT-Dr models are calibrated by the mixture of reconstituted and in-situ soil data.  The CPT-Dr, 

Dr-φ′, and CPT-φ′ models are mainly calibrated by reconstituted soil data, whereas SPT-φ′ models 

are mainly calibrated by in-situ soil data. 

Within the same model type (e.g., SPT-Dr models), there seems to be a general trend that more 
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recent transformation models are less biased (b closer to 1) than older models.  The bias factor for 

the Dr-φ′ model proposed by Salgado et al. (2000) is not very closer to 1 probably because this 

model is calibrated in their study by silty sand data with fines contents not exactly 10% but ranging 

from 5% to 20%.  Although there is also a general trend that more recent transformation models 

have less variability (smaller δ and σ) than older models, this trend for δ and σ is less clear than the 

trend for b, probably because δ and σ are more sensitive to statistical uncertainty. 

 Table 1 also shows the p-values for the multiplicative lognormal and additive normal forms.  

Most p-values are larger than 0.05, indicating that both variability forms may be adopted.  For the 

Dr models (SPT-Dr and CPT-Dr models), the multiplicative lognormal form gets 2 rejections 

(p-value < 0.05), whereas the additive normal form gets only 1.  For the φ′ models (Dr-φ′, SPT-φ′, 

and CPT-φ′ models), both multiplicative lognormal and additive normal forms are applicable.  The 

recommendation is to adopt the variability form with a larger p-value, but if the p-values are 

comparable, the multiplicative form has a practical edge because δ is dimensionless and an engineer 

can develop a “feel” for the significance of δ in reliability analysis from its numerical value (e.g., δ 

< 0.05 is “small”). 

Models most consistent with the SAND/7/2794 database 

According to the above calibration results, the following models are selected (one model is selected 

for each model type).  The following factors are considered in this model selection: (a) it is 

preferable that b is close to 1 and δ (or σ) is small, because this means that the model is consistent 

with the SAND/7/2794 database; (b) it is preferable that the model has a broad range of 
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applicability, e.g., applicable to both normally consolidated (NC) and over-consolidated (OC) soils 

or applicable to a wide range of (N1)60 or qt1.  The selected models are annotated with “**” in 

Table 1, discussed as follows: 

1. For the SPT-Dr models, the two models that consider grain size distribution [Marcuson and 

Bieganousky (1977) consider Cu, whereas Kulhawy and Mayne (1990) consider D50] are both 

nearly unbiased.  The model proposed by Kulhawy and Mayne (1990) is selected because it 

has a broader application range.  The multiplicative lognormal form is recommended for this 

model (substantially higher p-value). 

2. For the CPT-Dr models, the model proposed by Kulhawy and Mayne (1990) is selected because 

it is less biased (b = 0.93) and can be broadly applicable to both NC and OC soils.  Note that 

92.5% (777 out of 840) of our data points overlap with the data points used by Kulhawy and 

Mayne in developing their model.  The additive normal form is recommended for this model 

(substantially higher p-value).  The model proposed by Jamiolkowski et al. (1985) is biased on 

the unconservative side (b = 0.84 < 1). 

3. For the Dr-φ′ models, the model proposed by Bolton (1986) is selected because it is nearly 

unbiased (b = 1.03) with small variability (δ = 0.052 and σ = 2.07o).  Both multiplicative 

lognormal and additive normal forms are recommended for this model (comparable p-values).  

The variability of this model is relatively small compared to those for SPT-φ′ and CPT-φ′ 

models (see Table 1).  However, this model requires an estimate of φ′cv, which is not required 

for the SPT-φ′ and CPT-φ′ models.  If the additional variability incurred by the estimation of 
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φ′cv is considered, the overall variability for the Dr-φ′ model can be comparable to those for the 

SPT-φ′ and CPT-φ′ models. 

4. For the SPT-φ′ models, the model proposed by Chen (2004) is selected because it is unbiased (b 

= 1.00) and has a broad application range (a wide range of (N1)60).  The multiplicative 

lognormal form is recommended for this model (higher p-values).  All SPT-φ′ models based on 

(N1)60 (Hatanaka and Uchida 1996; Hatanaka et al. 1998; Chen 2004) have δ and σ values that 

are smaller than those based on N60 or the combination of N60 and σ′v/Pa (Peck et al. 1974; 

Schmertmann 1975).  According to Table 3, the COV of φ′ is 0.128.  This is the “prior” COV 

when Dr, SPT, and CPT information is not available.  The two SPT-φ′ models based on N60 

(Peck et al. 1974) or the combination of N60 and σ′v/Pa (Schmertmann 1975) have δ = 

0.132~0.137 that are close to the prior COV = 0.128.  These two SPT-φ′ models are not very 

effective because they do not reduce the COV. 

5. For the CPT-φ′ models, the model proposed by Kulhawy and Mayne (1990) is selected because 

it is nearly unbiased (b = 0.97) and with a broad application range (both NC and OC soils).  

Note that 97.6% (368 out of 376) of our data points overlap with the data points used by 

Kulhawy and Mayne in developing their model.  The additive normal form is recommended 

for this model (substantially higher p-value). 

Recall that SAND/7/2794 is a generic database.  Its data points are not limited to a certain region 

or a certain soil type.  The SPT-Dr, CPT-Dr, and CPT-φ′ models from Kulhawy and Mayne (1990) 

are also developed from generic databases.  It is possible that these models are the most consistent 
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to the SAND/7/2794 database, because of comparable breadth of coverage. A site-specific model 

calibrated for a specific soil type may not show the same degree of consistency.  Ching and Phoon 

(2012b) discussed the establishment of generic transformations for geotechnical design parameters 

using such generic databases. 

Probability distribution of the actual target value 

It is possible to characterize the probability distribution of the target value (Dr or φ′) based on 

available input parameters (e.g., SPT or CPT information).  For instance, for the SPT-φ′ model 

proposed by Chen (2004), the target value is φ′ and input parameter is (N1)60.  For this model, the 

multiplicative lognormal form is acceptable.  According to Table 1, the bias factor b = 1.00 and δ 

= 0.095 are calibrated by the SAND/7/2794 database.  For the multiplicative lognormal form, the 

actual target value can be expressed as 

Actual target value = predicted target value b× ×ε
 

(4)  

where ε is the lognormally distributed random variable with mean = 1 and COV = δ = 0.095.  This 

means that 

( )( )10 1 60
Actual  = 27.5 9.2 log N 1.00′  φ + × × ×ε 

 

(5) 

As a result, the actual value of φ′ is a lognormal random variable with mean = unbiased prediction = 

(27.5+9.2×log10[(N1)60]) and COV = 0.095.  It is also possible to represent the actual value of φ′ 

using a standard normal random variable Z for the first-order reliability method (Hasofer and Lind 

1974; Ditlevsen and Madsen 1996): 
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( ) ( )10 1 60 2

2

27.5 9.2 log N
Actual  = exp ln + ln 1 Z

1

   + ×   ′  φ + δ ×
  + δ    

(6) 

 

CONCLUSIONS 

In this paper, a generic database (SAND/7/2794) for cohesionless soils is developed, and existing 

transformation models in the literature are investigated.  This generic database contains 

reconstituted cohesionless soils with wide range of characteristics (grain size distributions, sand 

types, OCR, etc.) as well as in-situ cohesionless soils from a wide range of geographical locales.  

Mine tailings, volcanic soils, railroad ballasts, gravelly soils with significant cobble/boulder content, 

and soils with fines contents more than 20% are excluded because they exhibit inconsistent 

correlation behavior.  Soils subjected to very high stress levels (σ′v/Pa > 10) are also excluded 

because they are out the scope of geotechnical engineering.  Two types of transformation models 

are considered: models that predict the relative density (Dr models) and models that predict the 

friction angle (φ′ models).  It is found that the existing transformation models and the 

SAND/7/2794 database exhibit consistent correlation behavior.  The SAND/7/2794 database is 

further used to calibrate the bias and variability for the existing transformation models (see Table 1 

for the calibration results).  It is found that more recent models tend to have smaller biases.  

Variability can be introduced in an additive or multiplicative form.  Recommendations for the 

variability form (additive normal versus multiplicative lognormal) are also given.  The 

SAND/7/2794 database can be further adopted to develop the multivariate probability distribution 
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for the seven parameters of cohesionless soils.  This is a direction for future research. 
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Figure 1  Transformation uncertainty resulting from pairwise correlation between a measured 

property and a desired design property. 

Figure 2  SPT-Dr models and data points in SAND/7/2794. 

Figure 3  CPT-Dr models and data points in SAND/7/2794. 

Figure 4  Dr-φ′ model and data points in SAND/7/2794. 
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Table 1  Transformation models in the literature for some parameters of cohesionless soils. 
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APPENDIX  SAND/7/2794 DATABASE 

This appendix presents a table (Table A1) that contains the basic information for the database as 

well as the reference list. 
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Table 1  Transformation models in the literature for some parameters of cohesionless soils. 

Type Model Literature Transformation model 
n 

(reconstituted+ 

in-situ) 

Multiplicative lognormal Additive normal 
Data restriction 

b δ (or σ) p-value b σ p-value 

Dr 

models 

SPT-Dr 

Holtz and Gibbs 
(1979) 

Graphical curves in page 441 

(Predict Dr based on N60 and σ′v/Pa) 
133 

(81+52) 
0.85 0.263 0.11 0.83 12.30 0.42 

Data with N60 < 70 

and σ′v/Pa < 3 
Terzaghi and Peck 

(1967) ( ) ( )r 1 60
D % 100 N 60≈ ×  198 

(142+56) 
1.05 0.231 0.72 1.03 13.63 0.34 Data with (N1)60 < 60 

Marcuson and 
Bieganousky (1977) 

( )
( )

60

r 2

v a u

222 N 2311 711 OCR
D % 100 12.2 0.75

779 P 50 C

 × + − × 
≈ × + ′− σ − ×  

 132 
(101+31) 

1.00 0.211 0.11 1.00 11.24 0.47 Data with N60 < 100 

Kulhawy and 
Mayne (1990)** 

( )
( )
( )
1 60

r 0.18

10 50

N
D % 100

60 25log D OCR
≈ ×

+ ×  

 199 
(155+44) 

1.01 0.205 0.74 0.99 17.45 
0.00 
(reject) 

All data with 

simultaneous information 

CPT-Dr 

Jamiolkowski et al. 
(1985) 

( ) ( )r 10 t1
D % 68 log q 1≈ × −    

681 
(666+15) 

0.84 0.327 
0.00 
(reject) 

0.85 14.50 0.66 NC data with qcln < 300 

Kulhawy and 
Mayne (1990)** 

( ) t1
r 0.18

C

q
D % 100

305 Q OCR
≈ ×

× ×
 840 

(840+0) 
0.93 0.339 

0.00 
(reject) 

0.93 13.29 0.19 
All data with 

simultaneous information 

φ′ 
models 

Dr-φ′ 
Bolton (1986)** ( )( )cv r f3 D 10 ln p 1′ ′ ′φ ≈ φ + × − −  

 391 
(391+0) 

1.03 0.052 0.09 1.03 2.07 0.07 
All data with 

simultaneous information 

Salgado et al. 
(2000) 

( )( )cv r f3 D 8.3 ln p 0.69′ ′ ′φ ≈ φ + × − −    127 
(127+0) 

1.08 0.054 0.76 1.08 2.18 0.79 Data with fines 

SPT-φ′ 

Peck et al. (1974) 
Graphical curves in page 310 

(Predict φ′ based on N60) 
43 

(0+43) 
1.15 0.132 0.66 1.14 5.39 0.62 Data with N60 < 60 

Schmertmann 
(1975) 

Graphical curves in page 63 

(Predict φ′ based on N60 and σ′v/Pa) 
44 

(0+44) 
0.98 0.137 0.93 0.97 5.46 0.79 

Data with N60 < 60 

and σ′v/Pa < 3 
Hatanaka and 
Uchida (1996) ( )1 60

15.4 N 20′φ ≈ ⋅ +  28 
(0+28) 

1.04 0.095 0.84 1.04 3.61 0.89 Data with (N1)60 < 40 

Hatanaka et al. 
(1998) 

( ) ( )
( )

1 160 60

1 60

15.4 N 20 N 26

40 N 26

 ⋅ + ≤′φ ≈ 
>

 58 
(0+58) 

1.07 0.090 0.56 1.07 3.71 0.43 Data with (N1)60 < 150 

Chen (2004)** ( )10 1 60
27.5 9.2 log N′  φ ≈ + ×    

59 
(0+59) 

1.00 0.095 0.41 1.00 3.98 0.28 
All data with 

simultaneous information 

CPT-φ′ 

Robertson and 
Campanella (1983) 

( )1

10 t vtan 0.1 0.38 log q−′ ′φ ≈ + × σ    
99 

(91+8) 
0.93 0.056 0.77 0.92 2.16 0.87 

All data with 

simultaneous information 

Kulhawy and 
Mayne (1990)** 

( )10 t117.6 11 log q′φ ≈ + ×  376 
(368+8) 

0.97 0.081 0.49 0.97 3.17 0.97 
All data with 

simultaneous information 

* OCR = overconsolidation ratio; qt1 = (qt/Pa)/(σ
'
v/Pa)

0.5
; qt = cone tip resistance; σ'v = vertical effective stress; (N1)60 = N60/(σ'v/Pa)

0.5
; N60 = corrected N; Pa = atmospheric pressure; 

φ′cv: critical-state friction angle; p′f = mean effective stress at failure = (σ′1f+σ′2f+σ′3f)/3; QC = 1.09, 1.0, 0.91 for low, medium, high compressibility, respectively. 
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Table 2  Some multivariate soil databases. 

Database Reference Parameters of interest 
# data 

points 

# sites/ 

studies 

Range of properties 

OCR PI St 

CLAY/5/345 

Ching and 

Phoon 

(2012a) 
LI, su, su

re
, σ

’
p, σ

’
v 345 37 sites 1~4  

Sensitive to 

quick clays 

CLAY/6/535 
Ching et 

al. (2014) 

su/σ
'
v, OCR, (qt−σv)/σ

'
v, (qt−u2)/σ

'
v, 

(u2−u0)/σ
'
v, Bq 

535 40 sites 1~6 
Low to 

very high 

plasticity 

Insensitive 

to quick 
clays 

CLAY/7/6310 

Ching and 

Phoon 

(2013, 

2015) 

su from 7 different test procedures 6310 
164 

studies 
1~10 

Low to 

very high 

plasticity 

Insensitive 

to quick 

clays 

CLAY/10/7490 

Ching and 

Phoon 

(2014a,b) 

LL, PI, LI, σ
'
v/Pa, σ

'
p/Pa, su/σ

'
v, St, 

(qt−σv)/σ
'
v, (qt−u2)/σ

'
v, Bq 

7490 
251 

studies 
1~10 

Low to 

very high 

plasticity 

Insensitive 

to quick 

clays 

Note: LL = liquid limit; PI = plasticity index; LI = liquidity index; σ
’
v = vertical effective stress; σ

’
p = preconsolidation 

stress; su = undrained shear strength; su
re

 = remoulded su; St = sensitivity; OCR = overconsolidation ratio, (qt-σv)/σ
'
v = 

normalized cone tip resistance;  (qt-u2)/σ
'
v = effective cone tip resistance; u0 = hydrostatic pore pressure; (u2-u0)/σ

'
v = 

normalized excess pore pressure; Bq = pore pressure ratio = (u2-u0)/(qt-σv); and Pa = atmospheric pressure = 101.3 kPa. 
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Table 3  Selected statistics of the 7 parameters in the revised SAND/7/2794 database. 

Parameter n (reconstituted + in-situ) Mean COV Min Max 

Cu 1939 (1793+146) 9.62 3.787 1 504.0 

D50 (mm) 2064 (1868+196) 1.52 2.303 0.11 35.0 

Dr (%) 1686 (1587+99) 63.17 0.385 -0.071 113.0 

σ′v/Pa 1945 (1546+399) 1.87 0.917 0.049 9.9 

φ′ 1059 (928+131) 39.88 0.128 22.8 59.9 

qt1 1436 (1227+209) 163.39 0.697 0.75 536.8 

(N1)60 589 (155+434) 34.66 0.757 2.11 243.5 
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Table A1  Basic information for the SAND/7/2794 database. 1 

No. Reference Name / Site n Type Cu 
D50 

(mm) 
Dr 

(%) 
OCR 

φ′cv 
(o) 

φ′ 
(o) 

1 Agha and Masood (1997) Barotha, Parkistan 1 In-situ GW 111 34 - - - - 

2 
Al-Hussaini and Townsend (1975a); 
Al-Hussaini and Townsend (1975b) 

Reid-Bedford Sand 3 Reconstituted clean sand 1.5 0.24 25~100 - - 28.5~34 

3 Al-Hussaini and Townsend (1975b) 

Sangamon Sand 2 Reconstituted clean sand - - - - - 32.5~37.6 

Wabash Sand 2 Reconstituted clean sand - - - - - 34.6~38.6 

Chataoochee Sand 4 Reconstituted clean sand - - - - - 32.3~40.5 

Brasted Sand 2 Reconstituted clean sand - - - - - 33.9~39 

- 4 Reconstituted clean sand - - - - - 32.9~38.2 

Belgium Sand 4 Reconstituted clean sand - - - - - 34.2~43.3 

Minnesota Sand 2 Reconstituted clean sand - - - - - 28~37.5 

Pennsylvania Sand 2 Reconstituted clean sand - - - - - 31~35.8 

4 
Alsamman (1995) 
Rollberg (1977) 

Dusseldorf, Germany 3 In-situ sand/gravel mixture - - 55~56 - - 39~40 

5 Andrus and Youd (1987) Whiskey Springs, US 11 In-situ gravel - - - - - - 

6 
Aoyama et al. (1993) 

Hatanaka and Uchida (1996) 
Hatanaka et al. (1995) 

Nagoya, Japan 1 
In-situ sand 

(ground-freezing sample) 
3.4 0.48 78 - - - 

7 
Baker et al. (1991) 
Baker et al. (1993) 

Cupertino, CA, US 1 In-situ gravel - - 87 - - 46 

8 Baker et al. (1993) Cupertino, CA, US 3 In-situ gravel - - - - - - 

9 
Baldi et al. (1986) 

Jefferies and Been (2006) 
Ticino sand 295 Reconstituted clean sand 1.58 0.5 16~98 1~15 31 32~48 

Hokksund sand 99 Reconstituted clean sand 2.05~2.2 0.39 17~100 1~15 29.5~31 33~48- 

10 
Barton (1990) 

Barton et al. (1986) 
Hamshire, UK 1 In-situ SP 2.2 0.2 88 - - - 

11 
Barton and Palmer (1988) 
Barton and Palmer (1989) 

Sussex, UK 1 In-situ sand 2.2 0.17 108 - - - 

12 
Barton and Palmer (1990) 
Palmer and Barton (1987) 

Cambridgeshire, UK 1 In-situ sand 2.4 0.16 113 - - - 

13 
Becker et al. (1972) 
Becker et al. (1972) 

Napa, CA, US 14 Reconstituted gravel 7~7.4 3.2~40.5 68~101 - 33.5~35 35~53 

Maxwell, CA, US 20 Reconstituted gravel 7~7.4 3.2~40.5 37~97 - 34~35 36~44 

14 Beckwith and Bedenkop (1973) Phoenix, AZ, US 7 In-situ clay/gravel mixture - - 87~89 - - 42 

15 Been et al. (1987) Erksak sand 28 Reconstituted SP 2.2 0.35 69~99 1 31 35~42 

16 Bellotti (1976) Medium Sand 1 Reconstituted clean sand - - 16 - - - 
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17 Bishop (1958) Brasted Sand 1 Reconstituted clean sand - - 40 - - - 

18 Bishop and Green (1965) Ham River sand 40 Reconstituted clean sand - 0.204 9~93 - 33.4 32~46 

19 Brandon et al. (1990) Yatesville sand 5 Reconstituted sity sand (w/ 40% fines) 32.5 0.1 - 1~2 - - 

20 Briaud (2000) College Station, TX, US 2 In-situ SP 1.6~2.2 0.16~0.19 55 - - - 

21 Briaud and Gibbens (1997) College Station, TX, US 1 In-situ sand - 0.19 55 - - 36.4 

22 Burton and Thomas (1987) Palo Alto, CA, US 3 In-situ sand - - - - - - 

23 Canou et al. (1988) Hostun sand 20 Reconstituted clean sand 2.22 0.35 15~95 1 - - 

24 Černák et al. (1988) 

Bratislava, USSR 1 In-situ gravel - - - - - - 

Sered, Czechoslovakia 1 In-situ gravel - - - - - - 

Bratislava, USSR 1 In-situ gravel - - 66 - - - 

Sered, Slovakia 1 In-situ GM - - - - - - 

25 Chapman and Donald (1981) Frankston sand 36 Reconstituted clean sand 2.05 0.31 54~100 1~7.7 - 35~42 

26 Charles and Watts (1980) 

Sandstone rockfill 5 Reconstituted gravel 72.5 4.29 - - - 38.5~59.9 

Slate rockfill 2 Reconstituted gravel 48.33 4.91 - - - 43.3~56.1 

Basalt rockfill 1 Reconstituted gravel 5.71 13.06 - - - 58.7 

27 Chen (2004) 

Kaohsiung, Taiwan 3 In-situ sand - - - - - 35~38.6 

Pittsburgh, PA, US 2 In-situ GW 46.7 11 36~70 - - 42.4~44.3 

Pittsburgh, PA, US 2 In-situ sand 3.7 0.4 41~68 - - 35.8~37.1 

Pittsburgh, PA, US 2 In-situ sand 31.5 2.4 38~67 - - 38.4~39.5 

28 Chen and Hsieh (2001) Taichung, Taiwan 6 In-situ SW 240 - 75~88 - - 47 

29 Chin et al. (1988) Hsinta Power Plant, Kaohsiung, Taiwan 35 In-situ sand - - - - - - 

30 Chong (1988) Leighton Buzzard sand 30 Reconstituted clean sand 1.5 0.37 35~83 1 33 31~50 

31 Chu et al. (1989) 

Linkou, Taiwan 2 In-situ gravel 304~1913 26~60 - - - - 

Sanyi, Taiwan 1 In-situ gravel 543 70 - - - - 

Changhua, Taiwan 4 In-situ gravel 63~167 2.7~32 - - - - 

Taoyuan, Taiwan 2 In-situ gravel 130 6~12 - - - - 

32 Chu et al. (1996) Taichung, Taiwan 8 In-situ GW 163~732 64~120 - - - - 

33 
Chua and Aspar (1993) 

Meyers (1992) 
Albuquerque, Japan 1 In-situ sand/gravel mixture - - 50 - - 39 

34 
Clayton and Rollins (1994) 

Rollins et al. (1994) 
Rollins et al. (1997a) 

Spanish Fork, UT, US 3 In-situ GW 30~90 - 72~78 - - 45~47 

American Fork, UT, US 4 In-situ GW 53~107 - 66~73 - - 44~45 

Kennecott, UT, US 4 In-situ gravel 19~500 - 59~73 - - 43~46 

35 
Cornforth (1964) 
Cornforth (1973) 

Brasted sand 21 Reconstituted clean sand - 0.26 8~84 - 33.4 33~42 

36 Crova et al. (1993) Sicily, Italy 2 In-situ gravel 69~92 2.1~3.3 - - - - 

37 Daramola (1980) Ham River Sand 2 Reconstituted clean sand - 0.35 - - - - 

38 Dayal et al. (1970) Falgu Sandy Gravel 3 Reconstituted gravel 1.4~1.5 1.9~6 4~88 - - 33~41 
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39 
Deb et al. (1964) 

Mohan et al. (1971) 
Narahari et al. (1968) 

Rishikish, India 1 In-situ GW 900 60 - - - - 

40 DiMillio et al. (1987) CA, US 5 In-situ clean sand - - 40~52 - - - 

41 Douglas (1982) 

CA, US 16 In-situ silt/sand mixture - - - - - - 

CA, US 15 In-situ clay/sand/gravel mixture - - - - - - 

CA, US 7 In-situ clay/silt/sand mixture - - - - - - 

42 East Japan Railway et al. (1996) 

Tabata Station, Japan 2 In-situ GW - - - - - - 

Toyama station, Japan 1 In-situ SW - - - - - - 

Japan 5 In-situ SW - - - - - - 

Tabata Station, Japan 1 In-situ SM - - - - - - 

Tokyo, Japan 4 In-situ sand - - - - - - 

43 Edil and Dhowian (1981) Ottawa Sand 3 Reconstituted clean sand 1.2 0.75 - - - 30.4~34.6 

44 Farr and Aurora (1981) Ponce, Puerto Rico 1 In-situ sand/gravel mixture - - 70 - - 42 

45 Finno (1989) 
Evanston, IL, US 1 In-situ SP 1.2 0.25 48 - - - 

Northwestern University Site, IL, US 2 In-situ SP - - - - - 37 

46 
Finno et al. (2000) 

Fujioka and Yamada (1994) 
Evanston, IL, US 1 In-situ SP 1.8 0.25 - - - 37 

Takasaki, Japan 3 In-situ sand/gravel mixture - - 59~60 - - 41 

47 Fioravante et al. (1991) Toyoura sand 28 Reconstituted sand 1.5 0.16 41~91 1~7.3 - - 

48 Fjodorov and Malychev (1959) Russian Sand 1 Reconstituted clean sand - - - - - - 

49 Fragaszy et al. (1992) 
Lake Valley Dam, CA, US 9 Reconstituted SW-SM 33 2.2 15~61 - - 42.9~48.1 

Lake Valley Dam, CA, US 9 Reconstituted GW 40 5 13~64 - - 42.7~47.8 

50 Frank et al. (1991) Chalkis, Greek 2 In-situ SC-SM - - - - - - 

51 Fujioka and Yamada (1994) 
Takasaki, Japan 4 In-situ GP - - - - - - 

Takasaki, Japan 4 In-situ sand - - - - - - 

52 Fujioka et al. (1992) Japan 1 In-situ sand - - - - - - 

53 Fujioka et al. (1998) 
Toyama, Japan 3 In-situ GW - - - - - - 

Tabata station, Japan 2 In-situ sand - - - - - - 

54 Fukuoka (1988) Bannosu, Japan 2 In-situ GC - - - - - - 

55 Ghionna and Jamiolkowski (1991) 
Messina, Italy 25 In-situ gravel - 2.18~3.67 - - - - 

Messina, Italy 25 In-situ gravel - 1.45~10.27 - - - - 

56 Gibbens and Briaud (1994) TX, US 4 In-situ sand - - 55~57 - - - 

57 
Golder Associates Project Files 

[Jefferies and Been (2006)] 
Syncrude oil sands tailings 8 Reconstituted clean sand (tailings) 1.85 0.21 55~94 1~3 - - 

Ticino sand 10 Reconstituted clean sand 1.57 0.54 2~89 1~6 31 - 

58 
Goto et al. (1992) 
Goto et al. (1994) 

Suzuki et al. (1993) 
Saitama, Japan 1 

In-situ GW 
(ground-freezing sample) 

39.9 10.77 49 - - - 

59 Greeuw et al. (1988) Oosterschelde sand 20 Reconstituted clean sand 1.8 0.17 30~87 1 33.2 35~44 
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60 Haldar et al. (2000) 
Newfoundland, Canada 1 In-situ SW 12.4 4.5 60 - - - 

Newfoundland, Canada 1 In-situ SW 12.4 4.5 60 - - 38 

61 Harman (1976) 
Hilton mine tailings 20 Reconstituted clean sand (tailings) 2.3 0.2 27~88 1 35 - 

Ottawa sand 30 Reconstituted clean sand 1.46 0.48 20~82 1 29.25 - 

62 

Hatanaka and Uchida (1996) 
Hatanaka et al. (1990) 
Hatanaka et al. (1995) 

 

Japan 3 
In-situ SP (volcanic, 

ground-freezing sample) 
2.8~6.5 0.4~0.42 59~72 - - 36~47.2 

Kyushu, Japan 1 
In-situ sand (volcanic, 

ground-freezing sample) 
2.7 0.21 70 - - 47.9 

Kyushu, Japan 1 
In-situ sand (volcanic, 

ground-freezing sample) 
2.7 0.21 70 - - - 

Kyushu, Japan 1 
In-situ SP (volcanic, 

ground-freezing sample) 
4.1 0.41 63 - - - 

Japan 2 In-situ SP (ground-freezing sample) 1.6~2.3 0.29~0.39 34~57 - - 42~46.5 

Japan 2 In-situ sand (ground-freezing sample) 1.7~2.1 0.29~0.33 50~67 - - - 

Narita, Japan 1 In-situ SP (ground-freezing sample) 2.2 0.18 81 - - 34.1 

Narita, Japan 1 In-situ sand (ground-freezing sample) 1.9 0.16 76 - - - 

Nagoya, Japan 3 In-situ sand (ground-freezing sample) 4~4.5 0.39~0.47 74~81 - - 41~45 

Japan 2 
In-situ sand (volcanic, 

ground-freezing sample) 
9.5~18 0.3~0.6 78~81 - - 40.3~41.3 

Kagoshima, Japan 1 
In-situ sand (volcanic, 

ground-freezing sample) 
8.2 0.45 73 - - - 

63 Hatanaka et al. (1985) Kagoshima, Japan 1 
In-situ sand (volcanic, 

ground-freezing sample) 
13.3 0.41 59 - - - 

64 Hatanaka et al. (1988) Tokyo, Japan 1 
In-situ gravel (volcanic, 
ground-freezing sample) 

66.1 10.75 58 - - - 

65 Hatanaka et al. (1997) Port Island Hanshin, Japan 1 In-situ gravel (ground-freezing sample) 22.3 2.43 117 - - - 

66 Hatanaka et al. (1998) 

Japan 2 In-situ sand - 0.19~0.36 - - - 40~41.2 

Japan 2 In-situ sand - 0.15~0.17 - - - 39.8~41.4 

Japan 3 In-situ sand - 0.2~0.21 - - - 41.1~42.7 

Japan 4 In-situ sand - 0.34~0.49 - - - 37.7~45.8 

Japan 3 In-situ sand - 0.18~0.24 - - - 40.9~41.6 

67 Hatanaka et al. (1999) 

Japan 1 In-situ sand (ground-freezing sample) - - 60 - - 46.8 

Japan 1 In-situ sand (ground-freezing sample) - - 68 - - 45.6 

Japan 1 In-situ sand (ground-freezing sample) - - 70 - - 47 

Japan 1 In-situ sand (ground-freezing sample) - - 57 - - 41.6 

Japan 1 In-situ sand (ground-freezing sample) - - 100 - - 51 

Japan 1 In-situ sand (ground-freezing sample) - - - - - - 

68 Hendron (1963) Minnesota Sand 1 Reconstituted clean sand - - 34 - - 36.9 
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69 Hirayama (1990) Bannosu, Japan 1 In-situ clay/gravel mixture - - 45 - - 38 

70 Hirschfield and Poulos (1964) Glacial outwash sand 6 Reconstituted clean sand - 0.673 68~87 - 36.9 36~46 

71 Holden (1971) 

Sangamon Sand 1 Reconstituted clean sand - - - - - - 

Wabash Sand 1 Reconstituted clean sand - - - - - - 

Pennsylvania Sand 1 Reconstituted clean sand - - - - - - 

Ottawa Sand 1 Reconstituted clean sand - - - - - - 

Edgar Sand 1 Reconstituted clean sand - - - - - - 

72 Houlsby and Hitchman (1988) Leighton Buzzard sand 76 Reconstituted clean sand 1.3 0.85 20~90 1 33 33~47 

73 
Hu (1993) 
Hu (1995) 

Taoyuan, Taiwan 2 In-situ sand/gravel mixture - - 82 - - 47 

74 Huang et al. (1999) Mia-Liao, Taiwan 60 Reconstituted silty sand (w/ 15.1% fines) 2.6 0.11 50~85 - 31.6 31.9~39.5 

75 Huntsman et al. (1986) Monterey sand 41 Reconstituted clean sand 1.6 0.37 27~73 1 31 36~41 

76 Iai and Kurata (1991) 
Higashi-Ogishima Island, Tokyo, Japan 1 In-situ SP (ground-freezing sample) 1.7 0.28 26 - - - 

Tokyo, Japan 1 In-situ SP (ground-freezing sample) 1.7 0.28 26 - - 28 

77 Inamura et al. (1995) Ohito Bridge, Japan 3 In-situ gravel - - - - - - 

78 Indraratna (1993) Thailand 12 Reconstituted gravel 6 4.9 - - - 38.2~44.5 

79 Indraratna and Christie (1998) Railway Ballast, New South Wales, Australia 16 Reconstituted gravel 1.5~1.6 30.3~38.9 - - - 47.7~79.8 

80 

Ishihara et al. (1978) 
Ishihara et al. (1979) 

Ishihara and Koga (1981) 
Skempton (1986) 

Yoshimi et al. (1984) 
Yoshimi et al. (1989) 

Kawagish-cho, Niigata, Japan 1 In-situ SP 2.4 0.35 51 - - - 

Niigata, Japan 1 
In-situ SP 

(ground-freezing sample) 
1.9 0.46 46 - - - 

Niigata, Japan 1 In-situ SP 1.7 0.27 70 - - - 

81 Ishihara and Koga (1981) 
Niigata, Japan 20 In-situ sand - - - - - - 

Niigata, Japan 8 In-situ sand - - - - - - 

82 Iwasaki et al. (1988) Toyoura sand 29 Reconstituted clean sand 1.46 0.16 33~86 1 31 34~45 

83 Kasim et al. (1986) Alameda, CA, US 65 In-situ SM, SP-SM - 0.14~0.28 - - - - 

84 Kjellman (1936) German Standard Sand 1 Reconstituted clean sand 1 1 - - - 35 

85 

Kokusho and Tanaka (1994) 
Kudo et al. (1991) 

Tanaka et al. (1988) 
Tanaka et al. (1989) 

Japan 1 
In-situ GW 

(ground-freezing sample) 
44.9 21.33 62 - - - 

86 Kokusho et al. (1995) Hokkaido, Japan 1 
In-situ gravel (volcanic, 
ground-freezing sample) 

222.3 7.84 51 - - - 

87 
Konno et al. (1993) 
Konno et al. (1994) 
Suzuki et al. (1992) 

Tadotsu, Japan 1 
In-situ gravel 

(ground-freezing sample) 
27.1 9.98 99 - - - 

88 Konstantinidis et al. (1987) Baker, CA, US 2 In-situ sand - - 80~82 - - 43~44 
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Baker, CA, US 3 In-situ SP-SM - - - - - - 

Caliente, NV, US 3 In-situ SP-SM - - - - - - 

89 Kou (1995) Linkou, Taiwan 2 In-situ GW 133~236 20~28 - - - - 

90 Kudo et al. (1990) 
Tonegawa sand 74 Reconstituted SP 2~5.7 0.34~1.13 40~100 - 36~39 36~50 

Tonegawa sand 69 Reconstituted GW 11.3~31.1 2.28~7.3 40~100 - 37.5~39 38~51 

91 Kudo et al. (1991) 

Japan 1 In-situ gravel (ground-freezing sample) 85.5 7.8 32 - - - 

Japan 1 In-situ SW (ground-freezing sample) 11.8 1.81 61 - - - 

Japan 1 In-situ SP (ground-freezing sample) 5 1.71 73 - - - 

Japan 2 In-situ GW (ground-freezing sample) 28.5~78.3 7.3~8.3 28~35 - - 44.9~46.8 

92 Lambrechts and Leonards (1978) Ottawa sand 10 Reconstituted clean sand 1.1 0.28 57 - 29.25 32 

93 Lee and Seed (1967) Sacramento River sand 39 Reconstituted clean sand - 0.297 38~100 - 31.2 30~41 

94 Lhuer (1976) Reid Bedford sand 17 Reconstituted clean sand 1.69 0.24 24~83 1 - - 

95 
Lin et al. (1998) 
Lin et al. (2000) 

Taichung, Taiwan 1 In-situ GW 857 160 - - - - 

96 Little and Carder (1990) 

St. Albans,UK 1 In-situ sand 8.3 0.43 56 - - - 

St. Albans,UK 1 In-situ SP 2.6 0.33 60 - - - 

Vale of St. Albans, UK 1 In-situ gravel 32.3 9.17 47 - - - 

97 

Little et al. (1994) 
Pillai and Stewart (1994) 

Plewes et al. (1994) 
Sego et al. (1994) 

B. C., Canada 1 
In-situ SP 

(ground-freezing sample) 
2.5 0.2 44 - - - 

98 Loadtest, Inc. (1994) Truth or Consequences, NM, US 1 In-situ GP-GM - - - - - - 

99 Loadtest, Inc. (1999) Puerto Rico 7 In-situ gravel - - - - - - 

100 Loadtest, Inc. (2000) 
DeSoto, MS, US  2 In-situ SW - - - - - - 

Pt of Mtn. West, UT, US 2 In-situ SP 3.08 0.65 - - - - 

101 Lunne and Christoffersen (1985) Hokksund sand 9 Reconstituted clean sand 2.2 0.44 22~93 - 29.5 35~47 

102 Mach (1970) German Sand 1 Reconstituted clean sand - - - - - - 

103 Manassero (1991) 

Ticino Sand 17 Reconstituted sand 1.62 0.5 46~92 1~7.7 - - 

Po river sand 15 In-situ sand 2.25 0.3 - 1 - - 

Ticino river sand 4 In-situ sand 9.17 0.25 - 1 - - 

104 Marachi et al. (1969) 
Pyramid dam, US 19 Reconstituted gravel 7~7.4 3.2~40.5 10~83 - 33~34 35~52 

Oroville dam, US 20 Reconstituted gravel 38.3~39 2.4~28.9 69~100 - 36~38 38~56 

105 Matsui (1993) 
Osaka, Japan 1 In-situ clay/gravel mixture - - 57 - - 37 

Osaka Bay, Japan 6 In-situ GM - - - - - - 

106 Mayne (2001) Atlanta, GA, US 2 In-situ sand - 0.08 - - - 35.2~35.8 

107 
Meigh and Nixon (1961) 

Skempton (1986) 
Suffolk, UK 1 In-situ sand 2.4 0.2 46 - - - 

108 Menzies et al. (1977) Ripley Sand 1 Reconstituted clean sand - - - - - - 
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109 Moh and Associates (1997) 
Taipei, Taiwan 2 In-situ clay/sand/gravel mixture - - 46~47 - - 35~36 

Taipei, Taiwan 2 In-situ clay/sand/gravel mixture - - 45~46 - - 35 

110 Mohan et al. (1971) Ram Nagar, India 1 In-situ GW 68 15 - - - - 

111 
Nishio and Tamaoki (1988) 

Suzuki et al. (1993) 
Chiba, Japan 1 

In-situ SP 
(ground-freezing sample) 

8.2 1.93 83 - - - 

112 Ochiai et al. (1993) Fukuoka, Japan 2 In-situ sand/clay mixture (volcanic) - - 91 - - - 

113 Osterberg (1995) 
Truth or Consequences, NM, US 1 In-situ silt/gravel mixture - - - - - - 

Truth or Consequences, NM, US 1 In-situ sand/gravel mixture - - 59 - - - 

114 
Pacal and Shively (1983) 

Briaud et al. (1984) 

Caliente, NV, US 1 In-situ sand - - - - - 48 

Baker, CA, US 3 In-situ sand - - - - - 46.3~50.4 

Caliente, NV, US 2 In-situ sand - - 75~77 - - 45 

115 Pacific Geotechnical Engineers (1994) Halawa Valley, HI, US 4 In-situ GM - - - - - - 

116 Parkin et al. (1980) Hokksund sand 127 Reconstituted clean sand 2.2 0.44 8~101 1~8 29.5 29~50 

117 Parsons-Brinkerhoff Assoc. (1991) H-3, HI, US  7 In-situ GM - - - - - - 

118 Pells (1973) Decomposed Granite 1 Reconstituted gravel - - - - - - 

119 Plelm (1965) Crechoslovakian Sand 1 Reconstituted clean sand - - - - - - 

120 
Price (1993) 

Price et al. (1992) 

Scipio, Utah, US 1 In-situ silt/sand/gravel mixture - - 72 - - 43 

Sigurd-Salina, Utah, US 2 In-situ sand/gravel mixture - - 58~61 - - 41~42 

Belknap, Utah, US 2 In-situ sand/gravel mixture - - 56~62 - - 40~42 

Belknap, Utah, US 2 In-situ sand/gravel mixture - - 48~52 - - 39~40 

Black Rock, Utah, US 2 In-situ clay/silt/sand/gravel mixture - - 50~51 - - 40 

121 Price et al. (1992) 
Scipio, UT, US 2 In-situ GM - - - - - - 

Sigurd-Salina, US 3 In-situ GM - - - - - - 

122 Rao et al. (1981) Roorkee, India 1 In-situ GW 23 20 - - - - 

123 Rix and Stokoe (1991) Washed mortar sand 42 Reconstituted sand 1.65 0.35 9~106 - - - 

124 Rodriguez-Roa (2000) Santiago, Chile 1 In-situ GW 77 35 - - - - 

125 

Rollins and Mikesell (1993) 
Rollins et al. (1994) 
Rollins et al. (1997a) 
Rollins et al. (1997b) 

Big cottonwood, UT, US 4 In-situ sand 10~30 - 64~77 - - 42~43 

Mountian East, UT, US 4 In-situ sand 18.75~30 - 67~87 - - 43~47 

Mountian West, UT, US 2 In-situ SP 3.25 - 64 - - 43 

Mapleton, UT, US 3 In-situ GW 50~116 - 74~87 - - 46~48 

Provo, UT, US 4 In-situ gravel - - 78~83 - - 44~45 

126 Rollins et al. (2005) 

American Fork, UT, US 4 In-situ gravel 108.5 11.32 - - - - 

Kennecott, UT, US 4 In-situ GC 504 8.96 - - - - 

Mapleton, UT, US 2 In-situ GW 62.69 14.51 - - - - 

Provo, UT, US 1 In-situ GM - - - - - - 

Spanish Fork, UT, US 3 In-situ GW-GM 86.47 11.5 - - - - 

Cottonwood, AZ, US 4 In-situ sand 8.25 0.24 - - - - 

Pt of Mtn. East, UT, US 4 In-situ sand 23.44 1.41 - - - - 
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Provo, UT, US 2 In-situ SM - - - - - - 

127 Saglamer (1975) 
Kilyos Sand 1 Reconstituted clean sand 1.25 0.15 47 - - 28 

Ayvalik Sand 3 Reconstituted clean sand 1.3 0.59 33~86 - - 29.5~36.5 

128 Saglamer et al. (2001) Izmir, Turkey 1 In-situ GC - - - - - - 

129 Salgado et al. (2000) 

Ottawa sand 17 Reconstituted SP 1.48 0.39 27~81 - 29 30~37 

Ottawa sand 13 Reconstituted silty sand (w/ 5% fines) - - 14~81 - 30.5 32~41 

Ottawa sand 12 Reconstituted silty sand (w/ 10% fines) - - 23~80 - 32 33~42 

Ottawa sand 17 Reconstituted silty sand (w/ 15% fines) - - 7~100 - 32.5 32~46 

Ottawa sand 11 Reconstituted silty sand (w/ 20% fines) - - 27~72 - 33 34~39 

130 
Saito (1977) 

Skempton (1986) 
Ogishima island, Tokyo, Japan 1 In-situ sand 4 0.3 54 - - - 

131 Schmertmann (1978) 

Hilton mine sand 25 Reconstituted SP 2 0.2 20~80 1 35 33~46 

Ottawa sand 25 Reconstituted SP 1.85 0.22 20~80 1 29.25 28~43 

Reid Bedford sand 10 Reconstituted SP 1.7 0.24 30~81 1 32 35~47 

Jasksonville, FL, US 31 In-situ SP (tailings) 1.2 0.154 40~95 1 - - 

132 Shen and Lee (1995) 
Chek Lap Kok sand 10 Reconstituted clean sand 4.5 1.05 25~82 1 - - 

West Kowloon sand 18 Reconstituted clean sand 1.88 0.28 32~80 1 - - 

133 Sherif et al. (1974) 

Ottawa Sand 3 Reconstituted clean sand 2.1 0.42 4~73 - - 25~42.7 

Del Monte Sand 3 Reconstituted clean sand 2.1 0.18 13~60 - - 26.2~40.9 

Mixture Sand 4 Reconstituted clean sand 3.9 0.43 7~83 - - 25.7~40.6 

Highway Sand 3 Reconstituted clean sand 1.9 0.32 7~86 - - 30~45.4 

Golden Gardens Sand 3 Reconstituted clean sand 1.8 0.5 27~77 - - 33.8~43.5 

Seward Park Sand 3 Reconstituted clean sand 1.9 0.86 25~92 - - 34.9~47.8 

Sayers Pit Sand 3 Reconstituted clean sand 2.3 0.69 18~71 - - 30.7~38.8 

Mathews Beach Sand 3 Reconstituted clean sand 3.9 0.9 6~61 - - 27.3~44.7 

Alki Beach Sand 3 Reconstituted clean sand 1.4 0.32 21~83 - - 22.8~42.6 

Pier Sand 3 Reconstituted clean sand 2.4 0.44 3~93 - - 30~37.1 

134 Skempton (1986) Niigata, Japan 1 In-situ SP 2.8 0.63 36 - - - 

135 Soroush (2012) 

Masjed-Soleyman, Iran 24 Reconstituted gravel 7.2~8.95 4.74~29.54 - - - 32.4~51 

San Francisco Basalt, US 3 Reconstituted gravel 22.46 10 - - - 38.3~46.2 

Motorway Embankment Gneiss, Italy 3 Reconstituted gravel - - - - - 42 

Limestone Lorestan Roodbar Dam, Iran 3 Reconstituted gravel 19.74 4.78 - - - 39 

Sandstone Vanyar Dam, Iran 3 Reconstituted gravel 19.74 - - - - 36 

Andesibasalt and Andesite Sabalan Dam, Azerbaijan 3 Reconstituted gravel 19.74 - - - - 41 

Dolomite RailRoad Ballast, Coteau, Quebec, Canada 3 Reconstituted gravel 2.85 - - - - 40 

Blasting Lime stone Roodbar Dam, Iran 3 Reconstituted gravel 23 7.2 - - - 30.6 

Blasting Andesibasalt Sabalan Dam, Azerbaijan 3 Reconstituted gravel 22.1 6.48 - - - 40~42 

Blasting Andesite Aydoghmosh Sabalan Dam, Iran 3 Reconstituted gravel 22.9 7.37 - - - 38 
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Blasting Sandstone Vanyar Dam, Iran 2 Reconstituted gravel 22.9 7.25 - - - 38 

Mica granitic-gneiss 3 Reconstituted gravel 20.67 48.57 - - - 43~44.5 

Andesite Yamchi Dam, Iran 3 Reconstituted gravel 65.4 2.26 - - - 38.7 

Andesibasalt Ghale chai Dam, Iran 2 Reconstituted gravel 138.9 3.54 - - - 36.5 

136 Suzuki et al. (1993) 

Chiba, Japan 1 In-situ GW (ground-freezing sample) 10.3 2.8 - - - 49.8 

Kagawa, Japan 2 In-situ GW (ground-freezing sample) 19~46.6 7.2~10.7 - - - 39.9~44.9 

Saitama, Japan 2 In-situ GW (ground-freezing sample) 23.8~59 5.6~16.9 - - - 43.3~46.5 

137 Sweeney (1987) Monterey sand 6 Reconstituted clean sand 1.37 0.45 24~64 1 - 33~39 

138 Tanaka et al. (1988) 
Japan 3 In-situ GW (ground-freezing sample) 5.3~11.9 1.9~3 53~81 - - 39~43.5 

Japan 1 In-situ GW (ground-freezing sample) 44.9 21.3 62 - - 54.9 

139 Tand et al. (1994) 

Alvin, TX, US 1 In-situ sand - 0.11 - - - 34.7 

Alvin, TX, US 1 In-situ sand 2.1 0.15 77 - - 37.8 

Alvin, TX, US 6 In-situ sand 2.125 0.11~0.15 77~80 - - 34~40 

140 Thomas (1968) Lanchester sand 21 Reconstituted clean sand 1.4 0.4 0~100 1 - - 

141 
Tokimatsu et al. (1990) 
Yoshimi et al. (1984) 

Higashi-Ogishima island, Tokyo 1 
In-situ SP 

(ground-freezing sample) 
2.1 0.22 91 - - - 

142 Tringale (1983) Monterey sand 9 Reconstituted clean sand 1.5 0.36 27~74 1 - - 

143 Tsai et al. (1995) 

Taichung Taiwan 1 In-situ GW 166 67 - - - - 

Chiayi, Taiwan 3 In-situ GW 103~268 47~50 - - - - 

Tiehchenshan, Taiwan 2 In-situ gravel 1067~1880 55~74 - - - - 

Changhua, Taiwan 1 In-situ GW 119 57 - - - - 

144 Tucker (1987) 

SCE, CA, US 2 In-situ GW-SW - - - - - - 

SCE, CA, US 6 In-situ sand - - - - - - 

SCE, CA, US 8 In-situ sand - - - - - - 

145 Uchida et al. (1990) 

Niigata, Japan 1 In-situ sand (ground-freezing sample) - - 87 - - 45 

Niigata, Japan 4 In-situ sand (ground-freezing sample) - - 50~84 - - - 

Niigata, Japan 1 In-situ sand (ground-freezing sample) - - 72 - - - 

146 Varadarajan et al. (2003) 
Ranjit Sagar Dam, India 6 Reconstituted gravel 145~148.5 3.8~12 87 - - 39~50.1 

Purulia Dam, India 9 Reconstituted gravel 18.33~18.95 5~15.8 87 - - 36.3~42.5 

147 Veismanis (1974) 

Earlston sand 5 Reconstituted clean sand 2.6 0.33 20~73 1 - 33~41 

Edgar sand 15 Reconstituted clean sand 1.7 0.45 56~95 1 - 35~46 

Ottawa sand 7 Reconstituted clean sand 1.2 0.54 75~104 1~4 - 31~41 

S. Oakleigh sand 35 Reconstituted clean sand 1.6 0.17 28~86 1 - 29~34 

S. Oakleigh sand 27 Reconstituted clean sand 2.2 0.32 44~89 1~8 - 30~35 

148 Vesic and Clough (1968) Chattahooochee River sand 40 Reconstituted clean sand 2.5 0.37 8~94 - 32.5 29~44 

149 Villet and Mitchell (1981) 

Lone Star sand 13 Reconstituted clean sand 2 1 22~68 1 - - 

Lone Star sand 30 Reconstituted clean sand 1.86 0.39 21~89 1 31 - 

Lone Star sand 28 Reconstituted clean sand 1.48 0.3 21~84 - - 35~46 
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150 Weiler and Kulhawy (1978) Filter Sand 3 Reconstituted clean sand 1.8 0.82 - - - 35.8~49.2 

151 Wright (1969) 
Monterey Sand 2 Reconstituted clean sand - - 32~93 - - 40 

Eastern Silica Sand 2 Reconstituted clean sand - - 33~93 - - 36.5 

152 Xiao et al. (2014) Tacheng rockfill material 12 Reconstituted gravel 5.54 23.1 51~84 - - 41.9~48.9 

153 

Yoshida and Kokusho (1988) 
Yoshida et al. (1988) 

Kokusho (1997) 
Kokusho and Yoshida (1997) 

Tonegawa sand 91 Reconstituted SP 1.95~5.65 0.34~1.13 26~104 - - - 

Tonegawa sand 64 Reconstituted GW 11.3~31.1 2.28~7.3 15~101 - - - 
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