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TRANSFORMATION OF A CLASS

OF NON-SELF-ADJOINT EIGENVALUE PROBLEMS

D. R. K. S. RAO AND K. N. MURTY

Abstract. A class of non-self-adjoint boundary value problems possessing counta-

bly many real eigenvalues can be made self-adjoint by means of a nonsingular

transformation. A set of criteria for such problems to be self-adjoint is derived.

1. Introduction. Non-self-adjoint eigenvalue problems occur both in mathemati-

cal and physical problems. Solving non-self-adjoint eigenvalue problems is usually

very difficult involving tedious calculations in complex analysis. The eigenvalues

for a non-self-adjoint boundary value problem need not be real, may be finite or

infinite and in some cases may not exist at all. But for a self-adjoint problem there

are countably many real eigenvalues, and the éigenfunction expansion becomes

simple and standard.

The fact that any scalar linear differential operator of second order can be made

self-adjoint [2] on multiplication by a suitable factor suggests that certain boundary

value problems involving matrix differential operators can be transformed by

means of a nonsingular transformation into a self-adjoint boundary value problem.

For such problems the theory of self-adjoint boundary value problems can be

profitably applied instead of using the theory of non-self-adjoint boundary value

problems.

§2 deals with a set of criteria under which a given eigenvalue problem can be

transformed into a self-adjoint eigenvalue problem, whereas §3 analyzes the condi-

tions deduced in §2 on the constant nonsingular skew-Hermitian matrix C. Specific

examples are given in each section.

2. Transformation of eigenvalue problems. In this section, we consider the general

first order matrix differential equation

L(y) = P(t)y' + Q(t)y = Ay,        (a < / < b),

where P(t) e C2, Q(t) G C1 are square matrices of order n, P(t) being nonsingu-

lar, y is a column matrix with components (v„ y2, . . . ,yn), A is a scalar parameter,

and (a, b) is a finite interval.

A, B and T stand for (n X n) matrix functions of /. Y stands for a fundamental

matrix of v' = Ay, Z stands for a fundamental matrix of v' = -B*y (B* is the

transposed complex conjugate matrix of B).
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Theorem 2.1. T is a solution of T = AT - TB if and only ifT= YCZ* where C

is a constant matrix.

Proof. It is easily verified that YCZ* is a solution of 7" = AT - TB. Now to

prove that every solution is of this form, let T be a solution and K be defined by

K = YXT. Then Y'K + YK' = AYK - YKB or K*' = -B*K*. Since Z is a

fundamental matrix of y' = -B*y, it follows that there exists a constant matrix C

such that K* = ZC* or T = YCZ*.

Theorem 2.2. Let A = -(PXQ) and B = (P*~XQ* - P*~XP*'). Then W is a

fundamental matrix of y' = By if and only if S = p~xW*~x is a fundamental matrix

ofy' = Ay.

Proof. The proof can be verified directly.

Definition 2.1. We shall say that the equation L(y) = Xy, a < t < b, can be

transformed into a self-adjoint equation by the nonsingular (n X n) matrix-valued

function F if

Lx(z) = T~xL(Tz) = Xz

is a self-adjoint equation, and we shall say that the eigenvalue problem,

L(y) = Ay,       My(a) + Ny(b) = 0,

can be transformed into a self-adjoint eigenvalue problem by F if the problem

Lx(z) = Xz,       MT(a)z(a) + NT(b)z(b) = 0

is self-adjoint.

Theorem 2.3. If A, B are as in Theorem 2.2, then the general solution of

T' = AT — TB is of the form YC*Y*P*, where C is a constant matrix.

Proof. It is easily verified that YC*Y*P* is a solution of T = AT - TB.

Further, if T is any solution of T = AT- TB, then K = Y~XT satisfies K*' =

-B*K*. By Theorem 2.2, it follows that there exists a constant matrix C such that

K* = PYC and hence T = YC* Y*P*.

Theorem 2.4. The (differential) equation

L(y) = P(t)y' + Q(t)y = Xy       (P*I),a<t<b,

is transformed into a self-adjoint equation if and only if there exists a constant

nonsingular skew-Hermitian matrix C such that  YC*Y*P* is a positive definite

Hermitian matrix.

Proof. Let the equation be transformed into a self-adjoint equation by means of

a nonsingular matrix. Then

Lx(z) = T~xL(Tz) = (TxPT)z' + (TXPT' + TxQT)z = Xz

is self-adjoint if and only if

(T~XPT)* = - (TXPT) (2.1)

and

(T-XPT)' = (TXPT) + (TXQT) - (T~XPT)* - (T~XQT)*. (2.2)
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Equations (2.1) and (2.2) are equivalent to

(PR)* = -(PR), (2.1')

R' = AR - RB, (2.2')

where A = -(P~XQ), B = (P*~XQ* - p*~xp*') and R = TT*. Therefore Theorem

2.3 implies that R = YC*Y*P* for some constant matrix C (2.1') shows that C is

skew-Hermitian and, since T is nonsingular, R = TT* = YC*Y*P* is a positive

definite Hermitian matrix.

Conversely, if there exists a constant nonsingular skew-Hermitian matrix C such

that R = YC*Y*P* is a positive definite Hermitian matrix, then defining T by

R = TT* it is evident that L, is self-adjoint.

Here it is interesting to note from (2.1) that if F is an identity matrix there will

not exist such a nonsingular matrix T transforming L(y) into self-adjoint form.

Theorem 2.5. Let Y be a fundamental matrix of y' = Ay, A = -(P~XQ) and let

(M: N) be an (n X 2n) matrix of rank n. The eigenvalue problem

L(y) = P(t)y' + Q(t)y = Ay,       My(a) + Ny(b) = 0 (2.3)

can be transformed into a self-adjoint eigenvalue problem by a nonsingular matrix T if

and only if there exists a constant nonsingular skew-Hermitian matrix C such that

YC*Y*P* is a positive definite Hermitian matrix and

MY(a)CY*(a)M* = NY(b)CY*(b)N*.

Proof. The transformed problem is

Lx(z) = Pxz' + P2z = Xz,       Mxz(a) + Nxz(b) = 0, (2.4)

where Px = (TXPT), P2 = (T~XPT + TXQT), Mx = MT(a), Nx = NT(b). It is

well known [1, p. 291] that (2.4) is self-adjoint if and only if Lx(z) = Xz is

self-adjoint (so that from Theorem 2.4, we have YC*Y*P* is a positive definite

Hermitian matrix), and MxPx\a)M^ = NxPxx(b)N\*. The equalities TT* =

YC*Y*P*, MxPx-x(a)M\* = NxPx-x(b)N\* imply that

MY(a)CY*(a)M* = NY(b)CY*(b)N*. (2.5)

Conversely, if there exists a constant nonsingular skew-Hermitian matrix C such

that YC* Y*P* is a positive definite Hermitian matrix and MY(a)CY*(a)M* =

NY(b)CY*(b)N*, then defining T by TT* = YC* Y*P*, it is easy to verify that T

transforms the problem (2.3) into a self-adjoint problem.

We use the following notation.

Diag(au, a22) = \" ,       Off Diag(a12, a2x) =
\ 0 a22J \a:

Then any (2 X 2) matrix A can be written in the form

A = Diag(a,„ a22) + Off Diag(a,2, a2X).

To illustrate the theorems of this section we consider the problem

L(y) = Off Diag(l, -^)y' + Diag(-1, l)v = Ay,

Diag(l, l)y(a) + Off Diag(l, -l)y(b) = 0. (2.6)
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A fundamental matrix for y' = Off Diag(-4, -l)v is given by Y(t) =

Diag(2e2', e~2') + Off Diag(2e 2', -e2'). Also C = Off Diag(-1, 1) is a constant

nonsingular skew-Hermitian matrix satisfying the self-adjointness condition (2.5).

T = Diag(2, 1) satisfies the condition TT* = YC* Y*P*.

The transformed eigenvalue problem

Lx(z) = Off Diag(i, -x2)z' + Diag(-1, \)z = Xz,

Diag(2, l)z(a) + Off Diag(l, -2)z(¿>) = 0

is a self-adjoint problem.

It may be noted that the problems (2.3) and (2.4) have the same infinite number

of real eigenvalues (since F is a nonsingular matrix). The problem (2.3) does not

satisfy the self-adjointness condition but still possesses countably many real eigen-

values.

3. Classification of the matrix C. In this section we give the general form of a

constant nonsingular skew-Hermitian matrix C for which (i) YC*Y*P* is a

Hermitian matrix (Corollary 3.2) and derive a condition under which C can be

chosen to satisfy (ii) MY(a)CY*(a)M* = NY(b)CY*(b)N* (Theorem 3.2). From

(i) it follows that YC* Y*P* = PYCY*, which can be put in the form

GC = -CG* (3.1)

where G = (Y~XPY) is a known matrix of order n. First we write down the

elementary divisors of G in the field of complex numbers.

(G): (X - Xx)^\ (X - X2)^, . . . , (A - Au)°,->       (/», + p2 + ■ • • +pu = n).

In accordance with these elementary divisors we reduce G and G* to Jordan

normal form [3, p. 215],

G=UGUX    and   G* = U*XG*U*, (3.2)

where U is a nonsingular matrix and G and G* are Jordan matrices:

G(t) = {XxI(Pi) + H{Pt), A2/(/>2) + HiPi), . . ., \Itpj + H{pJ),

G*(') = (Mo»,) + "(,,)' Vo>2) + »w- ..V. V(,„) + #(*)}•        (3-3)
Replacing G and G* by their expressions given in (3.2), we get

GC = -CG* (3.4)

where C = U~XCU*~X.

We now partition C into u2 blocks corresponding to the quasidiagonal form of

the matrices G and G*.

C = (Caß)       (« - 1, 2,...,«; fi - 1, 2,.... «),

where Caß is of order (Pa X pß), pr being the multiplicity of \.

Using the rule of multiplication of a partitioned matrix by a quasidiagonal one

and carrying out multiplication of (3.4), this equation splits up into u2 matrix

equations

[Khp.) +  H(P.)]Caß  " -Caß[hhpfi) + H(Pß)\

(a - 1, 2, . . . , u; ß = 1, 2, . . ., u),
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which we rewrite as

(K + h)Caß = -[H(pJCaß + CaßH(Pß)]. (3.5)

Let us take one of the equations (3.5). Two cases arise [3].

(i) If Aa ¥■ -X&, then Caß - 0.

(ii) If A„ = -Xß, then an arbitrary regular upper triangular matrix C^ satisfies

the equation. For the structure of Caß see [3, p. 218].

Theorem 3.1. Let Cx, C2, . . ., CN be N linearly independent solutions of the

matrix equation (3.1). Then any solution of the matrix equation (3.1) in C is given by

C = 2 dj Cj (3.6)
y'-i

where dx, d2, . . ., dN are N parameters (Cj is obtained from C by giving dj the value 1

and the remaining parameters the value 0;j= 1, 2, . . ., N), and N is determined by

N = 2^3_. 8aß where 8aß = min(pa,pß).

Proof. The proof is similar to the proof of Theorem 1 in [3, p. 219].

Corollary 3.1. A necessary and sufficient condition for C to represent a constant

matrix is that the djs in (3.6) are constant.

Corollary 3.2. The general form of C to represent a constant nonsingular

skew-Hermitian matrix is given by C = i(Caß), a, ß = 1, 2, . . ., u, where C^ is a

scalar matrix with real diagonal elements daß which is 0ifpa ¥=pß.

Substituting the general form of a constant nonsingular skew-Hermitian matrix

C in the self-adjoint boundary condition and splitting MY(a) and NY(b) into u2

blocks corresponding to the splitting of the matrix C into Caß (a =1, 2, ...,«;

ß = 1, 2, ...,«), we get the system of equations Ax = 0, where

A = af/1 = /-Xlrw. - s^Stf       (i,j = 1, 2, . . . , u; X, u = 1, 2, .. ., u),

x   = («u, dX2, . . ., dXu, d2x, . . ., d2u, . . . , duX, . . ., «„J,

MY(a) = (raß)    and   NY(b) = (saß)       (a = 1, 2, . .. , u; ß = 1, 2, . . . , «).

Hereafter we use the following notation:

x = (dxx, dX2, . . . , dXu, d2x, . . ., d2u, . . ., duX, . . ., dm)      and   X = (daß)

where daß are real (a = 1, 2, . . . , u; ß = 1, 2,. . ., u).

Theorem 3.2. Let A be a (u2 X u2) matrix over the field of complex numbers and

\A\ — 0. Every nontrivial solution of Ax = 0 has the property |A'| =7^= 0 if and only if

there exists x0 G E" such that \X^ ¥= 0 and row space of A is equal to the orthogonal

complement of S = {ax0/a G C} in E  .

Proof. Suppose every nontrivial solution of Ax = 0 has the property |A"| =^0.

Then the solution space of Ax = 0 is one dimensional because if x, and x2 are

linearly independent solutions with lA',! ¥= 0 and \X2\ =£ 0 then there exists an

a G C such that \XX + aX2\ = 0 and (x, -I- axj) is a nontrivial solution. Let x0 be
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the basis of the solution space of Ax = 0. Since p(A) = u — 1, clearly the row

space of A is equal to the orthogonal complement of S in F  .

Conversely, suppose there exists a vector x0 such that \X0\ ¥=0 and the row space

of A is the orthogonal complement of S. Then x^O, ^4x = 0=*x = ax0 for some

scalar a => \X\ = (a)u\X0\ ¥= 0.

To illustrate the theorems of this section, we consider the non-self-adjoint

eigenvalue problem

L(y) = Off Diag(-e"2', 4e"2').y' + Off Diag(«r2', -4e~2')y = 0,

[Diag(l, 0) + Off Diag(l, 0)] y (a) + [Diag(0, 1) + Off Diag(0, l)]y(b) = 0.

(3.7)

A fundamental matrix for v' = Diag(l, 1) is given by Y(t) = Diag(e', e'). There-

fore G = Y~XPY = Off Diag(-e"2', 4e-2'). The elementary divisors of G and G* are

(G): (A - 2ie-2'), (A + 2/e"2'),   (G*): (A + 2/e"2'), (A - 2/e-2').

In accordance with these elementary divisors we reduce G and G* into Jordan

normal form

G = UGU1,       G* = U*~XG* U*,

where U = Diag(/, 1) + Off Diag(l/2/, 2). Let

C = DiagiC,,, C22) + Off Diag(C12, C2X).

Then from condition (3.4) we get

[Diag(2«T2', -2/e-2')][Diag(CM, C22) + Off Diag(C12, C21)]

= -[Diag(C,,, C22) + Off Diag(C12, C21)][Diag(-2/e-2', 2/e-2')].

Solving for C, we get C,2 = C2, = 0. Since C has to be a constant nonsingular

skew-Hermitian matrix, it follows that the general form of C is Diag(idM, id^.

Substituting this in the self-adjointness condition and expanding we get the system

of equations Ax = 0. There is a nontrivial solution dxx, d22 ¥= 0 satisfying the

condition |A^| ̂ = 0.

The authors are grateful for the criticisms and suggestions of the referee which

resulted in the improvement of this paper.
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