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Abstract

Target-oriented sentiment classification

aims at classifying sentiment polarities

over individual opinion targets in a sen-

tence. RNN with attention seems a good

fit for the characteristics of this task, and

indeed it achieves the state-of-the-art per-

formance. After re-examining the draw-

backs of attention mechanism and the ob-

stacles that block CNN to perform well in

this classification task, we propose a new

model to overcome these issues. Instead of

attention, our model employs a CNN layer

to extract salient features from the trans-

formed word representations originated

from a bi-directional RNN layer. Between

the two layers, we propose a component

to generate target-specific representations

of words in the sentence, meanwhile in-

corporate a mechanism for preserving the

original contextual information from the

RNN layer. Experiments show that our

model achieves a new state-of-the-art per-

formance on a few benchmarks.1

1 Introduction

Target-oriented (also mentioned as “target-level”

or “aspect-level” in some works) sentiment clas-

sification aims to determine sentiment polarities

over “opinion targets” that explicitly appear in the

sentences (Liu, 2012). For example, in the sen-

tence “I am pleased with the fast log on, and the

long battery life”, the user mentions two targets

∗The work was done when Xin Li was an intern at Ten-
cent AI Lab. This project is substantially supported by a grant
from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14203414).

1Our code is open-source and available at https://
github.com/lixin4ever/TNet

“log on” and “better life”, and expresses positive

sentiments over them. The task is usually formu-

lated as predicting a sentiment category for a (tar-

get, sentence) pair.

Recurrent Neural Networks (RNNs) with at-

tention mechanism, firstly proposed in machine

translation (Bahdanau et al., 2014), is the most

commonly-used technique for this task. For ex-

ample, Wang et al. (2016); Tang et al. (2016b);

Yang et al. (2017); Liu and Zhang (2017); Ma

et al. (2017) and Chen et al. (2017) employ atten-

tion to measure the semantic relatedness between

each context word and the target, and then use

the induced attention scores to aggregate contex-

tual features for prediction. In these works, the

attention weight based combination of word-level

features for classification may introduce noise and

downgrade the prediction accuracy. For example,

in “This dish is my favorite and I always get it

and never get tired of it.”, these approaches tend

to involve irrelevant words such as “never” and

“tired” when they highlight the opinion modifier

“favorite”. To some extent, this drawback is rooted

in the attention mechanism, as also observed in

machine translation (Luong et al., 2015) and im-

age captioning (Xu et al., 2015).

Another observation is that the sentiment of a

target is usually determined by key phrases such

as “is my favorite”. By this token, Convolu-

tional Neural Networks (CNNs)—whose capabil-

ity for extracting the informative n-gram features

(also called “active local features”) as sentence

representations has been verified in (Kim, 2014;

Johnson and Zhang, 2015)— should be a suitable

model for this classification problem. However,

CNN likely fails in cases where a sentence ex-

presses different sentiments over multiple targets,

such as “great food but the service was dreadful!”.

One reason is that CNN cannot fully explore the

target information as done by RNN-based meth-

https://github.com/lixin4ever/TNet
https://github.com/lixin4ever/TNet
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ods (Tang et al., 2016a).2 Moreover, it is hard

for vanilla CNN to differentiate opinion words of

multiple targets. Precisely, multiple active local

features holding different sentiments (e.g., “great

food” and “service was dreadful”) may be cap-

tured for a single target, thus it will hinder the pre-

diction.

We propose a new architecture, named Target-

Specific Transformation Networks (TNet), to

solve the above issues in the task of target senti-

ment classification. TNet firstly encodes the con-

text information into word embeddings and gener-

ates the contextualized word representations with

LSTMs. To integrate the target information into

the word representations, TNet introduces a novel

Target-Specific Transformation (TST) component

for generating the target-specific word representa-

tions. Contrary to the previous attention-based ap-

proaches which apply the same target representa-

tion to determine the attention scores of individual

context words, TST firstly generates different rep-

resentations of the target conditioned on individual

context words, then it consolidates each context

word with its tailor-made target representation to

obtain the transformed word representation. Con-

sidering the context word “long” and the target

“battery life” in the above example, TST firstly

measures the associations between “long” and in-

dividual target words. Then it uses the association

scores to generate the target representation con-

ditioned on “long”. After that, TST transforms

the representation of “long” into its target-specific

version with the new target representation. Note

that “long” could also indicate a negative senti-

ment (say for “startup time”), and the above TST

is able to differentiate them.

As the context information carried by the rep-

resentations from the LSTM layer will be lost

after the non-linear TST, we design a context-

preserving mechanism to contextualize the gen-

erated target-specific word representations. Such

mechanism also allows deep transformation struc-

ture to learn abstract features3. To help the CNN

feature extractor locate sentiment indicators more

accurately, we adopt a proximity strategy to scale

the input of convolutional layer with positional rel-

evance between a word and the target.

2One method could be concatenating the target represen-
tation with each word representation, but the effect as shown
in (Wang et al., 2016) is limited.

3Abstract features usually refer to the features ultimately
useful for the task (Bengio et al., 2013; LeCun et al., 2015).

In summary, our contributions are as follows:

• TNet adapts CNN to handle target-level senti-

ment classification, and its performance dominates

the state-of-the-art models on benchmark datasets.

• A novel Target-Specific Transformation com-

ponent is proposed to better integrate target infor-

mation into the word representations.

• A context-preserving mechanism is designed

to forward the context information into a deep

transformation architecture, thus, the model can

learn more abstract contextualized word features

from deeper networks.

2 Model Description

Given a target-sentence pair (wτ ,w), where

w
τ = {wτ

1 , w
τ
2 , ..., w

τ
m} is a sub-sequence of

w = {w1, w2, ..., wn}, and the corresponding

word embeddings xτ = {xτ1 , x
τ
2 , ..., x

τ
m} and x =

{x1, x2, ..., xn}, the aim of target sentiment clas-

sification is to predict the sentiment polarity y ∈
{P,N,O} of the sentence w over the target wτ ,

where P , N and O denote “positive”, “negative”

and “neutral” sentiments respectively.

The architecture of the proposed Target-

Specific Transformation Networks (TNet) is

shown in Fig. 1. The bottom layer is a BiLSTM

which transforms the input x = {x1, x2, ..., xn} ∈
R
n×dimw into the contextualized word represen-

tations h
(0) = {h

(0)
1 , h

(0)
2 , ..., h

(0)
n } ∈ R

n×2dimh

(i.e. hidden states of BiLSTM), where dimw

and dimh denote the dimensions of the word em-

beddings and the hidden representations respec-

tively. The middle part, the core part of our

TNet, consists of L Context-Preserving Transfor-

mation (CPT) layers. The CPT layer incorporates

the target information into the word representa-

tions via a novel Target-Specific Transformation

(TST) component. CPT also contains a context-

preserving mechanism, resembling identity map-

ping (He et al., 2016a,b) and highway connec-

tion (Srivastava et al., 2015a,b), allows preserving

the context information and learning more abstract

word-level features using a deep network. The top

most part is a position-aware convolutional layer

which first encodes positional relevance between

a word and a target, and then extracts informative

features for classification.

2.1 Bi-directional LSTM Layer

As observed in Lai et al. (2015), combining con-

textual information with word embeddings is an
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Figure 1: Architecture of TNet.

effective way to represent a word in convolution-

based architectures. TNet also employs a BiL-

STM to accumulate the context information for

each word of the input sentence, i.e., the bottom

part in Fig. 1. For simplicity and space issue, we

denote the operation of an LSTM unit on xi as

LSTM(xi). Thus, the contextualized word repre-

sentation h
(0)
i ∈ R

2dimh is obtained as follows:

h
(0)
i = [

−−−−→
LSTM(xi);

←−−−−
LSTM(xi)], i ∈ [1, n]. (1)

2.2 Context-Preserving Transformation

The above word-level representation has not con-

sidered the target information yet. Traditional

attention-based approaches keep the word-level

features static and aggregate them with weights

as the final sentence representation. In contrast,

as shown in the middle part in Fig. 1, we intro-

duce multiple CPT layers and the detail of a sin-

gle CPT is shown in Fig. 2. In each CPT layer,

a tailor-made TST component that aims at better

consolidating word representation and target rep-

resentation is proposed. Moreover, we design a

context-preserving mechanism enabling the learn-

ing of target-specific word representations in a

deep neural architecture.

2.2.1 Target-Specific Transformation

TST component is depicted with the TST block in

Fig. 2. The first task of TST is to generate the rep-

resentation of the target. Previous methods (Chen

Figure 2: Details of a CPT module.

et al., 2017; Liu and Zhang, 2017) average the em-

beddings of the target words as the target repre-

sentation. This strategy may be inappropriate in

some cases because different target words usually

do not contribute equally. For example, in the tar-

get “amd turin processor”, the word “processor”

is more important than “amd” and “turin”, because

the sentiment is usually conveyed over the phrase

head, i.e.,“processor”, but seldom over modifiers

(such as brand name “amd”). Ma et al. (2017) at-

tempted to overcome this issue by measuring the

importance score between each target word repre-

sentation and the averaged sentence vector. How-

ever, it may be ineffective for sentences expressing

multiple sentiments (e.g., “Air has higher resolu-

tion but the fonts are small.”), because taking the

average tends to neutralize different sentiments.

We propose to dynamically compute the impor-

tance of target words based on each sentence word

rather than the whole sentence. We first employ

another BiLSTM to obtain the target word repre-

sentations hτ ∈ R
m×2dimh :

hτj = [
−−−−→
LSTM(xτj );

←−−−−
LSTM(xτj )], j ∈ [1,m]. (2)

Then, we dynamically associate them with each

word wi in the sentence to tailor-make target rep-

resentation rτi at the time step i:

rτi =

m
∑

j=1

hτj ∗ F(h
(l)
i , hτj ), (3)

where the function F measures the relatedness be-

tween the j-th target word representation hτj and
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the i-th word-level representation h
(l)
i :

F(h
(l)
i , hτj ) =

exp (h
(l)⊤
i hτj )

∑m
k=1 exp (h

(l)⊤
i hτk)

. (4)

Finally, the concatenation of rτi and h
(l)
i is fed into

a fully-connected layer to obtain the i-th target-

specific word representation h̃i
(l)

:

h̃
(l)
i = g(W τ [h

(l)
i : rτi ] + bτ ), (5)

where g(∗) is a non-linear activation function and

“:” denotes vector concatenation. W τ and bτ are

the weights of the layer.

2.2.2 Context-Preserving Mechanism

After the non-linear TST (see Eq. 5), the con-

text information captured with contextualized rep-

resentations from the BiLSTM layer will be lost

since the mean and the variance of the features

within the feature vector will be changed. To take

advantage of the context information, which has

been proved to be useful in (Lai et al., 2015),

we investigate two strategies: Lossless Forward-

ing (LF) and Adaptive Scaling (AS), to pass the

context information to each following layer, as de-

picted by the block “LF/AS” in Fig. 2. Accord-

ingly, the model variants are named TNet-LF and

TNet-AS.

Lossless Forwarding. This strategy preserves

context information by directly feeding the fea-

tures before the transformation to the next layer.

Specifically, the input h
(l+1)
i of the (l+1)-th CPT

layer is formulated as:

h
(l+1)
i = h

(l)
i + h̃

(l)
i , i ∈ [1, n], l ∈ [0, L], (6)

where h
(l)
i is the input of the l-th layer and h̃

(l)
i

is the output of TST in this layer. We unfold the

recursive form of Eq. 6 as follows:

h
(l+1)
i = h

(0)
i +TST(h

(0)
i )+· · ·+TST(h

(l)
i ). (7)

Here, we denote h̃
(l)
i as TST(h

(l)
i ). From Eq. 7,

we can see that the output of each layer will con-

tain the contextualized word representations (i.e.,

h
(0)
i ), thus, the context information is encoded

into the transformed features. We call this strat-

egy “Lossless Forwarding” because the contex-

tualized representations and the transformed rep-

resentations (i.e., TST(h
(l)
i )) are kept unchanged

during the feature combination.

Adaptive Scaling. Lossless Forwarding intro-

duces the context information by directly adding

back the contextualized features to the trans-

formed features, which raises a question: Can

the weights of the input and the transformed fea-

tures be adjusted dynamically? With this motiva-

tion, we propose another strategy, named “Adap-

tive Scaling”. Similar to the gate mechanism in

RNN variants (Jozefowicz et al., 2015), Adaptive

Scaling introduces a gating function to control the

passed proportions of the transformed features and

the input features. The gate t
(l) as follows:

t
(l)
i = σ(Wtransh

(l)
i + btrans), (8)

where t
(l)
i is the gate for the i-th input of the l-th

CPT layer, and σ is the sigmoid activation func-

tion. Then we perform convex combination of h
(l)
i

and h̃
(l)
i based on the gate:

h
(l+1)
i = t

(l)
i ⊙ h̃

(l)
i + (1− t

(l)
i )⊙ h

(l)
i . (9)

Here, ⊙ denotes element-wise multiplication. The

non-recursive form of this equation is as follows

(for clarity, we ignore the subscripts):

h(l+1) = [

l
∏

k=0

(1− t(k))]⊙ h(0)

+[t(0)
l

∏

k=1

(1− t(k))]⊙ TST(h(0)) + · · ·

+t(l−1)(1− t(l))⊙ TST(h(l−1)) + t(l) ⊙ TST(h(l)).

Thus, the context information is integrated in

each upper layer and the proportions of the contex-

tualized representations and the transformed rep-

resentations are controlled by the computed gates

in different transformation layers.

2.3 Convolutional Feature Extractor

Recall that the second issue that blocks CNN to

perform well is that vanilla CNN may associate a

target with unrelated general opinion words which

are frequently used as modifiers for different tar-

gets across domains. For example, “service” in

“Great food but the service is dreadful” may be

associated with both “great” and “dreadful”. To

solve it, we adopt a proximity strategy, which is

observed effective in (Chen et al., 2017; Li and

Lam, 2017). The idea is a closer opinion word is

more likely to be the actual modifier of the target.
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# Positive # Negative # Neutral

LAPTOP
Train 980 858 454

Test 340 128 171

REST
Train 2159 800 632

Test 730 195 196

TWITTER
Train 1567 1563 3127

Test 174 174 346

Table 1: Statistics of datasets.

Specifically, we first calculate the position rel-

evance vi between the i-th word and the target4:

vi =











1− (k+m−i)
C i < k +m

1− i−k
C k +m ≤ i ≤ n

0 i > n

(10)

where k is the index of the first target word, C is a

pre-specified constant, and m is the length of the

target wτ . Then, we use v to help CNN locate the

correct opinion w.r.t. the given target:

ĥ
(l)
i = h

(l)
i ∗ vi, i ∈ [1, n], l ∈ [1, L]. (11)

Based on Eq. 10 and Eq. 11, the words close to

the target will be highlighted and those far away

will be downgraded. v is also applied on the in-

termediate output to introduce the position infor-

mation into each CPT layer. Then we feed the

weighted h
(L) to the convolutional layer, i.e., the

top-most layer in Fig. 1, to generate the feature

map c ∈ R
n−s+1 as follows:

ci = ReLU(w⊤
convh

(L)
i:i+s−1 + bconv), (12)

where h
(L)
i:i+s−1 ∈ R

s·dimh is the concatenated vec-

tor of ĥ
(L)
i , · · · , ĥ

(L)
i+s−1, and s is the kernel size.

wconv ∈ R
s·dimh and bconv ∈ R are learnable

weights of the convolutional kernel. To capture

the most informative features, we apply max pool-

ing (Kim, 2014) and obtain the sentence represen-

tation z ∈ R
nk by employing nk kernels:

z = [max(c1), · · · ,max(cnk
)]⊤. (13)

Finally, we pass z to a fully connected layer for

sentiment prediction:

p(y|wτ ,w) = Softmax(Wfz + bf ). (14)

where Wf and bf are learnable parameters.

4As we perform sentence padding, it is possible that the
index i is larger than the actual length n of the sentence.

3 Experiments

3.1 Experimental Setup

As shown in Table 1, we evaluate the proposed

TNet on three benchmark datasets: LAPTOP and

REST are from SemEval ABSA challenge (Pon-

tiki et al., 2014), containing user reviews in laptop

domain and restaurant domain respectively. We

also remove a few examples having the “conflict

label” as done in (Chen et al., 2017); TWITTER

is built by Dong et al. (2014), containing twitter

posts. All tokens are lowercased without removal

of stop words, symbols or digits, and sentences are

zero-padded to the length of the longest sentence

in the dataset. Evaluation metrics are Accuracy

and Macro-Averaged F1 where the latter is more

appropriate for datasets with unbalanced classes.

We also conduct pairwise t-test on both Accuracy

and Macro-Averaged F1 to verify if the improve-

ments over the compared models are reliable.

TNet is compared with the following methods.

• SVM (Kiritchenko et al., 2014): It is a tra-

ditional support vector machine based model

with extensive feature engineering;

• AdaRNN (Dong et al., 2014): It learns the

sentence representation toward target for sen-

timent prediction via semantic composition

over dependency tree;

• AE-LSTM, and ATAE-LSTM (Wang et al.,

2016): AE-LSTM is a simple LSTM model

incorporating the target embedding as input,

while ATAE-LSTM extends AE-LSTM with

attention;

• IAN (Ma et al., 2017): IAN employs two

LSTMs to learn the representations of the

context and the target phrase interactively;

• CNN-ASP: It is a CNN-based model imple-

mented by us which directly concatenates tar-

get representation to each word embedding;

• TD-LSTM (Tang et al., 2016a): It employs

two LSTMs to model the left and right con-

texts of the target separately, then performs

predictions based on concatenated context

representations;

• MemNet (Tang et al., 2016b): It applies

attention mechanism over the word embed-

dings multiple times and predicts sentiments
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Hyper-params
TNet-LF TNet-AS

LAPTOP REST TWITTER LAPTOP REST TWITTER

dimw 300 300

dimh 50 50

dropout rates (plstm, psent) (0.3, 0.3) (0.3, 0.3)

L 2 2

batch size 64 25 64 64 32 64

s 3 3

nk 50 100

C 40.0 30.0

Table 2: Settings of hyper-parameters.

based on the top-most sentence representa-

tions;

• BILSTM-ATT-G (Liu and Zhang, 2017):

It models left and right contexts using two

attention-based LSTMs and introduces gates

to measure the importance of left context,

right context, and the entire sentence for the

prediction;

• RAM (Chen et al., 2017): RAM is a multi-

layer architecture where each layer consists

of attention-based aggregation of word fea-

tures and a GRU cell to learn the sentence

representation.

We run the released codes of TD-LSTM and

BILSTM-ATT-G to generate results, since their

papers only reported results on TWITTER. We

also rerun MemNet on our datasets and evaluate

it with both accuracy and Macro-Averaged F1.5

We use pre-trained GloVe vectors (Pennington

et al., 2014) to initialize the word embeddings

and the dimension is 300 (i.e., dimw = 300).

For out-of-vocabulary words, we randomly sam-

ple their embeddings from the uniform distribu-

tion U(−0.25, 0.25), as done in (Kim, 2014). We

only use one convolutional kernel size because it

was observed that CNN with single optimal ker-

nel size is comparable with CNN having multiple

kernel sizes on small datasets (Zhang and Wallace,

2017). To alleviate overfitting, we apply dropout

on the input word embeddings of the LSTM and

the ultimate sentence representation z. All weight

matrices are initialized with the uniform distribu-

tion U(−0.01, 0.01) and the biases are initialized

5The codes of TD-LSTM/MemNet and BILSTM-ATT-
G are available at: http://ir.hit.edu.cn/˜dytang
and http://leoncrashcode.github.io. Note that
MemNet was only evaluated with accuracy.

as zeros. The training objective is cross-entropy,

and Adam (Kingma and Ba, 2015) is adopted as

the optimizer by following the learning rate and

the decay rates in the original paper.

The hyper-parameters of TNet-LF and TNet-

AS are listed in Table 2. Specifically, all hyper-

parameters are tuned on 20% randomly held-out

training data and the hyper-parameter collection

producing the highest accuracy score is used for

testing. Our model has comparable number of

parameters compared to traditional LSTM-based

models as we reuse parameters in the transforma-

tion layers and BiLSTM.6

3.2 Main Results

As shown in Table 3, both TNet-LF and TNet-AS

consistently achieve the best performance on all

datasets, which verifies the efficacy of our whole

TNet model. Moreover, TNet can perform well for

different kinds of user generated content, such as

product reviews with relatively formal sentences

in LAPTOP and REST, and tweets with more un-

grammatical sentences in TWITTER. The reason

is the CNN-based feature extractor arms TNet

with more power to extract accurate features from

ungrammatical sentences. Indeed, we can also ob-

serve that another CNN-based baseline, i.e., CNN-

ASP implemented by us, also obtains good results

on TWITTER.

On the other hand, the performance of those

comparison methods is mostly unstable. For the

tweet in TWITTER, the competitive BILSTM-

ATT-G and RAM cannot perform as effective as

they do for the reviews in LAPTOP and REST, due

to the fact that they are heavily rooted in LSTMs

and the ungrammatical sentences hinder their ca-

6All experiments are conducted on a single NVIDIA GTX
1080. The prediction cost of a sentence is about 2 ms.

http://ir.hit.edu.cn/~dytang
http://leoncrashcode.github.io
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Models
LAPTOP REST TWITTER

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Baselines

SVM 70.49♮ - 80.16♮ - 63.40∗ 63.30∗

AdaRNN - - - - 66.30♮ 65.90♮

AE-LSTM 68.90♮ - 76.60♮ - - -

ATAE-LSTM 68.70♮ - 77.20♮ - - -

IAN 72.10♮ - 78.60♮ - - -

CNN-ASP 72.46 65.31 77.82 65.11 73.27 71.77

TD-LSTM 71.83 68.43 78.00 66.73 66.62 64.01

MemNet 70.33 64.09 78.16 65.83 68.50 66.91

BILSTM-ATT-G 74.37 69.90 80.38 70.78 72.70 70.84

RAM 75.01 70.51 79.79 68.86 71.88 70.33

CPT Alternatives

LSTM-ATT-CNN 73.37 68.03 78.95 68.71 70.09 67.68

LSTM-FC-CNN-LF 75.59 70.60 80.41 70.23 73.70 72.82

LSTM-FC-CNN-AS 75.78 70.72 80.23 70.06 74.28 72.60

Ablated TNet

TNet w/o transformation 73.30 68.25 78.90 65.86 72.10 70.57

TNet w/o context 73.91 68.87 80.07 69.01 74.51 73.05

TNet-LF w/o position 75.13 70.63 79.86 69.69 73.83 72.49

TNet-AS w/o position 75.27 70.03 79.79 69.78 73.84 72.47

TNet variants
TNet-LF 76.01†,‡ 71.47†,‡ 80.79†,‡ 70.84‡ 74.68†,‡ 73.36†,‡

TNet-AS 76.54†,‡ 71.75†,‡ 80.69†,‡ 71.27†,‡ 74.97†,‡ 73.60†,‡

Table 3: Experimental results (%). The results with symbol“♮” are retrieved from the original papers, and

those starred (∗) one are from Dong et al. (2014). The marker † refers to p-value < 0.01 when comparing

with BILSTM-ATT-G, while the marker ‡ refers to p-value < 0.01 when comparing with RAM.

pability in capturing the context features. Another

difficulty caused by the ungrammatical sentences

is that the dependency parsing might be error-

prone, which will affect those methods such as

AdaRNN using dependency information.

From the above observations and analysis, some

takeaway message for the task of target sentiment

classification could be:

• LSTM-based models relying on sequential

information can perform well for formal sen-

tences by capturing more useful context fea-

tures;

• For ungrammatical text, CNN-based mod-

els may have some advantages because CNN

aims to extract the most informative n-gram

features and is thus less sensitive to informal

texts without strong sequential patterns.

3.3 Performance of Ablated TNet

To investigate the impact of each component such

as deep transformation, context-preserving mech-

anism, and positional relevance, we perform com-

parison between the full TNet models and its abla-

tions (the third group in Table 3). After removing

the deep transformation (i.e., the techniques intro-

duced in Section 2.2), both TNet-LF and TNet-

AS are reduced to TNet w/o transformation (where

position relevance is kept), and their results in both

accuracy and F1 measure are incomparable with

those of TNet. It shows that the integration of tar-

get information into the word-level representations

is crucial for good performance.

Comparing the results of TNet and TNet w/o

context (where TST and position relevance are

kept), we observe that the performance of TNet

w/o context drops significantly on LAPTOP and

REST7, while on TWITTER, TNet w/o context

performs very competitive (p-values with TNet-

LF and TNet-AS are 0.066 and 0.053 respec-

tively for Accuracy). Again, we could attribute

this phenomenon to the ungrammatical user gen-

erated content of twitter, because the context-

preserving component becomes less important for

such data. TNet w/o context performs consistently

better than TNet w/o transformation, which veri-

fies the efficacy of the target specific transforma-

tion (TST), before applying context-preserving.

As for the position information, we conduct

statistical t-test between TNet-LF/AS and TNet-

LF/AS w/o position together with performance

comparison. All of the produced p-values are

less than 0.05, suggesting that the improvements

brought in by position information are significant.

7Without specification, the significance level is set to 0.05.
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3.4 CPT versus Alternatives

The next interesting question is what if we replace

the transformation module (i.e., the CPT layers in

Fig.1) of TNet with other commonly-used compo-

nents? We investigate two alternatives: attention

mechanism and fully-connected (FC) layer, result-

ing in three pipelines as shown in the second group

of Table 3 (position relevance is kept for them).

LSTM-ATT-CNN applies attention as the al-

ternative8, and it does not need the context-

preserving mechanism. It performs unexception-

ally worse than the TNet variants. We are sur-

prised that LSTM-ATT-CNN is even worse than

TNet w/o transformation (a pipeline simply re-

moving the transformation module) on TWITTER.

More concretely, applying attention results in neg-

ative effect on TWITTER, which is consistent

with the observation that all those attention-based

state-of-the-art methods (i.e., TD-LSTM, Mem-

Net, BILSTM-ATT-G, and RAM) cannot perform

well on TWITTER.

LSTM-FC-CNN-LF and LSTM-FC-CNN-AS

are built by applying FC layer to replace TST

and keeping the context-preserving mechanism

(i.e., LF and AS). Specifically, the concatena-

tion of word representation and the averaged tar-

get vector is fed to the FC layer to obtain target-

specific features. Note that LSTM-FC-CNN-

LF/AS are equivalent to TNet-LF/AS when pro-

cessing single-word targets (see Eq. 3). They ob-

tain competitive results on all datasets: compara-

ble with or better than the state-of-the-art methods.

The TNet variants can still outperform LSTM-

FC-CNN-LF/AS with significant gaps, e.g., on

LAPTOP and REST, the accuracy gaps between

TNet-LF and LSTM-FC-CNN-LF are 0.42% (p <

0.03) and 0.38% (p < 0.04) respectively.

3.5 Impact of CPT Layer Number

As our TNet involves multiple CPT layers, we in-

vestigate the effect of the layer number L. Specif-

ically, we conduct experiments on the held-out

training data of LAPTOP and vary L from 2 to

10, increased by 2. The cases L=1 and L=15 are

also included. The results are illustrated in Fig-

ure 3. We can see that both TNet-LF and TNet-

AS achieve the best results when L=2. While in-

creasing L, the performance is basically becoming

worse. For large L, the performance of TNet-AS

8We tried different attention mechanisms and report the
best one here, namely, dot attention (Luong et al., 2015).
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Figure 3: Effect of L.

generally becomes more sensitive, it is probably

because AS involves extra parameters (see Eq 9)

that increase the training difficulty.

3.6 Case Study

Table 4 shows some sample cases. The input tar-

gets are wrapped in the brackets with true labels

given as subscripts. The notations P, N and O

in the table represent positive, negative and neu-

tral respectively. For each sentence, we under-

line the target with a particular color, and the

text of its corresponding most informative n-gram

feature9 captured by TNet-AS (TNet-LF captures

very similar features) is in the same color (so color

printing is preferred). For example, for the target

“resolution” in the first sentence, the captured fea-

ture is “Air has higher”. Note that as discussed

above, the CNN layer of TNet captures such fea-

tures with the size-three kernels, so that the fea-

tures are trigrams. Each of the last features of the

second and seventh sentences contains a padding

token, which is not shown.

Our TNet variants can predict target sentiment

more accurately than RAM and BILSTM-ATT-G

in the transitional sentences such as the first sen-

tence by capturing correct trigram features. For

the third sentence, its second and third most infor-

mative trigrams are “100% . PAD” and “’ s not”,

being used together with “features make up”, our

models can make correct predictions. Moreover,

TNet can still make correct prediction when the

explicit opinion is target-specific. For example,

9For each convolutional filter, only one n-gram feature in
the feature map will be kept after the max pooling. Among
those from different filters, the n-gram with the highest fre-
quency will be regarded as the most informative n-gram w.r.t.
the given target.
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Sentence BILSTM-ATT-G RAM TNet-LF TNet-AS

1. Air has higher [resolution]P but the [fonts]N are small . (N✗, N) (N✗, N) (P, N) (P, N)

2. Great [food]P but the [service]N is dreadful . (P, N) (P, N) (P, N) (P, N)

3. Sure it ’ s not light and slim but the [features]P make up

for it 100% .
N✗ N✗ P P

4. Not only did they have amazing , [sandwiches]P , [soup]P

, [pizza]P etc , but their [homemade sorbets]P are out of this

world !

(P, O✗, O✗, P) (P, P, O✗, P) (P, P, P, P) (P, P, P, P)

5. [startup times]N are incredibly long : over two minutes . P✗ P✗ N N

6. I am pleased with the fast [log on]P , speedy [wifi

connection]P and the long [battery life]P ( > 6 hrs ) .
(P, P, P) (P, P, P) (P, P, P) (P, P, P)

7. The [staff]N should be a bit more friendly . P✗ P✗ P✗ P✗

Table 4: Example predictions, color printing is preferred. The input targets are wrapped in brackets with

the true labels given as subscripts. ✗ indicates incorrect prediction.

“long” in the fifth sentence is negative for “startup

time”, while it could be positive for other targets

such as “battery life” in the sixth sentence. The

sentiment of target-specific opinion word is con-

ditioned on the given target. Our TNet variants,

armed with the word-level feature transformation

w.r.t. the target, is capable of handling such case.

We also find that all these models cannot give

correct prediction for the last sentence, a com-

monly used subjunctive style. In this case, the dif-

ficulty of prediction does not come from the de-

tection of explicit opinion words but the inference

based on implicit semantics, which is still quite

challenging for neural network models.

4 Related Work

Apart from sentence level sentiment classifica-

tion (Kim, 2014; Shi et al., 2018), aspect/target

level sentiment classification is also an impor-

tant research topic in the field of sentiment analy-

sis. The early methods mostly adopted supervised

learning approach with extensive hand-coded fea-

tures (Blair-Goldensohn et al., 2008; Titov and

McDonald, 2008; Yu et al., 2011; Jiang et al.,

2011; Kiritchenko et al., 2014; Wagner et al.,

2014; Vo and Zhang, 2015), and they fail to model

the semantic relatedness between a target and its

context which is critical for target sentiment anal-

ysis. Dong et al. (2014) incorporate the target in-

formation into the feature learning using depen-

dency trees. As observed in previous works, the

performance heavily relies on the quality of de-

pendency parsing. Tang et al. (2016a) propose to

split the context into two parts and associate tar-

get with contextual features separately. Similar to

(Tang et al., 2016a), Zhang et al. (2016) develop a

three-way gated neural network to model the in-

teraction between the target and its surrounding

contexts. Despite the advantages of jointly mod-

eling target and context, they are not capable of

capturing long-range information when some crit-

ical context information is far from the target. To

overcome this limitation, researchers bring in the

attention mechanism to model target-context as-

sociation (Tang et al., 2016a,b; Wang et al., 2016;

Yang et al., 2017; Liu and Zhang, 2017; Ma et al.,

2017; Chen et al., 2017; Zhang et al., 2017; Tay

et al., 2017). Compared with these methods, our

TNet avoids using attention for feature extraction

so as to alleviate the attended noise.

5 Conclusions

We re-examine the drawbacks of attention mecha-

nism for target sentiment classification, and also

investigate the obstacles that hinder CNN-based

models to perform well for this task. Our TNet

model is carefully designed to solve these issues.

Specifically, we propose target specific transfor-

mation component to better integrate target infor-

mation into the word representation. Moreover,

we employ CNN as the feature extractor for this

classification problem, and rely on the context-

preserving and position relevance mechanisms to

maintain the advantages of previous LSTM-based

models. The performance of TNet consistently

dominates previous state-of-the-art methods on

different types of data. The ablation studies show

the efficacy of its different modules, and thus ver-

ify the rationality of TNet’s architecture.
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