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TRANS FORMATION OF CLAY MINERALS BY CALCIUM HYDROXIDE ATTACK

by

SIDNEY DIAMOND -
, JOE L. WHITE, and W. L. DOLCH

Purdue University, Lafayette, Indiana

ABSTRACT

Calcium hydroxide was allowed to react with various clays and

other silicates at slightly elevated temperatures for several months.

The reaction products were examined by x-ray, DTA, and electron

microscopy, and were shown to be poorly-crystallized calcium silicate

hydrates of the tobermorite family and calcium aluminate hydrates.

Quaternary phases were not detected, but some isomorphous substitution

probably occurs. The extent of reaction was shown to be such that

under appropriate conditions almost all of the clay mineral was de-

composed. Electron micrographs of the reacted materials indicated

that attack occurred from the edges of the particles, and in general

the remaining unattacked portion of the clay did not suffer apprec-

iable loss of crystallinity. It was postulated that the reaction

involves progressive dissolution of the mineral at the 'edges of the

particles in the strongly basic environment maintained by calcium

hydroxide solution, followed by separate precipitation of the reaction

products.

In these experiments the calcium silicate hydrate generated

by the reaction between lime and quartz was uniformly CSH(gel);

reaction with kaolinite and montmorillonite produced either CSH(gel)

or CSH(l) depending on the conditions of the reaction. At 60 C the

1/ Present address: Materials Research Division, Bureau of Public
Roads, U. S. Department of Commerce, Washington 25, D. C.
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alumina-bearing phase was tricalcium aluminate hexahydrate; at lower

temperature the phase produced was a hexagonal material closely

resembling ^CaO.Al 0_.13H_0 but retaining a constant 7-6A. basal

spacing regardless of its state of wetness or dryness.

It was found that under appropriate conditions the formation

of CSH(l) resulted in as effective a cementation as did the formation

of CSH(gel).

INTRODUCTION

Soil engineers have known for many years that treatment of

many clay soils with relatively small amounts of calcium hydroxide

followed by appropriate compaction and curing produces a highly-

cemented material with considerable strength and resistance to the

deleterious effects of moisture. The use of lime as a practical soil

stabilizing agent is now widespread in the 'highway construction field,

but until recently almost nothing was known of the mechanism of the,

stabilizing reaction, and little about the nature of the reaction

products. Eades and Grim (i960) suggested that the reactions occur

in three steps: exchange of calcium ions for those held by the cl%y,

formation of new minerals, and finally the carbonation of any excess

lime. The new minerals formed in their experiments were tentatively

identified as calcium silicate hydrates resembling tobermorite, but

little detailed information was available as to the specific phases

formed. Hilt and Davidson (1961) reported the isolation of a reaction

product of lime and montmorillonite in comparatively large crystals.

Their x-ray study suggested that this product was isostructural with

tetracalcium aluminate hydrate, but their analytical results showed

that it contained considerably more silica than alumina. More recently



Glenn and Handy (1963) reacted calcium hydroxide and several other

varieties of lime with clay minerals; the products reported included

a "10 A tobermorite", tetracalcium aluminate hydrates (<?< and A

C^AIL-) and several other products that they could not conclusively

identify.

The designations used by various investigators for the known

tobermorite-like calcium silicate hydrate phases are conflicting,

but four phases are now generally recognized: tobermorite (a well

crystallized mineral readily prepared by hydrothermal means) and

three poorly crystallized phases designated by Taylor (1961) as

CSH(l), CSH(ll), and CSH(gel). The latter phase, which is the

cementing agent of portland cement concrete, is also called "tobermorite

(G)" (Brunauer and Greenberg, I962). Recent reviews including

information on these phases have been published by Taylor (I96I)

and by Brunauer and Greenberg (1962).

In contrast to most of these calcium silicate hydrates, the

calcium aluminate hydrates are generally well-crystallized. Proper

names are not available for most of the phases, the materials usually

being referred to by an abbreviated compositional notation; that is

the particular oxide composition of a phase is expressed by the first

letter of the name of the metal and an appropriate subscript denoting

the number of moles present. Thus, the compound tricalcium aluminate

hexahydrate is referred to as C AH., etc. C_ABV, a cubic phase, is3d -5 °

readily identified by its characteristic x-ray powder pattern. A

number of hexagonal and psuedohexagonal phases also occur, mostly

based on the compositions C.AH._ and C^AHq. Identification of these

phases is complicated by the existence of polymorphic varieties, by



the general similarity of powder patterns of different members of

the group, by the frequent occurrence of stacking variations that

cause small differences in the powder patterns of different specimens

of the same material, by the occurrence of solid solution between

the end members, by the likelihood of isomorphous replacement involving

C0_, Si, and other ions, and by the ready transformation of some of

these phases into others. A useful review of this complex subject

has been given by Jones (1962).
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EXPERIMENTAL

Materials

Reactions of calcium hydroxide with clays and other silicates

were carried out under three sets of experimental conditions, involving,

respectively, compacted solid mixtures, slurries, and dilute suspensions.

In each instance freshly-opened Mallinckrodt AR grade Ca(OH)
p
was used.



- 5 -

Experiment 1, in which compacted solid mixtures of the reactants

were employed, involved four different silicates as follows:

(a) Quartz - "No. 290 Ground Silica", Ottawa Silica
Co. The material passed 270 mesh; essentially all
of the small content of clay-sized particles was
removed for use in Experiment 2.

(b) Kaolinite - "Hydrite 10" grade, Georgia Kaolin Co.;
average particle diameter stated to be 0-5 microns.

(c) Montmorillonite - "Volclay" brand Wyoming bentonite,
American Colloid Co., Passing 270 mesh.

(d) Pyrophyllite - Hemp, N. Car., supplied by Ward's
Natural Science Establishment. The massive material
supplied was carefully ground to pass 270 mesh size, and
and the small content of clay size particles was
removed for use in Experiment 2.

Examination of these materials for impurities disclosed that

the quartz and the kaolinite were essentially pure, that the

montmorillonite contained the usual quartz impurities and perhaps

others, and that the pyrophyllite contained small amounts of quartz

and mica.

Experiment 2, involving mixtures of the reactants in slurry

form was carried out with a total of seven materials. Each of these

was a relatively pure mineral carefully fractionated by centrifuge

methods to contain particles less than 2 microns e.s.d., and subse-

quently calcium-saturated, washed, dried at 110 C, and powdered.

The clays were as follows:

a) Quartz - the clay-size fraction from the Ottawa silica
material previously mentioned.

b) Kaolinite - Bath, S. Car. (sample H-5 of the A.P.I.
reference collection).

c) Montmorillonite - Otay, Calif, (sample H-2^ of the
A.P.I, reference collection).

d) Pyrophyllite - Hemp, N. Car. - the clay-size fraction
from the pyrophyllite previously mentioned.



e) Illite - Beaver's Bend, Okla. - Reference specimen
supplied by the Oklahoma Geological Survey
and characterized by Mankin and Dodd (1963)-

f) Mica - "Delamica" a delaminated muscovite characterized
by White (1956, p. 135).

g) Talc - U.S.P. talc supplied by the Purdue University
Pharmacy; origin unknown.

Experiment 3» a reaction carried out with rlie reactants in dilute

suspension, was performed with only a single clay, the Bath kaolinite

used in part of Experiment 2.

Reaction Conditions

Experiment 1 . — In the first experiment, 25 g of air-dried

silicate material were mixed in the dry state with 10 g of Ca(0H)
p

.

A 20 ml portion of previously-boiled distilled water was then added

and the wetted material was thoroughly mixed. After achieving a

homogeneous mixture the moist solid material was then compacted by

hand into a rigid plastic container. A tight-fitting plastic disc

was then pressed into position immediately above the mixture, and

about 10 ml of distilled water added above the disc as a C0_ barrier.

The lid of the container was then fastened into place and sealed

with plastic electrical tape. The sealed containers were then placed

in a steam cabinet maintained at approximately 60 C, and allowed to

remain without disturbance for 55 days.

Experiment 2 —The second experiment involved the following

++
procedure: A 1 g portion of each Ca saturated clay-size fraction

was mixed with h g of Ca(0H)_, and the dry mixture was placed in

a 50 ml polyethylene centrifuge tube. The tube was filled with

previously-boiled distilled water, closed with a tight-fitting closure,

and sealed with plastic electrical tape. After hand shaking to disperse



- 7 -

and mix the resulting slurry, the tubes were mounted horizontally

on a reciprocating shaker in such a fashion that the long axes of

the tubes were parallel to the direction of motion of the shaker.

The shaking apparatus was then mounted inside an air bath regulated

at lj-5°C ( t 1 ). The shaker was programmed to operate continuously

except for a 90 minute rest period every eight hours, and this

regime was maintained for a period of 60 days.

Experiment 3 « — In this experiment, 5 S of fcbe fractionated

Ca saturated Bath kaolinite were mixed with an equal weight of

Ca(0H)_, suspended in 150 ml of previously-boiled distilled water,

and sealed in a plastic container. The container was mounted near

the rim of a 22- inch diameter wooden wheel that was in turn mounted

on a shaft so that it could be rotated continuously by a small electric

motor. The speed of rotation was regulated at approximately 30 rpm,

and the entire apparatus was kept in a constant temperature room at

23°C ( 4 1°). Reaction was allowed to proceed under these conditions

for a period of 6 months.

Methods of Examination of Reacted Mixtures

The products of the several reactions were examined by x-ray

diffraction, OTA, and electron microscopic methods, and surface areas

were determined for a few of them.

X-ray diffraction.— A General Electric XRD-5A diffractometer

using nickel-filtered Cu KPC radiation was employed for x-ray examination.

All samples were examined, after drying, by standard random orientation

powder-mount techniques. In addition, the reaction products of

Experiment 2 were examined in the moist state by mounting the slurry

in a sample well of a powder holder that had a number of thicknesses



of filter paper inserted between the frame and the glass slide

backing. It was found that this procedure allowed sufficient

excess water to be drawn off so that after smoothing the surface

the sample would maintain the required geometry on being mounted

on the diffractometer. The reaction product of Experiment 3 was

examined in the moist state by centrifuging the solids onto the

plane face of a porous tile (Kinter and Diamond, 1956).

Differential thermal analysis .— DTA of the products of

Experiment 1 was carried out with a direct-recording apparatus which

maintained a constant rate of temperature increase of 10 C per

minute. The remainder of the materials were examined (by necessity)

with an Eberbach portable DTA unit which requires manual recording

of the temperature differentials. The apparatus was modifiea by

replacing the transite thermal insulation unit by a close-fitting

sleeve of commercial pipe insulation; this permitted a temperature

of 1000 C to be readily attained and resulted in a more nearly

uniform temperature increase rate in the higher temperature region.

The heating .rate attained by this instrument as modified was a linear

rate of 58 C per minute from room temperature to approximately 600 C,

and subsequently a rate which decreased monotonically to about 5 C

per minute at 1000 C. The temperatures of exothermic or endothermic

peaks recorded with this instrument are thus not exactly comparable

to those obtainable on more nearly standard instrumentation, but

checks disclosed that peak shapes are not appreciably distorted.

Electron microscopy .— Electron microscopic study of the

reaction products was carried out with an RCA EMU-3 instrument operated

at 50 kvp. Sample preparation was by a non-aqueous dispersion procedure



evolved by Dr. John Radavich of Micro-Met Laboratories, Inc.,

who prepared the mounts and operated the instrument.

No ultrasonic vibration was required to effect dispersion

of the particles, and the danger of artifacts due to violent

disruption was avoided. Despite the mildness of the treatment

the individual particles are seen to be well-separated from each

other and to cover the field uniformly. The clumping together of

particles associated with the drying of a drop of a suspension of

high surface tension liquid such as water is avoided, and the

morphology of the individual particles is clearly visible in most

instances.

All of the electron micrographs used in the present study were

taken at a direct magnification of M&Ox.

Surface area determinations .— Surface areas were determined

for some of the reactants and products by the water vapor adsorption

method. Samples were initially dried and outgassed over Y^O for

four days, then weighed and placed in vacuum desiccators over

sulfuric acid solutions at 21 C. After evacuation for at least an

hour the samples were permitted to equilibrate for four days, were

reweighed, and were then placed over a sulfuric acid solution of

a lower concentration, and the procedure was repeated. Five points

in the BET range were secured, and all samples were run in duplicate.

The molality of the acid was determined by titration after equilibration,

and the partial pressure of water vapor was determined by reference

to unpublished data of D. M. Anderson and P. F. Low. The adsorption

isotherm was plotted according to the well-known BET procedure

(Brunauer, Emmet t, and Teller, 1938), the slopes and intercepts of
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the resulting straight lines were determined by least squares, and

the parameter "V " was calculated. Surface areas were calculated

p
from the V value using an assigned area per water molecule of 10. 3Am

for the Ca(0H)_ and II.IjA for the reaction products (Brunauer and

Greenberg I962).

EXAMINATION OF REACTION PRODUCTS

Experiment 1 - Compacted Mixtures at 60 C

Physical appearance and moisture content .— The wetted lime-

silicate mixes were at the start of the experiment plastic except

for the quartz. After the reaction the quartz, kaolinite, and

montmorillonite mixtures had obviously undergone cementation;

they were extremely hard, dry to the touch, and retained their

hardness and integrity after several weeks immersion in water. By

contrast, the pyrophyllite mixture remained soft and plastic and

showed no evidence of cementation.

Some of the reacted material was removed for examination (a

hammer and chisel being required) and after powdering, the moisture

content was determined by oven drying at 110 . The evaporable moisture

content so determined wa3 on the order of 50-60$ by weight of solids,

very nearly the original moisture content of the mixture. Apparently,

only a small portion of the water present had reacted in such fashion

as to be held against oven drying, despite the very substantial change

in the physical properties of the materials.

X-ray diffraction .— DiffTactometer traces of the quartz,

kaolinite, and montmorillonite - lime mixtures before and after

reaction are given in Figure 1.

Examination of Figure 1-A reveals that most of the Ca(0H)_

had disappeared during the course of the reaction with quartz, despite
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the fact that the intensity of the quartz pattern had not noticeably

decreased. Several new peaks attributable to the formation of a

poorly-crystalline calcium silicate hydrate are shown. The

characteristic peaks for tobermorite-like calcium silicate hydrates

occur at about 3-05A, 2.82A, and 1.82A; however, a strong quartz

peak at 1.82A interferes with the observation of any new peak at

that position.

In Figure 1-B it is apparent that as a result of reaction with

kaolinite all of the Ca(0H) o added to this sample had disappeared.

The intensities of the kaolinite lines have been considerably reduced,

particularly the (00£) lines. The (001 ) peak appears to be slightly

broadened on the low-angle side, suggesting a slight expansion of

some of the layers.

In an attempt to quantify the extent of the reaction the

integrated intensity of the kaolinite basal peak at "J. Ik was measured

for both the starting mixture and the reaction product, measurements

being taken in duplicate for each of five separate random orientation

powder mounts of each sample. The average integrated intensity for

the kaolinite peak in the original reaction mixture was 117 arbitrary

units; after reaction it was only 69 arbitrary units, suggesting that

perhaps as much as h&f> of the kaolinite had been decomposed by the

reaction.

A number of new peaks indicative of the formation of crystalline

reaction products are reserved in Figure 1-B. Peaks at 3.0UA, 2.78a,

and 1.7S& (not shown) reveal the presence of a poorly-crystallized

calcium silicate hydrate; peaks at 5-12A, 3.11A, and an enlargement

of the kaolinite peak at 2.28A are attributable to the cubic tricalcium

aluminate hexahydrate, CJUL-.
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Figure 1-C reveals that all of the Ca(0H)
2

added to the

tnontmorillonite clay reacted. The peaks attributable to residual

montmorillonitc are lessened in intensity, but the montmorillonite

does not appear to have been appreciably disordered. The position

of the (.060) reflection, not shown in the figure, is unchanged at

1.1J-95A- Reaction has produced broad peaks at 3«06A and at 2.74A,

indicative of the formation of a poorly-crystallized calcium silicate

hydrate, but no evidence of the C_AH^ is present. A peak of unknown

significance occurs at 9-2A. No crystalline calcium aluminate was

observed. This suggests the possibilities of the existence of some

of the aluminum in amorphous phases.

Examination of the x-ray diffraction pattern for the pyrophyllite

product (not shown) confirms the indication that no appreciable

reaction occurred with this material. There is no diminution of

the Ca(OE)p pattern and no evidence of any reaction products having

been formed.

Differential thermal analysis .— DTA diagrams for the four reacted

mixtures are given in Figure 2; the heating rate was 10 C per minute.

In general the DTA patterns confirm and supplement the conclusions

drawn from the x-ray examination.

The reaction product of quartz and lime has a small endotherm

at 510 C, indicative of some unreacted lime. The relative amount

may be judged by reference to the corresponding endotherm in the

pyrophyllite "product" In which no reaction occurred. The sharp

o
endotherm at 573 C for the quartz transformation is well marked.

The small endotherm at about 760 C may be due to a trace of carbonation,

but it may also be an inherent feature of the calcium silicate hydrate
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produced. Synthetic calcium silicate hydrates almost always display

this feature. The small but distinct exotherm at 885 C is attributed

to the conversion of the dehydrated calcium silicate hydrate to

wollastonite.

The DTA pattern for the kaolinite reaction product confirms

the complete reaction of all lime. A large number of features are

displayed. A similar pattern, lacking only the 200 C endothermic

peak, was published by Eades and Grim (i960) for a lime-kaolinite

reaction product prepared under somewhat similar conditions. The

following tentative explanation is offered for the diagram: it is

o
thought that the 200 C endotherm is due to the dehydration of the

calcium silicate hydrate phase; the 370 C endotherm is ascribed to

the C-AiL- phase; the main exotherm at 580 C is residual kaolinite;

the peak at 76O C is associated with the calcium silicate hydrate

phase, and the final exothermic response probably represents both the

kaolinite high-temperature transition and the response incident on

the transformation of the dehydrated calcium silicate hydrate phase

3^6

may be questionable, because Majumdar and Roy (195&) reported not

to wollastonite. The assignment of the 370 C endotherm to C

one but two endothermic responses for this compound, one at about

320 C and a second, smaller one at about k"J0 C.

The montmorillonite product yields a DTA diagram that is unusual

in that no pronounced endothermic peaks occur. A similar pattern

was published by Eades and Grim. A weak dehydration endotherm can

be observed at about 160 C; only a faint hint of a residual montmorillonite

dehydroxylation endotherm is recorded. There is no endotherm for

unreacted lime, nor is there any indication of a calcium aluminate

hydrate phase. The strong exotherm at 945 C is at least partially
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ascribed to the calcium silicate hydrate phase that almost

certainly has incorporated alumina of the decomposed montmorillonite.

The DTA of the pyrophyllite "reaction product" is consistent

with the apparent failure of this material to react. The 515 C

endotherm is due to unreacted Ca(OH)_, the sharp 573 C peak to a

quartz impurity in the pyrophyllite, and the endotherm at 795 c is

characteristic of pyrophyllite.

Electron microscopy .— Typical electron micrographs of the

several products are shown in Plate 1. Plate 1-A, the quartz product,

consists of elongated fibrous particles that are presumably rolled-

up sheets; this is the typical morphology for the CSH(gel) phase as

produced in hydrating portland cement. Plates 1-B and 1-C (for the

kaolinite and montmorillonite reaction products, respectively) reveal

a different morphology. Both these products are largely composed of

thin plates or foils, a morphology characteristic of the phase called

CSH (i). In addition to these particles Plate 1-B shows a number of

small dark particles, some of which have straight edges. These are

possibly the C-ABL- component of the reaction product. The single

large particle in the field is a residual kaolinite particle, the

edges of which appear to have been frayed by chemical attack; a portion

of the particle seems to have been partially exfoliated. In the

montmorillonite product, Plate 1-C, the darker particles seen in the

figure are thought to be undispersed montmorillonite particles or

aggregates. Montmorillonite prepared for electron microscopy by the

present method has this sort of appearance rather than the "fleecy

cloud" morphology usually observed after dispersion in water.

Surface area measurements .-- The surface area of the calcium

hydroxide employed in this study was measured by water vapor adsorption;
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o
the value obtained was 36 m /g. The relatively coarse quartz used

in this experiment had so small an area that it could not be

measured by this technique. Thus, considering the proportions involved,

the initial lime-quartz mixture had a surface area of not much more

than 10 m /g. In contrast the surface area of the reacted mixture

2
was measured as 53 «a /g> a more than five-fold increase. Similarly

the estimated surface area of the kaolinite-lime mixture before

o
reaction was approximately 2k m /g; after the reaction the products

2
yielded a value of 66 m /g.

Most of this increase in surface area is attributable to the

formation of the calcium silicate hydrate products. Surface areas

of SSH (i) phase materials are reported to range from about 135 to

2
about 3^0 m /g (Brunauer and Greenberg, 19&2), and a similar range

is reported for CSH(gel) materials.

There is a somewhat different situation with the montmorillonite

2
material. The surface area of pure montmorillonite is about 800 m /g;

that of the unreacted lime-montmorillonite mix would be of the order

2
of 500 m /g. The measured surface area of the reaction product was

2
160 m /g. While this would not be an unreasonable value for a pure

calcium silicate hydrate of the type generated, the present material

contains a considerable content of unreacted montmorillonite.

Seemingly, the residual montmorillonite does not contribute much to

water vapor sorption, at least in the BET range of partial pressures.

Sorption of water vapor on the internal portion of the montmorillonite

surface cannot take place until the individual unit layers separate.

It was thougVtt pertinent to check on whether the residual montmorillonite

present in the reacted product was free to undergo lattice expansion.

Samples of the unreacted mixture and of the powdered reacted product
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were treated with glycerol and examined by x-ray diffraction.

The montmorillonite in the unreacted mixture expanded immediately,

as expected, to yield a d - of 17.7A. No expansion was noted for

the residual montmorillonite in the reaction product. Reexamination

after a twenty-four-hour period of soaking in glycerol suggested

that some expansion was taking place in the reacted mixture, but

with apparent reluctance, considerable diffraction remaining at

12-13A. It appears that residual montmorillonite in the cemented

material is prevented by some factor (perhaps mechanical) from

undergoing the rapid lattice expansion usually associated with

this phase.

Experiment 2 - Slurry Mixtures at k$ C

Physical appearance .— Most of the samples were homogeneous

slurries after the course of the reaction, but a large cemented

mass of granular material was found in the montmorillonite reaction

product, and the kaolinite product contained a substantial amount

of small, hard granules dispersed throughout the slurry. Since

considerable excess water was used, effective cementation had not

been expected.

X-ray examination .— Owing to the large excess of Ca(OH)_

(to force the reaction toward completion with respect to the clay),

initial x-ray examination yielded patterns dominated by residual

Ca(0E)9
. Only slight carbonation seems to have occurred at this

stage.

In order more closely to examine the reaction products, it was

expedient to remove the excess lime by repeated dissolution in

distilled water followed by centrifugation, the process being continued

until the pH of the resulting suspensions was definitely below that
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of a saturated Ca(OH). solution (12. 5). After this procedure the

washed product was again examined in the wet state, then oven

dried, powdered, and reexamined using the standard powder mount

procedure. The dried powder was then used for DTA and electron

microscopy.

The quartz reaction product, on initial examination, showed

peaks for a calcium silicate hydrate product at 3«0^A and 2.79^>

a small broad peak at 8 A of unknown significance, and no evidence

of carbonation. A powder mount of the washed and dried reaction

product indicated some carbonation had taken place during processing,

the broad peak at 3«0**A having been sharpened, and a few weak

calcite lines observed. There was broad general diffraction between

2.8 and 3«1A, suggesting that much of the calcium silicate hydrate

reaction product formed was amorphous. The height of the residual

quartz peak at 3*3^ A was only 66 cps, compared to a height of several

thousand cps for pure quartz under these conditions, suggesting that

almost all of the quartz had been consumed in the reaction.

The hard granules in the kaolinite product were examined separately

from the remainder of the slurry. The granules consisted of residual

kaolinite and reaction products, but no free Ca(0H)p , while the slurry

consisted almost entirely of Ca(0H)_, with a small content of the

same reaction products, and no residual kaolinite. The reaction

products were a poorly-crystalline calcium silicate hydrate phase

and a hexagonal calcium aluminate hydrate phase with a 7-6A basal

spacing. After the washing procedure the separate portions were

recombined and a powder pattern was secured of the dried material.

From this pattern it was clear that almost all the kaolinite had

decomposed, the intensity of the 7«1A kaolinite peak being reduced
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to 35 cps from an approximate value of 250 cps. The calcium aluminate

hydrate formed was well crystallized over 20 reflections being

attributable to this phase in the powder diagram. The 7-6A basal

spacing was essentially constant in both the moist and dried conditions;

this is not in accord with the variation in spacing reported by

Roberts (195?) for the several hydration states of both CjAlL_ and

C3AH0. The pattern was similar but not identical to published

diffraction patterns of C.AH-, (for example that of Buttler, Dent-

Glasser and Taylor, 1959) • It also closely resembled the powder

pattern published by Hilt and Davidson (1961) for a well-crystallized

lime-montmorillonite reaction product.

In the montmorillonite system it was also observed that the

cemented portion was almost free of Ca(0H)_, which was concentrated

in the remaining slurry. The same reaction products were indicated,

and in addition a broad peak at about 5& was observed initially,

which was no longer present after washing and drying the material.

Some residual montmorillonite remained, but it is difficult to assess

the proportion. The peaks for the C^AEj^-like product were much less

intense in this product, which is to be expected in view of the lesser

aluminum content of montmorillonite as compared to kaolinite.

Pyrophyllite was found in this experiment to react to a consider-

able extent, in contrast with the earlier result on this material.

It may be that the finer particle size of the sample is responsible

for the difference in behavior. The reaction products are similar to

those for the montmorillonite and kaolinite, although the extent of

the reaction was probably less.

The mica reacted extensively; the residual intensity of the 10A

mica peak was only one-fourth as great as that of the original mica.
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The same products were produced, a calcium silicate hydrate and a

7.6a compound resembling C^AIL-. It was noteworthy that despite

the considerable attack on the mica the remaining material retained

all the lines characteristic of the 2L polymorph and these retained

their original sharpness.

The illite reaction products can be described 33 similar to

the mica products, and again, despite the substantial proportion of

the illite that had reacted, the residual material was still well-

crystallized and retained the lines characteristic of the 2A. polymorph.

In contrast with the preceding results, it appeared that no

reaction had taken place with the talc sample, except that some of

the Ca(OH)„ had carbonated. The residual talc lines were not appreciably

weaker than those of the original sample, and no crystalline reaction

products were found.

Differential thermal analysis .-- DTA patterns for five of the

washed reaction products are given in Figure 3* Since the modified

portable DTA unit was used, the peak temperatures are not directly

comparable to those reported in the preceding experiment.

The patterns show a number of common features. All have

relatively indistinct low-temperature dehydration endotherms, most

showing an indication of several separate maxima in the range around

200°C. All show small endothermic responses at about 800 C, due

either to carbonation or to the presence of a calcium silicate hydrate

product, or both. The aluminosilicate products all show a small

exotherm at about £00 C, the quartz product having a slightly more

intense one at a somewhat lower temperature. These small exothermic

responses are characteristic of the CSH(gel) phase.
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Several points should be noted about the Individual patterns.

The quartz product gave no indication of the 573 C transition,

testifying to the almost complete decomposition of the original

quarts. A small endotherm in this pattern at 675 C is of unknown

significance. The kaolinite product yielded an endothermic peak

at 385 C, similar to that of the kaolinite reaction product of the

first experiment, which was tentatively attributed to CJUL-, but

that phase is not present here. The peak may be due to gibbsite,

although no evidence of crystalline gibbsite was recorded in the

x-ray results. The endotherm at 520 C in the present montmorillonite

pattern seems to be the result of incomplete removal of unreacted

Ca(0H)p in the washing procedure.

Electron microscopy .— Representative electron micrographs of

some of the reaction products are shown in Plate 2. In plate 2-A,

the quartz product is fibrous, and closely resembles published

electron micrographs of the CSH(gel) phase. A large, ragged particle

in one corner of the figure is almost certainly a residual clay-sized

quartz particle. The kaolinite product (Plate 2-B) is composed of

individual fibrous particles o£ CSH(gel)., thin sheets with crystalline

outlines at least one of which is hexagonal (presumably the CJUL- -

like phase), and a few comparatively large particles with ragged

edges, presumably residual kaolinite. The montmorillonite product

(Plate 2-C) is more nondescript, but a considerable portion of the

fine particles are fibrous in nature. The mica product (Plate 2-D)

is distinctive. Although there are a few fibrous particles, almost

all the material observable is of a unique ovoid or football-shaped

morphology, not previously observed. Large, ragged mica flakes are
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visible, some of which appear to have been delaminated as well

as having suffered edge attack.

Experiment 3 - Dilute Suspension at 23 C

X-ray examination of this product disclosed that despite the

long reaction period (6 months) considerable Ca(OH)p and kaolinite

remained unreacted. The reaction products were the same as those

encountered previously, a calcium silicate hydrate and the C. AH. --like

phase with a T-6A spacing. Little or no cementation occurred and the

individual platy kaolinite and (^AH-like particles were well

oriented on the porous tile mount, with basal peaks many times stronger

than those exhibited in random powder mounts. DTA of the material

yielded separate and distinct low-temperature endotherms at 130 C

and at 225 C; dehydroxylation endotherms for both Ca(0H)p
and

kaolinite, a small endotherm at 7^5 C, and a small but sharp a

exotherm at 905 C. There was no endotherm at 385 C such as that

observed in the corresponding product in Experiment 2, despite the

fact that the crystalline components of the material revealed by

x-ray diffraction were identical. Electron micrographs of the products

revealed typical fibrous particles of CSH(gel), small, thin, but

well-formed hexagonal plates attributed to the C. AIL^-like phase,

and large residual kaolinite particles marked by deformed and eroded

edges

.

DISCUSSION

Extent of Reaction

While no quantitative statement about the percentage of the

silicate that has reacted in a given case is possible, it appears

that reactions of Ca(0H)_ with the various silicates has taken place
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to an extent not previously reported. In certain instances,

notably the reactions with clay-sized quarts, kaolinite, and

montmorlllonite in slurry mixtures it appears that by far the major

part of the silicate has been destroyed and replaced by secondary

calcium silicate hydrate and calcium aluminate hydrate compounds.

Mechanism of Reaction

Bades and Grim (i960) have suggested that the mode of reaction

of lime is different with montmorillonlte and other 3-layer clays

than it is with kaolinite. They suggest that with the latter mineral

the reaction seems to take place "by the lime eating into the

kaolinite particles around the edges with a new phase forming around

the core of kaolinite." The electron micrographs obtained in the

present work appear to confirm the first part of this suggestion;

it is obvious that the edges of the residual kaolinite particles are

ragged and irregular as though they have been attacked chemically.

Also, however, a certain amount of exfoliation seems to have taken

place. However, the latter part of the quotation seems to imply

an oriented transformation, which is difficult to envision in the

light of the present results showing that at least two different

reaction products are produced.

These authors also reported that for 3~layer clays "following

1

1

the saturation of the interlayer positions with Ca , the whole clay

mineral structure deteriorates without the formation of substantial

new crystalline phases." The present evidence indicates a) that new

crystalline phases are in fact produced by these clays, and b) that

the residual portions of the 3-laye* clays retain their crystallinity

almost intact, even after most of the clay originally present has been
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decomposed. The present results suggest that the decomposition

of the 3-layer clays occurs from the edges of the particles in

the same manner as it does with the kaolinites.

It appears to the present writers that the mode of chemical

attack is largely through dissolution at the edges of the particles

of the clay minerals and other silicates in the strongly basic

environment characteristic of saturated Ca(OH)_ solutions (pH 12.5),

followed by precipitation of the calcium silicate hydrate and

calcium aluminate hydrate phases.

Nature of the Reaction Products

It is felt that sufficient data have been obtained in this

study to ascribe the reaction products to kuown phases. All the

crystalline products are either calcium silicate hydrates or calcium

aluminate hydrates. No known quaternary phase, as for example

Stratling's compound, C_ASHg, was detected. This does not rule out

the possibility of isomorphous substitution of silica for alumina

or vice versa in some or all of the phases produced.

The poorly crystallized calcium silicate hydrates are not

usually distinguishable from each other by x-ray diffraction; rather,

observation of particle morphology and DTA patterns are essential

to proper identification. Published results as reviewed by Taylor

(I96l) and by Brunauer and Greenberg (1962) and results by the present

writers indicate that the following criteria are applicable:

CSH(l) - "foil-like", "snowflake" or very thin platy
morphology, often crinkled or crumpled. DTA
marked by strong, sharp exothermic response
at 850-900 C.

CSH(ll) - Morphology fibrous, sometimes as cigar-shaped
bundles. DTA yields small exothermic bulge at
about 400 C, and relatively small high-temperature
exothermic peak at 850-900 C. X-ray pattern
should yield diagnostic peak at I.56A.
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CSH(gel) - Morphology fibrous, individual fibers
appearing to consist of rolled-up sheets,
often cemented laterally to form lathlike
sheets. DTA yields weak exothermic peak
at 850-900°C.

Application of these criteria suggest that the foil-like

product formed with montmorillonite and kaolinite in Experiment 1

is CSH(l) and that the calcium silicate hydrate phase formed in

all other experiments is CSU(gel), with the possible exception of

the mica product of ovoid morphology. Thus, the same clay may

produce different calcium silicate hydrates under different conditions.

Identification of the calcium aluminate hydrates depends more

completely on x-ray evidence, since these phases are better

crystallized. Identification of the CJUL. in the kaolinite product

of Experiment 1 is straightforward. The hexagonal calcium aluminate

hydrate produced in other reaction products is apparently all the

same phase; but the exact nature of this phase is open to some

question. All these reaction products have d^. spacings of close

to 7.6hf regardless of the state of wetness or of oven-drying

treatment. In contrast both C.AH abd CgAHg suffer successive

decreases in spacing as they are dried (Roberts, 1957)- Two phases

are known that are similar to Ci.AH, „ but contain CO.-—ion3 in certain
* 1.3 3

lattice positions; hydrocalumite and calcium monocarboaluminate

.

The former phase is said to retain a d . spacing as high as 7.3A.

even after heating to 150 C, (Buttler, Dent-Glasser, and Taylor

(1959)' In contrast, the present reaction products, like (VAIL.-,

decompose on heating to this temperature and produce a 6. LA. spacing

of much reduced intensity. The monocarboaluminate compound, containing

a higher degree of CCL-- substitution, exhibits a pronounced exothermic
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response at about 550 C on DTA (Turriziani and Schippa, 1956);

this is not observed on any of the present materials. Earlier work

discussed a hexagonal compount of composition C„AH.
p
with an x-ray

diagram similar to the present materials; but the existence of this

phase has recently been discredited (Taylor, I96I; Jones, I962).

It appears likely to the present authors that the phase formed in

these experiments is a C.AH,_ stabilized to some extent by the

occurrence of considerable isomorphous replacement of silica for

alumina in the lattice. Such substitution would be difficult to

prove in the present mixed materials, but was strongly indicated by

the somewhat imperfect chemical analyses cited by Hilt and Davidson

(1961} for mechanically-separated crystals of a lime-montmorillonite

product that gave a similar x-ray pattern.

The montmorillonite-lime product of Experiment 1 was noteworthy

in that no separate calcium aluminate hydrate phase could be detected.

Thus, it seems reasonable to infer that the alumina released by Ca(OH)_

attack on montmorillonite has been at least partially incorporated in

the lattice of the CSH(l) phase produced. Isomorphous substitution

of aluminum for silicon is of course widespread in clay mineral

structures, and has been shown by Kalousek (1957) to occur in well-

crysta1 1ized tobermorites

.

Cementing Action and Strength Development

In prolonged soaking tests the cementation of the lime-kaolinite

and lime-montmorillonite products of the first experiment (CSH(l)),

were in no way inferior to that of the lime-quartz product (CSH(gel)).

Thus, it is clear that the cementing action and consequent strength

development is not an exclusive property of the latter phase among
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calcium silicate hydrates. This tends to cast some doubt on theories

of cementing action that depend on the particular fibrous or needle-

like morphology of the CSH(gel) phase, such as those proposed by

Bernal (195*0, and by Brunauer (1962).

CONCLUSIONS

These studies show that calcium hydroxide reacts at comparatively

low temperature with clays, quartz, and other silicates to produce

calcium silicate hydrates of high surface area referable to known

tobermorite-like phases and generally also to produce well-crystallized

calcium aluminate hydrates. Under appropriate conditions the reaction

can lead to an almost complete decomposition of the silicate phase.

Lime attack on quartz appears to produce CSH(gel) regardless of the

experimental conditions; kaolinite and montmorillonite may yield

either CSH(gel) or CSH(l). At slightly elevated temperatures C_AH,

may be produced; otherwise the alumina-bearing compound is usually

a hexagonal phase similar to C. AH._ except that its basal spacing is

maintained at approximately ?.6A regardless of the state of wetting

or drying. No quaternary phases are formed. The mode of attack is

postulated to involve dissolution at the edges of the silicate particles

due to the high pH maintained by the calcium hydroxide, followed by

precipitation of the reaction products. Under appropriate conditions

CSH(l) of foil-shaped morphology has as high a degree of effectiveness

as a cementing agent as does fibrous CSH(gel) produced under similar

conditions

.
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Q - QUARTZ

C-CfOH^
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DEGREES 29
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Figure 1-A. X-ray Diffractometer Traces of Quartz-Ca(OH),

Mixture Before and After Reaction at 6o°C.
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|- CSH

K- KAOLINITE

C- Ca(0H)2

42 38 34 30 26 22

DEGREES 20

Figure 1-E. X-ray Diffractometer Traces of Ca(OH) -

Kaolinite Mixture Before and After Reaction

at 60 C.
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Figure 1-C. X-ray Diffrac«tometer Traces of Ca(OH) Mont-
2

morillonlte Mixtures Before and After Reaction

at 60°C.
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D. PYROPHYLLITE

520'
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Figure 2. Differential Thermal Analysis of Products of

Ca(0H)
2
-Silicate Reactions at 60°C. Heating

Rate 10°C Per Minute.
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D. PYROPHYLLITE PRODUCT
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:80 c 805*

2 20°
870'

E. MICA PRODUCT

795*

215'

Figure 3« Differential Thermal Analysis of Ca(0H) 2
-

Sllicate Reaction Products at ^5°C. Heating

Hate Varies from 58°C to 5° per Minute.
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Plate 1-C. Electron Micrograph of Ca(OH)
?
-Montmorilionite

Reaction Product at 6o°C.
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Plate 2- A- Electron Micrograph of Ca(OH)
2
-Qu&rtz Reaction

Products at 45°C.
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