
Transformation of Digital Signature Schemes
into Designated Confirmer Signature Schemes

Shafi Goldwasser1,2 and Erez Waisbard1

1 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel.

{shafi,waisbard}@wisdom.weizmann.ac.il
2 Laboratory for Computer Science, Massachusetts Institute of Technology.

Cambridge, MA 02139.

Abstract. Since designated confirmer signature schemes were intro-
duced by Chaum and formalized by Okamoto, a number of attempts
have been made to design designated confirmer signature schemes which
are efficient and at the same time provably secure under standard cryp-
tographic assumptions. Yet, there has been a consistent gap in secu-
rity claims and analysis between all generic theoretical proposals and
any concrete implementation proposal one can envision using in prac-
tice. In this paper we propose a modification of Okamoto’s definition
of security which still captures security against chosen message attack,
and yet enables the design of concrete and reasonably efficient desig-
nated confirmer signature schemes which can be proved secure without
resorting to random oracle assumptions as previously done. In particu-
lar, we present simple transformations of the digital signature schemes
of Cramer-Shoup, Goldwasser-Micali-Rivest and Gennaro-Halevi-Rabin
into secure designated confirmer signature schemes. We prove security of
the schemes obtained under the same security assumption made by the
digital signature scheme transformed and an encryption scheme we use
as a tool.

1 Introduction

Digital signatures introduced by Diffie and Hellman [7] are analogous to signa-
tures in the paper world in the sense that a message that is being signed by the
signer can later be verified by everyone else. Like in the paper world, a signer
can not deny signing a document that carries his signature. There are real life
scenarios, however, in which the signer wishes that the recipient of the signature
would not be able to present the signature to other parties at will.

For example, say a potential employer extends a job offer to a candidate
employee including a salary figure. On one hand the employer does not want the
employee to show the offer letter to a competitor to elicit a higher salary, and on
the other hand the future employee wants to be assured that the offer is binding
and can be held up in court. For such a setting we would have like to have a
signature schemes in which:

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 77–100, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

78 S. Goldwasser and E. Waisbard

• A court of law (or some other third party) is able (if called upon) to verify the
authenticity of the signature.
• No one, but the court of law, should be able to validate the authenticity of the
signature (unless the signer steps in).
• The signer should be able to convince the recipient of the signature that it is
indeed authentic and can be validated by the court if necessary.

The first attempt to address the issue of signatures that can not be verified
by everyone was Undeniable Signature by Chaum [5]. Undeniable signatures can
not be verified without the signer’s cooperation. The signer can either validate
a signature or prove it invalid. The problem with this idea is that in any setting
where the signer becomes unavailable (of which there may be many) nothing can
be determined.

A different idea called Designated Verifier Signature schemes was presented
by Jakobsson, Sako and Impagliazzo [17]. A designated verifier signature is a
signature that can only be validated by a single user, designated by the signer.
Designated verifier signatures can used to authenticate the identity of the signer
without having the ability to convince any third party of its validity. Its merit
is also its weakness. There is indeed no way to force the signer to honor his
signature.

Designated Confirmer Signature scheme (DCS), introduced by Chaum [4],
address both of the above problems. The parties in a DCS are the signer, the re-
cipient of the signature (aka the verifier) and a designated confirmer. The idea of
DCS is that during the process of signing, that involves the signer and recipient
(as usual), a designated confirmer signature σ is generated. The recipient of the
signature cannot convince anyone else of the validity of σ. Rather, the designated
confirmer, given σ, has the ability to verify it on his own as well as to convince
anyone of its validity/invalidity. The designated confirmer remains completely
passive, unless the signer becomes unavailable. In such case, the designated con-
firmer can either convert the designated confirmer signature into an ordinary
signature that can be validated by anyone, or engage in an interactive protocol
with any verifier to confirm the validity of the signature. The confirmer is only
semi-trusted in the sense that he can only extract/validate signatures for mes-
sages which the signer designated him to. Perhaps the most natural candidate
to act as a semi-trusted designated confirmer is a court of law.

Going back to the job offer scenario, the employer would sign his offer using
a DCS scheme, making the court of law the designated confirmer. Using DCS
ensures that the candidate would not be able to convince other employers of the
authenticity of the offer, and yet if the employer changes his mind (or becomes
unavailable) the candidate can present a signed offer to the court of law and ask
for compensation.

A straightforward way to construct a designated confirmer signature scheme,
using standard cryptographic primitives, such as public-key encryption scheme
and digital signature schemes would be to first sign a message m using an or-
dinary signature scheme and then encrypt the signature using the designated

Transformation of Digital Signature Schemes 79

confirmer public key1. The resulting ciphertext would serve as the designated
confirmer signature σ of m. Since the signature is encrypted, only the designated
confirmer can be convinced of its validity. Moreover, the designated confirmer
can easily extract an ordinary signature from it. One question remains, if the
recipient cannot verify the validity of σ on his own, how can he know that he
indeed got a valid one? Zero-knowledge naturally comes to the rescue. In order
for the recipient to be convinced of the validity of the DCS, the signer and recip-
ient interact in a zero-knowledge proof in which the signer proves to the verifier
that what he got is indeed an encryption of a verifiable ordinary signature of m.
Since the last assertion is an NP statement, there exist general protocols that
achieve this.

The above construction is straight forward and can be easily proved secure.
The main problem is that we do not know of efficient zero-knowledge proofs
for the assertion that the cleartext corresponding to a given ciphertext contains
a valid (or invalid) signature of a given document. Proving such statements
using general zero-knowledge proofs for NP involve the reduction step to an NP-
complete language which makes them unusable in practice. Several works on
DCS attempted to remedy the situation and come up with efficient direct DCS
constructions. In doing so they either resort to the random oracle assumption
for proving security or make no formal claims of security, and thus all trade
efficiency with proofs of security in the standard model. We summarize the state
of the art in section 1.2.

The goal of the current paper is to present DCS schemes with proofs of
security in the standard model which do not involve the inefficient step of using
general zero-knowledge proofs for proving the validity of signatures.

Our approach in achieving this goal is to modify the original definition of
security for DCS due to Okamoto [19] to not require zero-knowledge proofs for
validity assertions, and then show efficient constructions of DCS schemes which
satisfy the new security definition.

We note that an alternative approach toward the same goal would be to con-
struct custom made – tailored to a particular encryption scheme and a particular
digital signature scheme – efficient zero-knowledge proofs for the assertion that
the cleartext corresponding to a given ciphertext contains a valid (or invalid)
signature of a given document. Indeed, utilizing the Cramer-Shoup CCA2 se-
cure public key encryption scheme in some of the confirmation and disavowal
protocols proposed in [2] translates to proving statements concerning the equal-
ity (and inequality) of discrete logarithms in zero-knowledge. A recent article
of Camenisch and Shoup [3] shows ingenious while somewhat complex ways to
accomplish this directly without resorting to general zero-knowledge protocols.

1 All that is required from a designated confirmer in the signing stage is to have a
known public key. Other than that the designated confirmer does not need to be
aware that his key is used.

80 S. Goldwasser and E. Waisbard

1.1 New Results

We propose a new definition of DCS, modifying the original definitions of
Okamoto [19] and Camernish and Michels [2] in several ways. The most impor-
tant modification is to remove the requirement that the confirmation protocols
between signer and verifier and confirmer and verifier confirming that a desig-
nated confirmer signature is valid must be zero-knowledge2. We instead only
require that the resulting scheme is existentially unforgeable in the presence of
chosen message attack. We stress that a forgery in this context is the ability of
anyone but the legal signer to convince a verifier of knowledge of a valid signa-
ture of any message. This includes also those messages which have already been
signed by the legal signer. Naturally, in the latter case of messages which already
have been signed, also the designated confirmer can convince a verifier of the
knowledge of valid signatures for these messages, but for no other message.

We give a general transformation that takes any standard digital signature
scheme and a public key encryption scheme and turns them into a designated
confirmer signature scheme. We prove that if the originating signature scheme is
existentially unforgeable under chosen message attack and the public key encryp-
tion is secure against CCA2, then the resulting designated confirmer signature
scheme is provably secure according to the new definition under the same as-
sumptions made by the digital signature scheme and the encryption scheme.

The main tool our general transformation uses is strong witness hiding proofs
of knowledge (SWHPOK). Witness hiding proofs of knowledge(WHPOK) for
polynomial time verifiable relations R as defined originally by [9], only guarantee
that on input x all witnesses w s.t. (x, w) ∈ R remains hidden. SWHOPK require
the additional property that on input x the protocol does not reveal witnesses
w′ for any other inputs x′ �= x. Notably, the general WHPOK protocols for
polynomial time verifiable relations [14,9] which exist if one way permutations
exist, are already SWHPOK.

Having removed the requirement that the signing and confirmation protocols
are zero-knowledge enables using SWHPOK protocols for this purpose instead.
The witness in question is a standard digital signature of a message in the sense of
[16]. We remark that witness hiding proofs (even strong ones) are in general easier
to design than zero-knowledge proofs. Moreover, for a large class of concrete
digital signature schemes – including Cramer-Shoup signatures [6], Goldwasser-
Micali-Rivest signatures [16] and the Gennaro-Halevi-Rabin signatures [15] – we
give simple and direct strong witness hiding proofs of knowledge of a signature for
the scheme at hand. Thus, for these digital signature schemes, we give concrete
designated confirmer signature schemes which are proved secure under the same
2 An important implication of removing the indistinguishability security requirement,

is that [19] proved that designated confirmer signature scheme and public-key en-
cryption are equivalent. The way Okamoto proved that designated confirmer signa-
ture imply public key encryption was based on the indistinguishability between a
designated confirmer signature of a message m and a fake signature. He used a valid
signature to encrypt the bit 0 and a fake signature to sign the bit 1. Clearly, after
modifying the security requirement, this proof no longer holds.

Transformation of Digital Signature Schemes 81

cryptographic assumption the original signature scheme was based on and the
existence of a CCA2 secure public key encryption scheme.

The second tool our transformation uses is to take a strong witness hiding
proof of knowledge of a signature and modify it so as in the process of proving
this knowledge the signer also ”encrypts” the signature in the confirmer public
key so that the confirmer can later ”decrypt” and extract the signature. We prove
that if the verifier accepts the proof of knowledge, then with high probability
the confirmer will be able to extract the signature from the transcript between
signer and verifier. We call this modification of a strong witness hiding proof of
knowledge encrypted strong witness hiding proof of knowledge. The designated
confirmer signature of a message is defined to be this transcript of encrypted
proof of knowledge. We use the ideas of Camenisch and Damgard [1] in their work
on verifiable encryption to get encrypted witness hiding proofs of knowledge.3

Putting the above ideas together it is straight forward to get a DCS construc-
tion from an standard digital signature scheme. For a message m, the signer first
produces an ordinary signature of m, denoted σ(m). Next, the signer and verifier
engage in a encrypted strong witness hiding proof of knowledge of σ(m). If the
verifier accepts, the transcript of the interaction can be stored by the verifier
as the designated confirmer signature of m. Presented with the transcript, the
confirmer can extract σ(m) from it, and prove knowledge of σ(m) using a strong
witness hiding proof of knowledge thus confirming the validity of the designated
confirmer signature.

Lastly, we note that unlike the SWHPOK protocols for signing and confir-
mation of validity of a designated confirmer signature, we still advocate and use
in our general transformation a zero-knowledge proof for the invalidity of a
designated confirmer signature – a so called Disavowal protocol. This is natu-
ral, as when σ′ is an invalid designated confirmer signature, there is no witness
to speak of whose secrecy one needs to protect! We argue this has little effect
on the overall efficiency of the scheme as we expect to rarely use Disavowal.
Whereas in undeniable signature schemes proving the invalidity of a signature
via a Disavowal protocol had a crucial role, since it was up to the signer to
either confirm or disavow an alleged signature and refusal to disavow could be
interpreted as confirming it, this is no longer the case in DCS schemes. The
need for disavowal protocol in a DCS scheme arises only when a cheating verifier
claims an invalid designated confirmer signature σ′ is indeed valid. Since the
verifier cannot convince anyone of the signature’s validity without the help of
the designated confirmer, it usually suffice that the designated confirmer will say
3 [1] propose an elegant technique of modifying any 3-round honest verifier zero-

knowledge proofs for a relation R so that at the end of the protocol the verifier
will be guaranteed with high probability to hold a semantically secure encryption of
witness w for a given x where (w, x) ∈ R . They showed relevance of this idea to
group signatures, signature sharing, and fair exchange of signatures. We note that
we apply the [1] transformation to strong witness hiding proofs rather than to zero-
knowledge proofs, and thus can not use the claims they prove about the resulting
encryption being semantically secure. Still, the resulting protocol can be shown to
work in our context as well.

82 S. Goldwasser and E. Waisbard

that the verifier is cheating. The need for disavowal protocol may of course arise
in the case where the cheating verifier is charged by the law and a proof of his
blame needs to be presented. We expect this to rarely occur.

1.2 Related Work

Soon after Chaum introduced the notion of DCS[4], Okamoto presented a formal
model and definition of security of DCS and proved (constructively) that secure
designated confirmer signature schemes are equivalent to secure public-key en-
cryption [19]. In a nutshell, his definition requires zero-knowledge confirmation
protocols of the validity of the signature (or disavowal of its validity) as a way of
ensuring non-transferability of the ability to validate a signature. In addition to
theoretical results, Okamoto also gives two concrete practical schemes without
an argument nor claim of security. Indeed, [18] showed that one of Okamoto’s
schemes enables the designated confirmer to universally forge signatures.

Michels and Stadler [18] suggest how to use a tool called designated confirmer
commitments to construct designated confirmer signature scheme starting from
any Fiat-Shamir like signature scheme [11] The resulting DCS schemes can be
proved secure only in the random oracle model, inheriting this property from
the use of the Fiat-Shamir paradigm for constructing signatures. Another DCS
scheme suggested in [18] is based on deterministic RSA signatures which are
existentially forgeable and thus again, unless one resorts to the use of the ”hash
then sign” techniques which are provably secure in the random oracle model. [2]
point out attacks on previous DCS schemes (including [18]) when several signers
share the same confirmer. They strengthen the DCS security requirements of
[19] to address these problems, and show the existence of a secure DCS (under
the new definition) using general tools of existentially unforgeable digital sig-
natures schemes, CCA2 secure encryption schemes, and general concurrent ZK
protocols for NP statements. For this definition [2] propose concrete implemen-
tations of DCS based on either deterministic RSA signatures (or Fiat-Shamir
like signatures) whose security again is provable in the random oracle model.
Some of the confirmation and disavowal protocols proposed in [2] when using
the Cramer-Shoup public encryption function as the underlying CCA2 secure
encryption amount to proving statements concerning the equality (and inequal-
ity) of discrete logarithms in zero-knowledge. A recent article of Camenisch and
Shoup [3] shows direct ways to accomplish this.

2 New Definition for a DCS

2.1 Informal Outline of the Definition

The model consists of three players: signer S, verifier V and designated con-
firmer C. Throughout, all parties receive as input the public keys of the signer
and of the designated confirmer, denoted by PKs and PKc. The signer has an
auxiliary secret input, denoted SKs and the confirmer has an auxiliary secret
input, denoted SKc.

Transformation of Digital Signature Schemes 83

A pair of important algorithms with respect to which validity of a designated
confirmer signature is defined are Extract and Verify. On inputs a message m,
a designated confirmer signature σ, PKs, PKc, and SKc, algorithm Extract ei-
ther outputs fail or a string σ∗, which can be publicly verified as a valid ordinary
digital signature of m with respect to PKs(as defined in [16]) by running the
verification algorithm Verify. In essence, Extract turns a designated confirmer
signature that can be verified only by a confirmer into an ordinary digital sig-
nature that can be validated by anyone.

The definition also calls for the existence of three main interactive protocols:
ConfirmedSign: a protocol between the signer and a verifier on a common

input message m, which produces as output either an accept or reject vote by
the verifier along with a string σ referred to as the designated confirmer sig-
nature of m. If the verifier accept then the string σ should be a valid designated
confirmer signature, that is one that can be transformed to an ordinary digital
signature using the Extract algorithm. Here the verifier is the recipient of the
designated confirmer signature that needs to be convinced of its validity.

By combining the signing process along with the confirmation process we
deviate from the definition of [19,18,2]. We argue that this is a natural modifi-
cation, as the recipient of a DCS always needs to be convinced of the validity of
the DCS, thus in practice, the two actions are always performed together.

Conf: a protocol between the confirmer and a verifier on common input
a message m and a designated confirmer signature σ, at the end of which the
verifier either accept or reject σ as a valid designated confirmer signature of m.
If σ is a valid designated confirmer signature (i.e. one from which the Extract
algorithm can output an ordinary valid signature of m) then the confirmer should
be able to convince the verifier of its validity. Here the verifier can be any party
that needs to be convinced of the validity of the DCS.

Disavowal: a protocol between the confirmer and verifier on common input
a message m and a designated confirmer signature σ, at the end of which the
verifier either accepts or rejects σ as an invalid designated confirmer signature
of m (where an invalid designated signature σ is one for which Extract outputs
fail). As in Conf , the verifier can be any party that needs to be convinced of
the validity of the DCS.

The security requirements we make fall into two categories: security for
signers and security for the confirmer,

1. Security for the signer: For any message m not previously signed, no one,
except for the legal signer can

a) Run ConfirmedSign(m, · · ·) in the role of the prover, successfully with
non-negligible probability.

b) Produce a publicly verifiable ordinary signature σ∗ of m with respect to
the signer’s public signing key (i.e. V erify(, PKs, m, σ∗) = valid).

c) Produce a designated confirmer signature σ for m which the legal desig-
nated confirmer will confirm as valid with non-negligible probability.

84 S. Goldwasser and E. Waisbard

For any previously signed message m, no one, except for the legal signer and
the legal designated confirmer, can do 1a, 1b as above.4

2. Security for the confirmer: No one but the legal signer S and designated
confirmer C, including any coalition of signers {Sj} where all Sj �= S shar-
ing the same confirmer, can confirm a designated confirmer signature for a
message previously signed with respect to SKs.

2.2 Formal Definition

In the coming definition, negl(k) denotes any function which grows slower than
1
kc for all c for all k sufficiently large.

Definition 1 A secure designated confirmer signature scheme consists of the
following components:

1. Key Generation Algorithms (Gs, Gc): Gc is a probabilistic polynomial
time algorithm that on input 1n (where n is the security parameter), outputs
a pair of strings (SKc, PKc) (the designated confirmer’s private and public
key respectively). Gs is a probabilistic polynomial time algorithm that on
input 1n, outputs a pair of strings (SKs, PKs) (the signer’s private and
public key respectively).

2. Signature Extraction: A pair of polynomial time algorithms
(Extract, V erify) such that Extract on inputs m, σ, PKs, PKc and SKc

returns a string σ∗ and V erify on input PKs, m and σ∗ outputs valid or
invalid. If V erify(PKs, m, σ∗) = valid, where
σ∗ = Extract(m, σ, PKs, PKc, SKc), then we say that the Extract algo-
rithm was successful and σ∗ is a valid ordinary signature of m with respect
to PKs.

3. ConfirmedSign: An interactive protocol referred to as
ConfirmedSign(S,V) between interactive probabilistic polynomial time
algorithms(ITM) S and V which on common inputs (m, PKs, PKc) outputs
a pair (b, σ) where b ∈ {accept, reject} and σ is refereed to as the designated
confirmer signature of a signer S on message m. The requirements from
ConfirmedSign are: ∃ V such that
a) completeness: ∃ S (with auxiliary input SKs), such that

∀ (PKs, SKs) ∈ Gs and (PKc, SKc) ∈ Gc, ∀ m,
ConfirmedSign(S,V)(m, PKs, PKc) outputs (accept, σ) such that
V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc)) = valid.

b) Soundness: ∀ probabilistic polynomial time S′ with auxiliary in-
put5 y, ∀ m Pr[ConfirmedSign(S′,V)(m, PKs.PKc) outputs (accept, σ)

4 Ordinary signature schemes are secure if a forger cannot produce a signature on a
message that has not been signed before. It is not required that a forger would not
be able to produce a different signature on previously signed messages. Similarly, for
a designated confirmer signature scheme, we do not require (in part 6 of Def 1) that
it is infeasible for a forger F to produce new valid designated confirmer signatures
for messages previously signed.

5 This y captures the possible history, available to attackers, of interaction with Sign-
ers, Confirmers and Verifiers.

Transformation of Digital Signature Schemes 85

such that V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc)) �= valid] <
negl(n)
The probability is taken over all possible coins of the key generation al-
gorithms Gs, Gc and algorithms S′, V , and Extract.

4. Confirmation An interactive protocol referred to as Conf(C,V) between in-
teractive probabilistic polynomial time algorithms(ITM) C and V which on
common inputs (m, σ, PKs, PKc) outputs b ∈ {accept, reject}. The require-
ments from Conf are: ∃ V such that

a) Completeness: ∃ C (with auxiliary input SKC), such that
∀ (PKs, SKs) ∈ Gs and (PKc, SKc) ∈ Gc, ∀ m, if
V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc) = valid
then Conf(C,V)(m, σ, PKs, PKc) outputs accept

b) Soundness: ∀ probabilistic polynomial time C ′ (with auxiliary input y)
if V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc) �= valid
then Pr(Confirm(C′,V)(m, σ, PKs, PKc) outputs accept) < negl(n)
The probability is taken over all possible coins of C ′, V , Extract and the
key generation algorithms Gs and Gc.

5. Disavowal An interactive protocol referred to as Disvowal(C,V) between in-
teractive probabilistic polynomial time algorithms(ITM) C and V which on
common inputs (m, σ, PKs, PKc) outputs b ∈ {accept, reject}, The require-
ments from Disvowal are: ∃ V such that

a) Completeness: ∃ C (with auxiliary input SKc), such that
∀ (PKs, SKs) ∈ Gs and (PKc, SKc) ∈ Gc, ∀ m, if
V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc) �= valid,
then Disvowal(C,V)(m, σ, PKs, PKc) outputs accept

b) Soundness: ∀ probabilistic polynomial-time C ′ (with auxiliary input y),
if V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc)) = valid
then Pr(Disvowal(C′,V)(m, σ, PKs, PKc) outputs accept) < negl(n)
The probability is taken over all possible coins of C ′, V , Extract and the
key generation algorithms Gs and Gc.

6. We say that a designated confirmer signature scheme is secure if it meets
the following requirements:

a) Let F be a probabilistic polynomial time forging algorithm which,
on input strings PKs, PKc can first request the execution of
ConfirmedSign(S,F), Conf(C,F) and Disvowal(C,F) for polynomially
many adaptively chosen inputs of its choice; and then attempts to run
the ConfirmedSign protocol on m of its choice in the role of the prover.
We require that for all such F and m

Pr(ConfirmedSign(F,V)(1n, m, PKs, PKc) = (accept, σ)) < negl(n)

The probability is taken over all possible coins used by F , S, C, V and
the key generation algorithms Gs and Gc.

86 S. Goldwasser and E. Waisbard

b) Let F be a probabilistic polynomial time forging algorithm which, on in-
put strings 1n, PKs, PKc can first request the execution of
ConfirmedSign(S,F), Conf(C,F) and Disvowal(C,F) for polynomially
many adaptively chosen inputs of its choice; and then outputs a pair
(m, σ∗). We require that for all such F and m,

Pr(V erify(PKs, m, σ∗) = valid) < negl(n)

The probability is taken over all possible coins used by F , S, C, V and
the key generation algorithms Gs and Gc

c) Let F be a probabilistic polynomial time forging algorithm which, on
input strings 1n, PKs, PKc, and SKc, can first request the execution of
ConfirmedSign(S,F) for polynomially many adaptively chosen messages
{mi}, as well as request the execution of Conf(C,F) and Disvowal(C,F)
for polynomially many adaptively chosen inputs; and then outputs a
pair (m, σ′). We require that for all such F and for message m /∈ {mi}
(i.e not previously signed)

Pr(Conf(C,V)(1n, m, σ′, PKs, PKc) = accept) < negl(n)

The probability is taken over all possible coins used by F , S, C, V and
the key generation algorithms Gs and Gc.6

d) Security for designated confirmers: Let A be a probabilistic polyno-
mial time attacking algorithm which, on input strings 1n, PKs, PKc can
request the execution of ConfirmedSign(S,A), Conf(C,A) and
Disvowal(C,A) for polynomially many inputs of his choice and finally, for
a pair {m, σ} of his choice, A executes Conf(A,V)(1n, m, σ, PKs, PKc).
For all such A

Pr(Conf(A,V)(1n, m, σ, PKs, PKc) = accept) < negl(n)

The probability is taken over all possible coins used by A, S, C, V and
the key generation algorithms Gs and Gc.
Moreover, this should hold when many signers share the same confirmer.
Meaning, when A knows polynomially many SKsj such that
SKsj �= SKS.

3 Tools

Our transformation uses several tools, including ordinary digital signatures se-
cure against adaptive chosen message attack as defined in [16], public key en-
cryption secure against adaptive chosen ciphertext attack(CCA2) as defined in
6 Note that this requirement also implies that with high probability even the desig-

nated confirmer C can not run successfully ConfirmedSign(F,V) protocol on mes-
sages not previously signed, nor produce a valid ordinary signature of a message not
previously signed.

Transformation of Digital Signature Schemes 87

[8], canonical strong witness hiding proofs of knowledge defined in subsection 3.1,
and encrypted strong witness hiding proofs of knowledge defined in subsection
3.2.

3.1 Strong Witness Hiding Proofs of Knowledge

Witness Hiding proof of knowledge (WHPOK) were defined by Feige and Shamir
in [10] as follows.

Let R be a polynomial time relation. Namely, there exists a polynomial p
and a polynomial time computable function f such that

R = {(x, w) such that f(x, w) = 1, |w| < p(|x|)}
Let w(x) denote the set of w such that (x, w) ∈ R.

Definition 2 ([10]) : We say that G is a instance generator for relation R if
on input 1n it produces instances (x, w) ∈ R of length n. We say that G is a hard
instance generator if for any polynomial time witness finding F , P [(x, F (x)) ∈
R] < negl(n), where x ∈ G(1n). The probability is taken over the coin tosses of
G and F .

Definition 3 ([10]) : Let (P,V) be a proof of knowledge (POK) system for
relation R and let G be a hard instance generator for R. We say that (P, V) is
witness hiding proof of knowledge (WHPOK) on (R, G) if for any probabilistic
polynomial time V ′ there exist an expected polynomial time witness extractor M ,
P [(P (w), V ′)(x) ∈ w(x)] < P [M(x) ∈ w(x)] + negl(n) where x ∈ G(1n). The
probability is taken over the distribution of the inputs chosen by G and witnesses
as well as the random tosses of P ,V ′ and M .

In our context, the relation R we shall be interested in will be the pairs
of a message and a valid ordinary digital signature of message, for some given
ordinary digital signature scheme which is secure against chosen message attack.
As such, we shall need to deviate from the original definition of WHPOK in a
few aspects. First, for a secure digital signature scheme as defined by [16] it is
impossible to find a single valid (message, signature) pair in polynomial time
for messages not previously signed. Thus, our proofs of knowledge should be
witness hiding for any polynomial time distribution over R. Second, we require
the proof of knowledge to remain witness hiding, even the verifier chooses the
input message to run the protocol on after it participated in many executions
of the protocol on different input messages which were chosen adaptively by the
verifier himself. We call the modified definition strong witness hiding proofs of
knowledge (SWHPOK).

Definition 4 Let (P,V) be a proof of knowledge (POK) system for relation R.
We say that (P, V) is strong witness hiding (SWH) on R if for any probabilistic
polynomial time V ′ who can in a preliminary stage choose (adaptively) polynomi-
ally many xi and run (P (wi), V ′)(xi), and only later choose a challenge x �= xi,

88 S. Goldwasser and E. Waisbard

there exist a witness extractor M which runs in expected polynomial time such
that P [(P (w), V ′)(x) ∈ w(x)] < P [M(x) ∈ w(x)] + negl(n). The probability is
taken over the distribution of witnesses as well as random coin tosses of P, V ′, G
and M .

Finally, in order to be able to apply the technique of Camenisch and Damgard
[1] of encrypted witness hiding proofs of knowledge, we require that our protocols
will be of canonical form defined as follows.

Definition 5 A Canonical witness hiding proof of knowledge for a boolean re-
lation R ⊆ {0, 1}∗ × {0, 1}∗ is a three-move SWHPOK for R which is defined
by three probabilistic procedures (P1, P3, V erdict), satisfying the following condi-
tions:
1. On common input x and an auxiliary input w, P ’s first step uses P1 to compute
the first message to be sent t and some side information r. At the second step the
verifier sends a random bit string c as a challenge. At the third step the prover
uses x, w, r and c as input to P3 to compute a response s, which he sends to
the verifier. In the forth step the verifier uses the predicate V erdict taking x, t, c
and s as inputs to check whether s is a valid response. A triple (t, c, s), such that
V erdict(x, t, c, s) accepts is called an accepting triple for x.
2. The number of possible challenges that can be sent by the verifier is polynomial
in the security parameter.
3. There exist a knowledge extractor that can extract the witness from knowing
the answer to all possible challenges.

Note that we have added the requirement of being strong WH into what we call
a canonical WHPOK. Also, note that there is no requirement above of having
negligible soundness probability. Indeed in all the canonical WHPOK that on
which we perform transformations in this paper, the challenge of the verifier is
a single bit which yields an overall soundness probability of 1

2 .

3.2 Encrypted Strong Witness Hiding Proofs of Knowledge of a
Signature

An important tool used by the construction is called a encrypted strong witness
hiding proof of knowledge. The idea is as in [1] where they apply the technique
to zero-knowledge protocols.

Start with any signature scheme existentially unforgeable under adaptive
chosen message attack Σ = (SG, Sign, V erify) where SG is the key generation
algorithm, and Sign (and V erify) are the signing (and verifying) algorithms.
Define the relation

RΣ = {((PKs, m), σ) : V erify(PKs, m, σ) = valid, (PKs, SKs) ∈ SG(1k)}
Assume you are given, for simplicity of exposition, a canonical strong WH-

POK for relation RΣ defined by three probabilistic algorithms (P1, P2, V erdict)
where the number of possible challenges of the verifier is two and the soundness

Transformation of Digital Signature Schemes 89

probability is 1
2 (in general the construction works for any polynomial number

of challenges).

Canonical witness hiding proof of knowledge for RΣ :
Common input to both prover and verifier is (PKs, m). Auxiliary input to the
prover is σ, such that ((PKs, m), σ) ∈ RΣ .

1. The prover computes (t, r) = P1((PKs, m), σ) and sends t to the verifier.
2. The verifier selects b ∈R {0, 1} and send it to the prover.
3. The prover calculates s = P3((PKs, m), σ, r, b) and sends it to the verifier.
4. The verifier accepts if V erdict((PKs, m), t, b, s) = 1, otherwise he rejects.

Now, let Enc = (EG, E, D) be a given a CCA2 secure public key encryption
scheme. In our context, the public encryption key (and corresponding secret
decryption key) will be of the designated confirmer C and we denote them by
PKc (and SKc respectively). The above protocol is turned into an encrypted
witness hiding proof of knowledge for RΣ as follows.

Encrypted canonical witness hiding proof of knowledge for RΣ :
Common input to both prover and verifier is m, PKs, PKc. Auxiliary input to
the prover is σ such that ((PKs, m), σ) ∈ RΣ .

1. The prover computes (t, r) = P1((PKs, m), σ), s0 = P3((PKs, m), σ, r, 0) and
s1 = P3((PKs, m), σ, r, 1); encrypts s0 and s1, using the designated confirmer’s
public key to obtains e0 ∈ EPKc(s0) and e1 ∈ EPKc(s1). Then, the prover sends
(t, e0, e1) to the verifier.
2. The verifier selects b ∈R {0, 1} and sends it to the prover.
3. The prover reveals sb and the random coins rb that were used in the encryption.
4. If EPKc

(sb, rb) = eb and V erdict((PKs, m), t, b, sb) = 1, the verifier accepts,
otherwise he rejects.

Essentially, in this protocol at the first round the prover sends an encrypted
answer to both possible challenges one of which will be decrypted on the third
round.

Running this basic protocol k times in sequence decreases the probability of
cheating to 1

2k , but costs a possibly prohibitive 3k rounds. To reduce the the
number of rounds to constant maintaining negligible probability of error, we can
employ ideas similar to Goldreich-Kahan[13]7 or utilize a trapdoor commitment
scheme as suggested in [1].

7 Recalling, the idea of [13], is to simply add an initial round in which the verifier
commits to all his challenges in advance b1, · · · bk, followed by k parallel executions
of the above 3-round protocol with the modification that the verifier decommits its
challenges b1, · · · , bk in step (2) rather than simply sending them in the clear. This
transformation maintains the SWH property.

90 S. Goldwasser and E. Waisbard

Theorem 6 The modified protocol remains a canonical (strong) witness hiding
proof of knowledge for the relation RΣ

4 A General Construction of Designated Confirmer
Signature

Let Σ = (SG, Sign, V erify) be a signature scheme which is existentially un-
forgeable under chosen message attack which has a canonical strong WHPOK
for the relation RΣ

8 . Let Enc = (EG, E, D) be a CCA2 secure encryption
scheme.

In the following we let S denote the signer, V the verifier in the various
protocols, and C the designated confirmer. We let (PKs, SKs) ∈ SG(1k)
denote the public verification key and the secret signing key of the signer and
(PKc, SKc) ∈ EG(1k) be the public encryption key and the private decryption
key of the designated confirmer.

The Designated Confirmer signature scheme:
Key Generation Algorithms: (Gs, Gc) = (SG, EG). The key generation

algorithm consists of the pair of key generation algorithm for the signature and
encryption schemes in use.

ConfirmedSign protocol: S computes an ordinary signature σ of m by
computing σ ∈ SignSKs(m). Then, the encrypted canonical witness hiding proof
of knowledge for RΣ of section 3.2 is run between the signer S in the role of a
prover and verifier V on common inputs m, PKs and PKc and auxiliary input
σ to S.

The triple σ′ = (t, e0, e1) (defined during the protocol) is defined to be
the designated confirmer signature of message m with respect to PKs. When
the protocol is repeated k times, the designated confirmer signature of m is
{(ti, ei0, ei1), i = 1, · · · , k}.

Signature Extraction: Extracting an ordinary signature σ of message m
such that
V erify(PKS , m, σ) = valid from a designated confirmer signature σ′ where
(accept, σ′) ∈ ConfirmedSignS,V (m, PKs, PKc) is straightforward for C. C
simply decrypts e0 and e1 to obtain s0 and s1. Knowing both s0 and s1 implies
extraction of the ordinary signature σ using the knowledge extractor of the
witness hiding proof of knowledge protocol for σ.9

8 At the moment we are assuming we are given such a WHPOK. We know that such
WHPOK exist if one-way permutations exist. Later we will show efficient construc-
tion of such protocols for a large family of signature schemes.

9 Note that the probability that upon decryption it is discovered that s0, s1 were
not properly encrypted is essentially the same as the soundness probability of the
witness hiding protocol. In the full protocol with k repetitions where the designated
confirmer signature is (ti, ei0 , ei1) for i = 1, · · · , k, the probability that there exist
a pair ei0 , ei1 which properly decrypts to a pair s0 and s1 from which σ can be
decrypted is negligibly close to 1.

Transformation of Digital Signature Schemes 91

Confirmation protocol: On common inputs m, an alleged designated con-
firmer signature σ′, and PKs, PKc the following protocol is run between con-
firmer C and verifier V . C has as an auxiliary input SKc. First, C extracts an
ordinary signature of m, by σ = Extract(m, σ′, PKs, PKc, SKc). If
V erify(PKs, m, σ) = invalid, then the confirmation protocol outputs invalid
and stops. If V erify(PKs, m, σ) = valid, then C (as prover) and V (as veri-
fier) run the canonical strong WHPOK for RΣ on common input (PKs, m) and
auxiliary input σ to C.

Disavowal protocol Disavowal(C,V): Given m and alleged DCS σ′ for
which V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc)) = invalid the disavowal
protocol is a zero-knowledge proof that
V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc)) = invalid.
The latter is obviously an NP statement.

Theorem 7 The above system constitutes a secure Designated Confirmer Sig-
nature scheme, given that Sign is existentially unforgeable under chosen message
attack and Enc is a CCA2 secure public key encryption scheme

Proof. For brevity, let us include only a sketch of the proof.
First, we need to show that any polynomial time adversary A, participating

in ConfirmedSign(S,A), Conf(C,A) and Disavowal(C,A) in the role of the verifier
on polynomially many messages m1, . . . , mk of his choice, cannot successfully run
ConfirmedSign(A,V)(m, PKs, PKc) or compute an ordinary signature σ∗ such
that V erify(PKs, m, σ∗) = valid for any message m of his choice (regardless
whether m ∈ {m1, · · · , mk} or not). Suppose for contradiction that such an A
does exist. Since ConfirmedSign(A,V)(m, PKs, PKc) is a proof of knowledge, an
adversary A that successfully run ConfirmedSign(A,V)(m, PKs, PKc), can also
extract an ordinary signature σ′ of m with high probability. This contradicts the
assumption that ConfirmedSign(S,A) and Conf(C,A) are strong witness hiding
and thus do not reveal an ordinary signature for any message.

Next, we need to show that such F cannot produce a pair (m, σ) where
Conf(C,V)(m, σ, PKs, PKc) will be successful, namely for which
V erify(PKs, m, Extract(m, σ, PKs, PKc, SKc)) = valid, for a new m not pre-
viously signed. Suppose for contradiction that such an A does exist. Then, a
success of A would constitute a successful malleability attack on the encryption
scheme EPKc which is impossible as EPKc was taken to be secure against CCA2.

Finally, we need to show that any coalition of probabilistic polynomial time
adversaries {Ai} with secret signing keys {SKi}, playing ConfirmedSign(S,Ai),
Conf(C,Ai) and Disavowal(C,Ai) in the role of the verifier on polynomially many
messages m1, . . . , mk of their choice, cannot successfully run Conf(Ai,V) on
any pair (m, σ) . Here again, since Conf(Ai,V) is a POK, successfully running
Conf(Ai,V), means that Ai can extract an ordinary signature of m with high
probability which contradicts the fact that Conf and SignedConf are witness
hiding. ��

92 S. Goldwasser and E. Waisbard

4.1 On the Complexity of the Construction

Unlike the efficient WHPOK ConfirmedSign and Conf , the Disavowal pro-
tocol is a less efficient ZKPOK. We claim that due to the rare expected use
of Disavowal it has very lite effect on the overall efficiency of the scheme. See
discussion in 1.1.

One problematic point is that per our description the verifier must store the
designated confirmer signature in its entirety, i.e (t, ei0 , ei1), 1 ≤ i ≤ k, in case
it needs to be presented in a later time to the confirmer for confirmation. If
the signer was honest, σ can be extracted from any of the triples (t, ei0 , ei1)
and thus saving a single triplet would significantly reduce the storage needed.
However, saving a single triplet does not suffice in case of a cheating signer as it
may be triple which does not enable extraction and was not detected during the
signing protocol with probability 1

2 . By choosing to store only a random subset
of the triples (hoping you store at least one proper one), one may tradeoff the
probability of being able to eventually extract and storage.10

5 Cramer-Shoup Based DCS

In this section we show how to transform the Cramer-Shoup (CS) signature
scheme [6] into a designated confirmer signature scheme. Since the CS signature
scheme is existentially unforgeable under chosen message attack, using the con-
struction in 4 we can transform it into a DCS scheme. In order to do that we
describe a canonical WHPOK of a CS signature.

5.1 The Cramer-Shoup Signature Scheme

The Cramer-Shoup signature scheme [6] is an efficient signature scheme, which
is existentially unforgeable under chosen message attack under the strong RSA
assumption.

Definition 8 The strong RSA assumption is the assumption that given a
randomly chosen RSA modulus n and a random z ∈ Z∗

n, it is hard find r > 1
and y ∈ Z∗

n, such that yr = z.

The Cramer-Shoup scheme:
Key Generation: Two random l′-bit primes p and q are chosen, where

p = 2p′ + 1 and q = 2q′ + 1, with both p′ and q′ prime. Let N = pq. Also chosen
are h, x ∈ QRN and a random (l +1)−bit prime e′. The private key is (p, q) and
the public key is (N, h, x, e′) along with a collision resistance hash function H
(e.g. SHA-1).

Signature generation: To sign a message m, a random (l+1) bit prime e �=
e′ is chosen and a random x′ ∈ QRN is chosen The equation ye = xhH(x′)mod N

10 A back of the envelope calculation shows that if one chooses at random l out of k
pairs to store, the probability (after having passed the confirmation protocol) that
the confirmer will not be able to extract the signature is 1

2l
1

(k−l)l .

Transformation of Digital Signature Schemes 93

is solved for y and the equation (y′)e′
= x′hH(m)mod N is solved for y′. The

Cramer-Shoup signature is (e, y, y′).
Signature verification: To verify a signature (e, y, y′) on a message m, e

is first checked to be an odd (l + 1)-bit number different from e′. Second, x′ =
(y′)e′

h−H(m)mod N is computed. Third, it is checked that x = yeh−H(x′)mod N .

5.2 Canonical WHPOK of a CS Signature

Proving knowledge of a CS signature of a message m amounts to proving knowl-
edge of (e, y, y′) such that ∃e, x′ satisfying the equations ye = xhH(x′) mod N
and (y′)e′

= x′hH(m) mod N . In order to prove knowledge of a CS signature we
use a ZKPOK of the ith root as a tool.

Protocol I: Zero-knowledge proof of knowledge of the ith root:
On common input w, i, N such that w = si mod N , and auxiliary secret

input s to the prover.

1. The prover picks r ∈R Z∗
n, computes v = ri mod N and sends v to the verifier.

2. The verifier picks b ∈R {0, 1} and sends b to the prover.
3. The prover sends t = rsb mod N to the verifier.
4. The verifier accepts iff ti ≡ vwb (mod N). (To achieve lower soundness prob-
ability the protocol may be repeated.)

Theorem 9 Protocol I is a perfect zero-knowledge proof of knowledge of s.

Protocol II: Strong WHPOK of Cramer-Shoup signatures. On common
input message m, a Cramer-Shoup public key (N, h, x, e′) and an auxiliary secret
input to the prover (e, y, y′) (a Cramer-Shoup signature of m).

1. The prover sends e, x′ to the verifier where x′ = (y′)e′
h−H(m) mod N .

2. The prover proves in zero-knowledge (using Protocol I of 3.2) that he knows
a y, such that ye = xhH(x′) mod N and that he knows a y′, such that
(y′)e′

= x′hH(m) mod N .

Theorem 10 Protocol II is a strong WHPOK of a Cramer-Shoup signatures

Proof. It is easy to see that completeness holds - a prover that knows a CS
signature of m can always convince a verifier.

Since we are using the ZKPOK of a modular root, there exist a knowledge
extractor for y (the eth root of xhH(x′)) and y′(the e′th root of x′hH(m)). These
y and y′, together with the e given in the first round are a CS signature of m,
hence a witness-extractor exist.

Soundness holds because a cheating prover, that does not know a CS signa-
ture, cannot prove knowledge of either, the eth root of xhH(x′), or the e′th root
of x′hH(m). Thus, the soundness is guaranteed by the soundness of the POK of
the eth root.

94 S. Goldwasser and E. Waisbard

The most important thing we need to prove in order to apply the general
construction to the above protocol is that it is indeed strong witness hiding.
It was already proved in [6] that seeing a Cramer-Shoup signature on polyno-
mially many messages does not enable an adversary to sign any new message
that has not been signed before, let alone seeing only a partial CS signature.
It remains to show that executing the above protocol does not reveal the
Cramer-Shoup signature of any of the messages on which it was run. Assume
toward contradiction that there exist an adversary A that on a Cramer-Shoup
public key (N, h, x, e′), executes the above protocol in the role of a verifier with
the signer in the role of a prover on polynomially many messages of the verifiers
choice m1, . . . , mt and finally outputs, with non-negligible probability, a pair
(m, σ), where m ∈ {m1, . . . , mt} and σ is a valid Cramer-Shoup signature of m.
We show that such algorithm A can be used to construct the following forging
algorithm B for the standard Cramer-Shoup signature scheme. B will utilize
A’s algorithm for this purpose (i.e B will run A on different inputs and random
tapes).

The Forging Algorithm B:

Algorithm B’s input: A Cramer-Shoup public key (N, h, x, e′) and access to
A’s program.
Algorithm B’s output: A pair (m, σ), where m is a message and σ = (e, y, y′)
is a Cramer-Shoup signature of m.

1. Query phase: Initially B interacts with A where B acts in the role of the
prover and A the verifier in protocol II above, perfectly simulating A’s view
of interacting with legitimate signer without ever querying the signer. On
message mi of A’s choice, B proves to A that he knows a Cramer-Shoup
signature of mi in the following way:
a) B picks a random (l +1)-bit prime ei and x′

i ∈R QRN and sends (ei, x
′
i)

to A.
b) B proves to A in zero-knowledge that he knows yi, such that

yei
i = xhH(x′

i) mod N and y′
i, such that (y′

i)
e′

= x′
ih

H(mi) mod N .
Naturally, B does not know such yi and y′

i. Nevertheless, B can perfectly
simulate A’s view using the standard rewinding technique for proving
zero-knowledge - taking advantage on the ability to rewind A upon a
challenge that B was not prepared for11

2. Output phase: If A outputs a valid Cramer-Shoup signature σ for m ∈
{m1, . . . mt} (or any m for that matter), then B outputs < m, σ >.

Clearly, B runs in expected polynomial time as so does A. B perfectly simu-
lates A’s view as the x′

i and ei are uniformly distributed (completely independent
of the mi) and thus if A outputs a Cramer-Shoup signature with non-negligible
11 The number of possible challenges in each round of the ZKPOK of the e′th root is

2 and thus running the protocol simultaneously for y and y′ brings the number of
possible challenges to 4 and can be easily simulated.

Transformation of Digital Signature Schemes 95

probability, so does B, contradicting the fact that the Cramer-Shoup signature
scheme is existentially unforgeable under the strong RSA assumption.

��

We remark that one could simplify protocol II further and rather than run-
ning step 2 as it is, allow the verifier to choose at random whether to engage
in a WHPOK of y such that ye = xhH(x′) mod N (step 2(a) in protocol II),
or a WHPOK of y′, such that (y′)e′

= x′hH(m) mod N (step 2(b) in protocol
II) but not both. Since, knowing a legal Cramer-Shoup signature of m means
knowing both y and y′, a cheating prover who cannot answer both challenges
will be caught with probability 1

2 .
Finally, protocol II did not have a canonical form. It can be easily turned

canonical 3-round protocol (to be repeated in turn k times), included for
completion.

Canonical strong WHPOK of Cramer-Shoup signature m: On common
input m, Cramer-Shoup public key (N, h, x, e′) and auxiliary secret input to
prover (e, y, y′).

1. prover calculates x′ = (y′)e′
h−H(m) mod N , picks r, r′ ∈R Z∗

n, computes
v = re mod N , v′ = r′e′

mod N and sends e, x′, v, v′ to the verifier.
2. verifier picks b, b′ ∈R {0, 1} and them to the prover.
3. prover sends t = ryb mod N and t′ = r′y′b′

mod N to the verifier.
4. verifier accepts iff te ≡ v(xhH(x′))b (mod N) and t′e

′ ≡ v′(x′hH(m))b′
(mod

N).

6 Goldwasser-Micali-Rivest Based DCS

In this section we show how to transform the Goldwasser-Micali-Rivest (GMR)
signature scheme into a designated confirmer signature scheme. Since the GMR
signature scheme is existentially unforgeable under chosen message attack, using
the construction in 4 we can transform it into a DCS scheme. In order to do that
we describe a canonical strong WHPOK of a GMR signature.

6.1 The GMR Signature Scheme

The digital signature scheme of Golwasser Micali and Rivest [16] is existentially
unforgeable under chosen message attack under the assumption that claw-free
trapdoor permutation (pairs f0, f1 for which it is hard to find x, y such that
f0(x) = f1(y)) exist. In [16] it is shown that such family of trapdoor permutation
exists if factoring is hard.

Before we describe the scheme we recall the followings notation:

Definition 11 Let σ = σ1σ2 . . . σn where σi ∈ {0, 1}. we denote by fσ(x) =
fσ1(fσ2(· · · fσn

(x) · · ·)) and f−1
σ (y) = f−1

σn
(f−1

σn−1
(· · · f−1

σ1
(y) · · ·))

96 S. Goldwasser and E. Waisbard

The GMR scheme is defined by the following three probabilistic algorithms:

Key Generation: Choose two pairs of claw-free permutations, (f0, f1) from
a common domain Df and (g0, g1), from a common domain Dg for which
you know f−1

0 , f−1
1 , g−1

0 , g−1
1 . Uniformly choose X ∈ Df . The public key is:

(Df , X, f0, f1, g0, g1) and the secret key is (f−1
0 , f−1

1 , g−1
0 , g−1

1).
Signing a message: We denote by H the history and we set H1 = φ. To

sign the ith message mi, uniformly choose Ri ∈ Dg. Set zi
1 = f−1

Hi◦Ri
(X)

and zi
2 = g−1

mi
(Ri). The signature is σ(mi) = (zi

1, z
i
2, Hi) and the history is

updated, setting Hi+1 = Hi ◦ Ri.
Verifying a signature (z1, z2, H): Accept iff fH◦R(z1) = X for R = gm(z2).

Theorem 12 ([16]) : If claw-free permutations exist, the above scheme is ex-
istentially unforgeable under chosen message attack.

6.2 Factoring Based GMR Scheme

An implementation based on intractability assumption of factoring is suggested
in [16]. Let N = pq be the product of two primes satisfying p ≡ q ≡ 3(mod 4)
and p �= q(mod 8). f0 = x2 mod N and f1 = 4x2 mod N are permutations over
the set of quadratic residues mod N .

Theorem 13 ([16]) Under the intractability assumption of factoring the
(f0, f1)−pair are claw-free trapdoor permutations.

It was noted by Goldreich [12] that the factoring based implementation of
the GMR can be sped up. For the (f0, f1)−pair described above, a fast way of
computing f−1

α (x), where |α| = k, is by computing

f−1
α (x) =

RN (2k, x)
(RN (2k, 4))i(α)

Where i(α) denotes the integer encoding of α and RN (2k, x) denotes the 2kth
root of x modulo N .

6.3 Canonical WHPOK of the Factoring Based GMR Signature

Proving knowledge of a GMR signature amounts to proving knowledge of a
triple (z1, z2, Hi) such that ∃Ri, such that z2 = g−1

m (Ri) and z1 = f−1
Hi◦Ri

(X).
The WHPOK of a GMR signature that we present12 takes advantage on the
special structure of the factoring based GMR scheme. Let f0(x) = x2 mod N1,
f1(x) = 4x2 mod N1, g0(x) = x2 mod N2 and g1(x) = 4x2 mod N2. Our
12 In[16] a tree like structure is imposed on the Hi’s, but here, for simplicity, we discuss

the simpler and less efficient version in which the Hi’s grows linearly in the number
of signed messages.

Transformation of Digital Signature Schemes 97

protocol uses the fact that in the factoring based GMR scheme, proving
knowledge of g−1

m (Ri) and f−1
Hi◦Ri

(X) is done by proving knowledge of modular
roots. Thus, we can use the ZKPOK of the ith root from 3.2 as a tool, toward
a canonical WHPOK of a GMR signature of m.

Protocol III: Strong WHPOK of a Factoring based GMR signature :
On a common input m and public key (N1, N2, X ∈ Z∗

N1
) and an auxiliary input

to the prover σ = (z1, z2, Hi) (a valid GMR-signature of m).

1. The prover computes Ri = gm(z2) and sends Ri, Hi to the verifier.
2. The prover proves in zero-knowledge that he knows (z1, z2) such that z2 =

g−1
m (Ri) and z1 = f−1

Hi◦Ri
(X). Proving knowledge of g−1

m (Ri) amounts to
proving knowledge of the 2|m|th root of Ri (mod N2) and proving knowledge
of the 2i(|m|)th root of 4 (mod N2). Namely, knowing how to calculate both
the nominator and the denominator in g−1

m (Ri) = RN (2|m|,Ri)
(RN (2|m|,4))i(m) .

Similarly, proving knowledge of f−1
Hi◦Ri

(X) amounts to proving knowledge of
the 2|Hi◦Ri|th root of X (mod N1) and proving knowledge of the 2i(|Hi◦Ri|)th
root of 4 (mod N1)

Theorem 14 Protocol III is a strong WHPOK of a GMR signature of m.

Proof. The proof is essentially the same as 5.2. We include it for completion. It
is easy to see that completeness holds - a prover that knows a GMR signature
of m can always convince a verifier.

Since we are using the ZKPOK of a modular root, there exist a knowledge
extractor for the 2|m|th root of Ri (mod N2) and the 2i(|m|)th root of 4, hence
there exist a knowledge extractor for z2 = g−1

m (Ri). Similarly there exist a knowl-
edge extractor for z1 = f−1

Hi◦Ri
(X). These z1, z2, together with the Hi given in

the first round are a GMR signature of m, hence a witness-extractor exist.
Soundness holds because a cheating prover, that does not know a GMR

signature, cannot prove knowledge of at least one of the modular roots he is
required to in step 2 of the protocol of 6.3. Thus, a cheating prover has a prob-
ability at most 3

4 to fool the verifier. Repeating step 2 k times this probability
is reduced to (3

4)k.
We now show that the above protocol is strong witness hiding. It was al-

ready proved in [16] that seeing GMR signatures for m1, . . . mt chosen adaptively
by the adversary does not enable an adversary to produce a GMR signature for
a new m /∈ {m1, . . . mt}, let alone seeing partial GMR signatures. But, suppose
toward contradiction that there exists an adversary A, which after running the
above protocol III on message m1, . . . mt adaptively chosen can produce a GMR
signature (z1, z2, Hi) for an m ∈ {m1, . . . mt}. We show that the existence of
such A implies that the original GMR scheme is not existentially unforgeable
and thus contradicts the existence of claw-free trapdoor permutations assump-
tion (e.g. factoring is hard).

98 S. Goldwasser and E. Waisbard

Intuitively, since Ri and Hi are chosen at random, independently from
the message m and the public key, they do not allow an adversary to sign a
message. Formally, using A as an internal procedure whose inputs and random
tape can be set, we describe an algorithm B that on a GMR public key forges
GMR signatures.

Algorithm B’s input: GMR public verifying key PK = (N1, N2, X ∈ Z∗
N1

)
and A’s program.
Algorithm B’s output: pair (m, σ) where σ is a valid GMR-signature of m
with respect to PK.

1. Initially, B runs algorithm A on input PK. For each chosen message mi

by A, B proves to A on common inputs (mi, PK) that he knows a GMR
signature of mi (as in protocol III) as follows .
a) B chooses Ri ∈R Dg and Hi ∈R Dg and gives Ri, Hi to A.
b) B proves in zero-knowledge that he knows z1, z2 such that z2 = g−1

m (Ri)
and z1 = h−1

Hi◦Ri
(X). Naturally, B does not know such z1 and z2, never-

theless, B can perfectly simulate A’s view using the standard rewinding
technique for proving zero-knowledge - taking advantage on the ability
to rewind A upon a challenge that B was not prepared for.

2. If A outputs a valid GMR signature (z1, z2, H) for m ∈ {m1, . . . mt}, then
B outputs (m, (z1, z2, H)).

Clearly, B runs in probabilistic polynomial time as does A. In step 1(c) B
perfectly simulates A’s view and thus in step 2, the adversary A would output a
GMR signature with the same probability as when running with the true signer.

��

We remark that one could simplify the above protocol III further (as we did
in the Cramer-Shoup case) so that the verifier chooses at random whether the
prover will prove knowledge of z1 s.t. z1 = h−1

Hi◦Ri
(X), or knowledge of z2 s.t.

z2 = g−1
m (Ri), but not both.

7 Gennaro-Halevi-Rabin Based DCS

In this section we show how to transform the Gennaro-Halevi-Rabin digital sig-
nature (denoted the GHR scheme) [15] into a designated confirmer signature
scheme. The GHR-signature scheme is existentially unforgeable under chosen
message attack, assuming the strong RSA assumption.

The idea of GHR-signatures is as follows. Let the public key be a triple
(n, h, x) where n is an RSA modulus, x ∈R Z∗

n and h ∈R H where H is family of
hash functions which [15] is proved to exists under the strong RSA assumption.
On a message m, the signature is defined to be σn(m) = x

1
h(m) mod n.

Transformation of Digital Signature Schemes 99

7.1 Transforming GHR Signatures into a DCS Scheme

In order to turn the GHR signature scheme into a designated confirmer
signature scheme using the type of ideas we have used in this paper, we need to
give a canonical WHPOK of R = {(m, σn(m))} to be used as a confirmation
protocol between signer and verifier. In fact, we do better than that and can
give a 3-round zero-knowledge proof of knowledge of a signature.

ZKPOK of a GHR signature of message m: On common input message
m and public-key (n, h, x), and a prover’s auxiliary input a signature of m,
x

1
h(m) mod n:

1. The prover picks a random r′ ∈ Z∗
n and calculates r = (r′)h(m) mod n

(which makes r′ ≡ r
1

h(m) (mod n)) and sends r to the verifier.
2. The verifier picks b ∈R {0, 1} and sends it to the signer.
3. The prover sends c = r′(x

1
h(m))b mod n to the verifier.

4. The verifier accepts iff ch(m) ≡ rxb (mod n).

The above protocol is repeated k times and the verifier accepts iff he accepts
in each of the iterations, dropping the error probability to 1

2k . It is easy to
verify that the protocol is ZKPOK (with respect to sequential repetitions) with
standard methods (similarly to the proof given in 3.2). Using the Goldreich-
Kahan [13] methods it can be converted to constant rounds.

7.2 Transforming the Deterministic RSA into a DCS Scheme

Instead of using the GHR-signature scheme and the strong-RSA assumption, we
could use an even simpler version of the above protocols to get a DCS scheme
starting from the plain RSA scheme itself[20]. Let (n, e) be the RSA public key
and d be the RSA secret exponent. A RSA signature of m is md mod n. Thus,
proving knowledge of RSA signature of m amounts to proving knowledge of the
dth modular root of m. This can be done using the ZKPOK of the ith modular
root that we already described in 3.2.

We note that as RSA itself is existentially forgeable, so will be the DCS
originating from it. Interestingly, however, whereas the plain RSA scheme is
universally forgeable under chosen message attack, this is no longer true for the
deterministic RSA based DCS. The reason is that the verifier can no longer
request the signer for RSA signatures of messages of his choice, but only to
execute ConfirmedSign(S,V) (where the signer proves knowledge of an ordinary
RSA signature without revealing it). Thus, in a sense the DCS obtained by
transforming the RSA signature scheme into a DCS scheme is more secure than
the signature scheme one starts with.

Acknowledgements. We are grateful to O. Goldreich, A. Shamir, M. Naor
and A. Kipnis for their useful comments. We also like to thank the anonymous
referees for their useful and detailed comments.

100 S. Goldwasser and E. Waisbard

References

1. J. Camenisch, Ivan Damgȧrd. Verifiable Encryption, Group Encryption, and Their
Applications to Separable Group Signatures and Signature Sharing Schemes. ASI-
ACRYPT 2000 pp. 331–345

2. J. Camenisch, M. Michels. Confirmer Signature Schemes Secure against Adaptive
Adversaries. EUROCRYPT 2000 pp. 243–258

3. J. Camenisch, V. Shoup. Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. Cryptology ePrint Archive (November 2002).

4. D. Chaum. Designated confirmer signatures. In EUROCRYPT ’94, vol. 950 of
LNCS, pp. 86–91. Springer Verlag, 1994.

5. D. Chaum, H. Van Antwerpen. Undeniable Signatures. In CRYPTO 1989 pp. 212–
216

6. R. Cramer, V. Shoup. Signature Schemes Based on the Strong RSA Assumption.
ACM Conference on Computer and Communications Security 1999 pp. 46–51

7. W. Diffie and M. Hellman, New directions in cryptography. IEEE Trans. Inform.
Theory IT-22, (Nov. 1976), pp. 644–654.

8. D. Dolev, C. Dwork, M. Naor. Non-Malleable Cryptography (Extended Abstract).
STOC 1991 pp. 542–552

9. U. Feige, A. Fiat, A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryp-
tology 1(2) pp. 77–94 (1988)

10. U. Feige, A. Shamir: Witness Indistinguishable and Witness Hiding Protocols.
STOC 1990. pp. 416–426.

11. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. CRYPTO 1986. pp. 186–194

12. O. Goldreich. Two Remarks Concerning the Goldwasser-Micali-Rivest Signature
Scheme. CRYPTO 1986 pp. 104–110

13. O. Goldreich, A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP, Journal of Cryptology 1995.

14. O. Goldreich, S. Micali, A. Wigderson. How to Prove all NP-Statements in Zero-
Knowledge, and a Methodology of Cryptographic Protocol Design. CRYPTO 1986:
171–185

15. R. Gennaro, S. Halevi, T. Rabin. Secure Hash-and-Sign Signatures Without the
Random Oracle. EUROCRYPT 1999 pp. 123–139

16. S. Goldwasser, S. Micali, R. L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2): 281–308 (1988)

17. M. Jakobsson, K. Sako, R. Impagliazzo. Designated Verifier Proofs and Their Ap-
plications. EUROCRYPT 1996 pp. 143–154

18. M. Michels, M. Stadler. Generic Constructions for Secure and Efficient Confirmer
Signature Schemes. EUROCRYPT 1998: 406–421

19. T. Okamoto. Designated confirmer signatures and public-key encryption are equiv-
alent. In CRYPTO ’94, vol. 839 of LNCS, pp. 61–74. Springer Verlag, 1994.

20. R. L. Rivest, A. Shamir, L. M. Adleman: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. CACM 21(2): 120–126 (1978)

	Introduction
	New Results
	Related Work

	New Definition for a DCS
	Informal Outline of the Definition
	Formal Definition

	Tools
	Strong Witness Hiding Proofs of Knowledge
	Encrypted Strong Witness Hiding Proofs of Knowledge of a Signature

	A General Construction of Designated Confirmer Signature
	On the Complexity of the Construction

	Cramer-Shoup Based DCS
	The Cramer-Shoup Signature Scheme
	Canonical WHPOK of a CS Signature

	Goldwasser-Micali-Rivest Based DCS
	The GMR Signature Scheme
	Factoring Based GMR Scheme
	Canonical WHPOK of the Factoring Based GMR Signature

	Gennaro-Halevi-Rabin Based DCS
	Transforming GHR Signatures into a DCS Scheme
	Transforming the Deterministic RSA into a DCS Scheme

