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TRANSFORMATION OF PROGRAMS FOR 

FAULT TOLERANCE 

ZHIMING LIU, MATHAI JOSEPH 

(RR165) 

It has been usual to consider that the steps of program refinement start with a program specification and end 

with the production of the text of an executable program. But for fault-tolerance, the program must be capable 

of taking account of the failure modes of the particular architecture on which it is to be executed. In this paper 

we shall describe how a program constructed for a fault free system can be transformed into a fault-tolerant 

program for execution on system which susceptible to failures. We assume that the interference by a faulty 

environment F on the execution of a program P can be described as afault-transformation F which transforms 

P into a program F(P) = P ED F. A recovery transformation R transforms P into a program R(P) = PUR by 

adding a set of recovery actions R, called a recovery program. If the system is fail stop and faults do not affect 

recovey actions, we have 

F (R(P)) = F(P)HR = (P C) F)1112 

We illustrate this approach to fault-tolerant programming by considering the problem of designing a protocol 

that guarantees reliable communication from a sender to a receiver in spite of faults in the communication 

channel between them. 
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1 Introduction 

Refinement from specification provides a useful way of systematically constructing 

programs. Using this method, an original high level program specification is transformed 

by a sequence of correctness preserving refinements into an executable and efficient 

program [Lam83,AL88,Bac87,Bac88,BvW89,Bac89]. It has been usual to consider that 

the steps of refinement end with the production of the text of an executable program. But in 

many cases the program must be transformed to take account of the features (or limitations) 

of the particular architecture on which it is to be executed. In this paper we shall describe 

how such transformations can be performed for a program which is to be executed on a 

system which is susceptible to failures. 

Our objective is to use transformations to construct a fault-tolerant program from a 

program constructed for afault-free system. Let P be a program satisfying the specification 

Spp. Let the effect of each physical fault in the system on which P is executed be described 

as a fault action which transforms a good program state into an error state which violates 

Spp. Physical faults can be then modelled as the actions of a fault program F which 

interferes with the execution of P. A failure at any point during the execution of P takes it 

into an error state in which a boolean variable f is true. (F is assumed not to change an 

error state into a good state.) 

In general a high level specification of a program is not sufficient to specify its 

behaviour in the presence of system faults or to transform it into a fault-tolerant program. It 

is also necessary to describe the hardware organisation of the system on which the program 

is to be executed, on its use of the resources of the system and the nature of the possible 

faults in the system, e.g. which processors and channels my fail, as all of these factors can 

affect the execution of the program. And very little can be said about the effects of a system 

fault on a program until it has been refined to the level where these effects can be observed. 

After an informal overview of the method used for achieving fault-tolerance, in 

Section 2 a simple model for representing programs (specifications) is defined both 

syntactically and semantically. Based on the semantics of failure w.r.t a given failure-prone 

environment, the effect of faults on the original program is defined in terms of a program 

transformation in section 3. Section 4 provides an abstract definition of consistency 

which is used to define recovery transformations which permit both backward and forward 

recovery. Section 5 shows that the fault-tolerant properties of a program can be refined 

along with the other properties defined in a program specification. Finally, in Section 6 

an example is given to illustrate fault-tolerant programming using the method described in 

this paper; the problem is to design a protocol that guarantees reliable communication from 

a sender to a receiver in spite of faults in the communication channel between them. 
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2 A Simple Model and Specification Language 

2.1 Background 

The interference by a faulty environment F on the execution of program P can be described 

as a fault-transformation .F which transforms P into a program .F(P) = P €13,  F. Assume 

that this transformation ensures that the execution of P under F is fail stop [S S83], i.e. that 

no further actions of P will be executed when a failure occurs. The execution of P in the 

faulty environment F is equivalent to the execution of .F(P) in afault-free environment. 

The behaviour of .F(P) will not usually satisfy Spp. To make the program fault-tolerant, 

P must be transformed by a fault-tolerant transformation into a program T(P) such 

that ..F(T(P)) is expected to satisfy the specification of P. Unfortunately, this may not 

always be possible though .F(T(P) may be shown to satisfy a weaker but still acceptable 

specification. One kind of fault-tolerant transformation is a recovery transformation, based 

on a definition of consistency. 

Let P have an initial execution sequence [So]AI[S 1]A2 An,[S„,] ...An [S„] in which each 

action Ai transforms state Si_1 into state Si. Assume that this sequence ends in state Sn  

because of a failure. Let S be a state with is the union of substates of Am, ..• , Sn.  If 
the execution of P can be restarted from state S and still satisfy Spp, then the state S is 

said to be backward consistent with the interrupted execution sequence. • Alternatively, 

the execution of P can be continue from a possible future state Sn+k. If there exists an 

execution sequence [Sn]A„+1 [S.+1]... An+k[Sn.f.k] of P which satisfies Spp, then Sn±k is said 

to be forward consistent with the interrupted execution sequence. A consistent state is a 

state which is either backward or forward consistent. 

The recovery transformation R transforms a program P in to a program R.(P) = PP? 
by adding a set of recovery actions R, called a recovery program. The recovery actions 

of R are enabled only when a failure occurs and transform an error state into a good state 

which is consistent with the execution sequence interrupted by the fault. We assume that 

the recovery actions are not affected by the faulty environment F, i.e. that no failure occurs 

during the execution of a recovery action. Therefore, we have 

.F(R.(P)) = (P)[]R = (P F)[]R 

Let Po C 	Pic  be a sequence of program specifications such that Pi+i refines 
Pi and Pk contains enough information for specifying the fault environment F. From 
Pk we may be able to determine the number of processes in the program, those which 

may fail during execution, and the channel variables which are faulty. Based on F and 
the fault-transformation .F on Pk, we can achieve the recovery transformation R. on Pk 
and the fault-tolerant program PkOR. For example, fault-tolerant mechanisms such as 
checkpointing, recovery blocks and conversations [BR81,Ran75,MR78,KT87] can be then 
introduced by applying stepwise refinement to Pk[}R. 
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2.2 Commands and Actions 

A program P is described as an action system pair (Initp,Actp): Initp is the set of initial 

conditions of the program variables and Actp is a set of actions. Each action A E Actp is 

of the form = g c, where g is a boolean condition and c is a command [Bac88,BS89]. 

We use gA and cA respectively to denote the guard g and the body c of action A, and we 

abbreviate the action true —f c to c if there is no confusion. 

A command c is defined as follows, 

c 	::= 	i.Q 	 (nondeterministic assignment) 

I 	ci II 	II cn, n > 1 	(ci is an assignment) 

c1; 	n > 1 	(sequential composition, ci is a command) 

I 	if Ai ... []An  fi, n > 1 	(conditional composition, Ai is an action) 

I 	do A10 []An  od, n > 1 (iterative composition, Ai is an action) 

Here xi  and Fi are lists of variables, •ei is a list of expressions, b is a boolean condition and 

Q is a condition over the values of program variables [BKS83]. 

The effect of the nondeterministic assignment command is to assign to the list 

of variables Xi some value(s) satisfying condition Q. This may introduce unbounded 

nondeterminism. 

The set Actp = {A1, , A„} of actions can also be represented as a list of actions 

A1[]... OA„. If P1 and P2 are programs, then the union composition program P1OP2 is 

(Initp, U Initp„ Actp, U Actpz ). No special notation is used for processes and communication 

channels: a process can be represented by a program and a channel by a variable which is 

shared by two processes and whose values satisfy the specification of some communication 

mechanism, e.g. synchronous or asynchronous communication. Thus a program P can be 

partitioned into n processes by refinement mapping [CM88,Bac88,Bac89] and described as 

P = 	...DM: 

As in Hoare logic, the specification {Q}A{R} defines an action A which when executed 

in a state satisfying predicate Q terminates in a state satisfying predicate R. A is universally 

or existentially quantified over the actions; a property which holds for all points of the 

execution of a program is defined using universal quantification while a property which 

holds eventually is defined using existential quantification. 

The logical operators unless, stable, invariant, ensures, leads-to (1—) are used to 

describe the safety and progress properties of programs. As in Unity [CM88], these 

operators are defined for a program P as: 

• P Sat (Q unless R) - VA : A E ActG {Q A --R}A{Q V R} 

• P Sat (stable Q) 	G Sat (Q unless false) 

• P Sat (invariant Q) 	(Initp = Q) A P Sat (stable Q) 

• P Sat (Q ensures R) 	P Sat (Q unless R) A (3A : A E Actp {Q A -,R}A{R}) 
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P Sat (Q ensures R) 	P Sat (Q 	R), P Sat R 	R') 
• 

P Sat (Q 	R) 	 P Sat 	R') 

for any set W: 

(Vm : m E W P Sat (Q(m)i-- R)) 

P Sat ((3 m:mEW Q(m)) 	R).  

A program specification can be written by using either UNITY-like logic or an action 

system formalism. However, we will normally use the logic for the top level specification 
and the action system formalism for the refinement. 

2.3 Semantics of Commands and Actions 

We use a simple semantics for programs in which each action in a program is executed 
atomically. If an action is chosen for execution, it is assumed to be executed without any 
interference from the other actions in the program. Because of this atomicity, a program 

can be viewed as being sequential and nondeterministic. 

A state S of a program P is a function from the program variables Var(P) to their value 

space. A sub-state Sly is the restriction of S to Y where Y C Var(P). xif p is used to denote 

the set of all the states of program P. The semantics of a command c is a function: 

r(c) : Alip U {1, abort} 	P(Wp U 	abort}) 

where 1 stands for nontermination or divergence and abort is a state such that 

{false}c{abort} for any command c. This function can be extended to be a function 
over the powerset P(Wp U {1, abort}), i.e. for a set of states 

r(C)(T) = U r(C)(S) 

SEW 

We define r(c)(1) = {1} and r(c)(abort) = {abort} where 1 and abort are treated as 
a states such that 1(x) = 1 and abort(x) = abort for any variable x E Var(P). 

Let skip be the identity function which leaves any state unchanged, i.e. skip(S) = {S}, 
for any state S. The semantics r of the execution of a command c in a state S is defined in 
the following way: 

1. r(xi 	1  i.Q)(S) 

	

{S' Q(S') A Vyy fl : S'(y) = S(Y)} 	Q false := X 	= 
{ {abort} 	 if Q = false 

2. Parallel composition: 

r(Xt := 	:= i.Q2)(S).= r MAR := .Q1 A Q2)(S) 

3. Sequential composition: T(ci; c2)(S) = r(c2)(r(c1(S)) 

4. If c is the conditional composition if Al  Q ... [JA„ fi, Ai= gi 	ci for i = 1, , n and 
gg = gi v ... V gn, then 
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/
U r(ci)(S) if gg(S) = true 

gi(S r(c)(s) = 	)=true 

{abort} 	if gg(S) = false 

5. For the iterative composition c = do Ai  [] ... [IA„ od, Ai = gi -' ci for i = 1, , n, we 

first define 

1'(A,0 UAn)(S) = U r(ci)(S) 
gi(S)=frue 

Let Y be a set of states and rF(s) be the least fixed point of the equation 

Y = {S} U r(AiD pin)(Y) 

l'(c)(S) is then 

r(c)(s) = 
rF(s) n m if rF(s) n m 

if rF(s) n m 

whereM={SIVi:1<i<n: gi(S) = false} U 

The semantics r(A) of each action A = g -4 cis defined by 

r(c)(S) if g(S) = true 
ro)(s) — 

{S} 	if g(S) = false 

and as in the case of commands, r(A)(1) = {1} and r(A)(abort) = {abort}. 

Let V be the value space of program P and Vt be the set of all the finite and infinite 

sequences) over V U {1} U {abort}. An observation 0 of program P is a sequence of states 

which is defined as the function 0 : Var(P) --) Vt satisfying the following conditions: 

OB1. 8(x) 0<>, for any x E Var(P), 

OB2. #0(x) = #8(y) (denoted by #0) for any x,y E Var(P), 

OB3. for each i < #0, e[i] is a state of P defined as o[i](x) = 0(x)(i) for any x E Var(P), 

OB4. 0[0] is a initial state of P, 

OB5. for any i < #0 : (0[i] = 0[i — 1]) V (3A E Actp : e[i] E r(A)(61i — 1])) 

1< a, ... , b > is the sequence of elements a, ... , b; <> is the empty sequence and A concatenates two 
sequences according to the standard definition: e.g. < a > A  < b >=< a, b >, < a > A  <>=< a >, etc.; 
cri  occr denotes that a' is a prefix of a; o-1  cc a denotes that of is a proper prefix of cr; #cr is the length of 
the sequence cr and #a = oo if a is infinite; and cr(i — 1) is the ith element of cr, 1 < i < #o-; head(v) 
and last(o-) denote respectively the first and last elements of a non-empty sequence o-; tail(cr) denotes the 
sequence obtained from a-  by removing the first element of cr. 
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We use the sequence notation to describe a property of a function from Var(P) to the 

sequences Vt, e.g. for the functions 0 and 0', 0^0' is the function such that 0^0'(x) = 0(x)^0(x) 

for each x E Varp. 

A function 0 : Var(P) 	Vt satisfying Condition OB2 is said to be a sub-observation 

of 0, i.e. ie e, if there is an observation 0' and a function -y : Var(P) 	Vt satisfying 

Condition OB2 such that 

= 01^0^-y 

In this case, we write prede(0) = 0'. 

Obviously, given a command c and an action A, r(c) and P(A) can be extended to be 

functions over the set 0Bp of the observations of P, e.g. r(c)(0) = {0^SI S E r(c)(Last(0))}. 

The semantics of a program P is the set r(p) of its executions. An execution E of P is 

an infinite observation of P. It said to exhibit fairness (or justice [MP83,GP89]) if for 

any i > 0 and A E Actp, there is some k > i such that E(k 1) E r(A)(E(k)). Programs P 

and P' are said to be equivalent if they have the same semantics: 

P 	r (p) = r(P) 

Within this semantic model, the following equivalences hold for a program P: 

(P Sat stable Initp) 	(P skip) 

and, 

PUskip P 

Therefore, this semantic model permits finite stuttering, i.e.in an execution, a state can be 

repeated consecutively at most a finite number of times before the execution terminates 

[Lam 83,AL88,B ac89] . 

3 Transformations for Specified Faults 

Given a program P, the effect of faults on program G is modelled by a program F which 

defines a set of atomic actions representing the faulty environment. The execution of the 
program P under the faulty environment specified by F is equivalent to the execution of P 
together with F on the fault-free system. Such a failure execution of P is defined by the 
failure semantics. 

3.1 Failure Semantics 

For a program P and a faulty environment F, assume that P has a boolean variable f to 
indicate the presence of a fault, and that the value off is never changed in P. Each action 
A E F is called a fault action and is assumed to satisfy 

{true}A{f} 
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A state S is good if 	= false and an error state is a state which is not good. 
Let a primitive command be a single assignemnt or a parallel composition of assign-

ments. If c is a command of P, then the failure semantics of c w.r.t F is a function 

I'F(c) : Ilip U {I, abort} -- P(Tp U {1, abort}) 

which satisfies the following conditions: 

1. if c is an assignment command, then 

U r(a)(S) {iff(S) = true 

rF(c)(s) = 1E1; 
U r(a)(S) U r(C)(S) iff = false 

a EF 

2. TF(ci; c2)(S) = rF(c2)(rF(c1)(S)) 

3. if c is the conditional composition if A10 ... DA„ fi, Ai  = gi  ---+ ci, then 

rF(c)(S) = gia(s1):71  { 

{SU} 	PF(ci)(S) if gg A --f(S) = true 

if -'gg A -if(S) = true 
iff(S) = true 

where gg = gi V ... V g„. 

4. for the iterative composition c = do A10 0A„ od, At = gi 	ci, we first define 

rF(Al 0 ... 0 An )(S) 
= goy,. rF ( ci XS) if f (S) = false 

if 	= true 

Let E(S) be the least fixed point of the equation 

Y = {S} U rF(Ai ... DA.)(Y) 

Then rF(c)(S) is defined as 

rF(c)(S) = {±} n 
M 

 
if E(S) n m = 

whereM={SI V1<i<n:gi(S) = false} U {1} 

For each action A = g c, rF(A) is defined by 

rF(A)(s) = j 
rF(c)(S) if -- f A g(S) = true 
skip(S) otherwise 
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We also define I'F(a)(_L) = {1} and rF(a)(abort) = {abort} for each command or 

action a. 

From the failure semantics of a command and an action, the failure observation of the 

program P w.r.t. F can be derived as a function: 

0 : Var(P) 	Vt satisfying the following conditions: 

FOB1. 0(x) 	for any x E Var(P), 

FOB2. #0(x) = #0(y) (denoted by #0) for any x, y E Var(P), 

FOB3. for each i < #0, 0[i] is a state of P defined as e[d(x) = e(x)(i) for any x E Var(P), 

FOB4. 0[0] is a initial state of P, 

FOBS. for any i < #0 : (6[i] = 61i — 1]) V (3A E Actp : O[i] E TF(A)(0[i — 1])) 

A failure execution E of a program P w.r.t. F is an infinite failure observation of P. The 

failure semantics of the program P w.r.t. to F is the set r F(p) of the failure executions of 

P w.r.t. F. 

From this definition we can see that the execution of program G is fail-stop. Therefore, 

the failure semantics of the program G can be described in terms of two functions good 

and error such that each failure observation 0 w.r.t. to F can be written as: 

0 = good(0)^error(0) 

where good(o) is an observation of G and error(0) is either empty or contains only error 

states. Obviously, if there are no faults, i.e. F is empty, each failure execution is the same 

as some execution of P: 

F = r,(p) = r(p) 

Programs P and P' is said to be fault-prone equivalent w.r.t. F if they are equivalent and 

have the same failure semantics: 

P =F P P P' ArF(P)=rF(P') 

It may be noticed that equivalent programs may not be fault-prone equivalent. 

3.2 Fault Transformation 

Given a program P = AID ... []Am  and a faulty environment F, let f = true if a fault occurs 
in the execution of P. First, transform P into a program FS(P) such that 

FS(P) = FS(A1)[] ...UFS(A„,) 

and each FS(Ai) is obtained from Ai by changing every primitive command c which occurs 
in Ai into the command 

FS(c) = if -if caf skip fi 
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FS(c) is the primitive f-stop command of c if c is a primitive command. For a command 

c of P, FS(c) is a f-stop command which is obtained from c by changing every primitive 

command c' which occurs in c into the primitive f-stop command FS(c'). Given an action 

of P 

A = g -+ c 

the f-stop action of A is 

FS(A) = A g FS(c) 

The execution of FS(P) on a system with the faults F is therefore fail-stop. Obviously, if f 

is invariantly false, FS(P) = P since P does not change the value off. 

For each f-stop command FS(c) and each f-stop action FS(A), a transformation M is 

defined as: 

1. if c is a primitive command, 

A4(FS(c)). if -If 	—> skipDF fi 

2. if c_= ci; c2, 

M(FS(c))= M(FS(ci)); M(FS(c2)) 

if (FS(ci); FS(c2)0FDFS(c1); (iff 	skippF fi) fi 

3. for an action A = g c 

M(FS(A)) = if -IA g .A.4(FS(c))af skip fi 

4. for a command c = if AID ... Oki  fi, 

M(FS(c)) = if M(FS(A1))0 a.M(FS(An)) fi 

5. if c = do AID ... IAn  od, 

M(FS(c)) = do M(FS(A1))[] []M(FS(A„)) od 

For the program P = Ala ... 0A,n, we define 

M(FS(P)) = lvt(FS(A1))0 ...aM(FS(A„,)) 

Given the faults F, the fault transformation is defined as: 

.F(P) M(FS(P)) 

and .F(P) is called the fault affected program of program P and denoted as P ® F. 
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Theorem 3.1 Given a program P and its faulty environment F, the fault-transformation .7 

satisfies 

r(p e = FF(P) 

Proof: From the definitions of observations and failure observations, it is only required to 

prove that for each state S and an action A = g ---+ c of P, 

r,(A)(s) = r(M(FS(A)))(S) 

Case 1 : if c is a primitive command, then 

rF(A)(s)=. rF(c)(S) 
if -if A g(S) = true 

{ skip(S) otherwise 

U r(a)(S) 	if f(S) = true 
aEF 

= CS r (a)(S) U r (C)(S) if -f A g(S) = true { 
aEF 
skip(S) 	 if g(S) = false 

r(F)(s) 	 iff(S) = true 

= r(c)(S) Ur(F)(s) if -if A g(S) = true / 

skip(S) 	if g(S) = false 

. r(-if  A g 	if -if .- caf 	skip fi)(S) 

= r(M(FS(A)))(S) 

Case 2 : if c = c1; c2 and rF(ci) = r(M(FS(ci)) for i = 1, 2, then 

rFoxs)= 
rF(ci)(rF(c2)(S)) if -if A g(S) = true 

skip(S) 	otherwise 

r(m(Fs(ci)))(r(m(Fs(c2))(s)) if -if A g(S) = true 

skip(S) 	 otherwise 

r(m(Fs(c1));m(Fs(c2)))(s) if A g(S) = true 

skip(S) 	 otherwise 

r(M(FS(ci ; c2))(S) if -if A g(S) = true 

skip(S) 	 otherwise 

r(-if A g -+ M(FS(ci; c2)))(S) 

r(M(FS(A)))(S) 

Case 3 : if c = if 	fi, A, = gi —> ci for i = 1, , n, then 

U r,(co(s) if -if A g A gg(S) = true { 

si(s)--- frge 
{abort} 

{S} 	

if egg A g A -AS) = true 

if -f A g(S) = false 

r(-if A g -- if M(FS(A1)0 ... OM(A,,)[]f --4 skip fi)(S) 

r(M(FS(A)))(S) 
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Case 4 : the proof for the case of iterative composition is similar to Case 3. 

0 

Corollary 1 Given a program P and its faults F, 

F=4 PeDF -_-EP 

Therefore, a fault-free execution of the program P ED F is an execution of program P and 

vice-versa, and P ED F is equivalent to P if no fault occurs. Further, as shown in the 

following theorem, P ED F is equivalent.to  the union composition of the f-stop program 

FS(P) with a program F'. 

Theorem 3.2 Given P and F, there is a program F' such that 

P ED F FS(P)OF' 

Proof: Let P = Al p ... UA„, Ai = gi --> ci we prove that for each A1, 

M(FS(Ai)) if FS(Ai)O-if A gi -> Fiat' -p skip fi 

Case 1 : if ci  is a primitive command, 

M(FS(Ai)). if -if A gi --> .1t4(FS(ci))0f -> skip fi 

= if -if A gi --> if -if -> cat' --> skip[]F fi 

if -if A gi  -> if -if -> caf -> skip fi []-if A gi 	F[lf -> skip fi 

= if FS(Ai)0-if A gi --> F[]f -> skip fi 

Case 2 : if ci = c; ci, then 

.A4(FS(Ai)). if -if A gi  M(FS(c; c0)[]f -> skip fi 

if 	A gi 	(if FS(c); FS(c')OFDFS(c); (iff -> skip[]F fi) fi)[]f 	skip ii 
iff 	skip[ -f A gi ---> FS(c);FS(c') 

[]-if A gi  --> (if FOFS(c); (iff -> skip[]F fi)fi)fi 

= if FS(Ai)[]-if A gi --> (if FO FS(c); (iff -> skip[]F fi)fi)fi 

Case 3 : if ci  = if Ail 	fi, and M(FS(Aii )) FS(Aij )[]Fij, 

M(FS(Ai))= if 	A gi -p if A4 (FS(An ))[] [].M(FS(Ain, )) fi [if 	skip fi 
if -if A gi  -p if FS(An )[]Fii UFS(Ai,„)[]Fi,„ fi [if 	skip fi 

-=- if -if A gi  -> if FS(Aii )[] HFS(Au„)[]Fil p  ... 	 skip fi 
if FS(Ai)[]-! A gi  ---> if FS(Ai„,)[]Fil [] ... 	fi []f 	skip fi 

Case 4 : the proof for the case of iterative composition is similar to Case 3. 

Therefore, 
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P e F= M(FS(Ai))[] 0M(FS(A„)) 

if FA/0 0--If A gi --+ F1 fip .•. HifFs0,00-if A g. -* Fn fi 

FS(A1)0-if A gl -4  F10 OFs(An)[]-f A gn Fn 

FS(Ain • • • 01100-If A gi 	A g. --* Fn 

=FS(P)0-.f A gi 	0-if A g. Fn 

The fault transformation defined above is based on the assumption that each fault action 

in F may interrupt the execution of any action in P. In general, an action in P can be 

interruped by only a subset of the fault actions in F. 

For a program P = A10 ...0A„, Ai = gi ci, let 

FS(Ai) = -fel;  A gi FS(ci) 

where FS(ci) is the f,•-stop command of ci. A fault action Af E F interrupts the action Ai if 

Af  transforms fi from true to false, i.e. 

Af N Ai  {-fi}Af{fi} 

A fault-action Af E F stops action Ai  if it makes fAi  true, i.e. 

Af .4 A i 4- fi :{- iff } Af {f } Afi fA, 

where Af E F and fi, tfimf tfil. Let 

FA;  {Af  I Af E F A Af 7 Ai} 

Then Ai  ED FA;  is defined as: 

Ai  ED FAi  --fAi  A g M(FS(ci)) 

where .A4(FS(ci)) is obtained by applying to the command ci the transformations FS and 

M w.r.t. fi and FA;. The fault affected program .T(P) is then defined as: 

	

Y(P) = P ®F Al  e F 	• []An  ED FA. 

It is easy to see that the transformation .T defined in this way still satisfies Theorem 3.2. 

And if there is no fault action in F which interrupts or stops the action Ai, then 

Ai e 

In particular, let P = pin ...0pn  be a program with n processes and Fp;  be fault actions 

which stop and interrupt the actions of process pi but not of any other process. The fault 

transformation .F w.r.t. {Fpi  i = 1, , n} is defined as 

	

'T(P)  = pl @Fpi0 ••• 	e Fp. 

13 



4 Consistency and Recovery Transformation 

Let P ED F be the fault affected version of a program P and Po E E Pk = P be a sequence 

of refinements. When the execution of P ED F reaches an error state it will stay in that state 

forever and no future action in P can be executed. Therefore, the behaviour of P ED F will 

not in general satisfy the original specification Po, i.e. P ® F does not refine Po. To make 

the execution of P recoverable from an error state, the system has to be restored to a good 

state from which the interrupted execution can resume. Such a good state can be described 

in terms of consistency with the execution of P. 

4.1 Reachability and Consistency 

For any state S of a program P, let Reach(S) be the set of states which are reachable from 

S by executing P, i.e. 

Reach(S) 	{S'I 3 0, 0' E 0Bp : S = last(0) A S' = last(0') A 0001 

Let, 

Reachable(S, S') in P 5' E Reach(S) 

and, as an abbreviation, 

Reachable(S) in P Reachable(initp, S) in P 

Let 0 be an observation of P. S is a possible future state of P for 0, if there is an 

observation of P which extends 0 to S, i.e. S is forward consistent (ForwCon) with 0: 

ForwCon(S, 0) 	Reachable(last(0), S) 

Let X be a set of subsets of Var(P) and AF = {Sx I X E X}, where Sx is a substate over 

X. We say that is forward-consistent with 0, if there exists a state S such that: 

VX E X : Six = Sx A ForwCon(S, 0) 

We may also have to consider a 'state' which is the union of sub-states previously 

reached at different points in this execution, provided that this 'state' could have been 

reached in some execution of P. The consistency of such a state S relies on whether this 
execution can continue from the state S. 

Let X = {Xo, ,X„_1} be a partition of Var(P). Consider a set of sub-states 
= {Sx, I Xi E X} which occur in a sub-observation fi of 0 during the execution of 

program P, i.e. for each Xi E X there exists ki  such that i < j 	< ki  and if satisfies 
condition C: 

VXi E X : )0(ki)lx, = Sx, 	 (C) 

41 is backward consistent with 0, i.e. BackwCon(T , 0), if there exists a function 
0' : Var(P) 	VI such that: 
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BC1 A BC2 A BC3 

where BC1, BC2 and BC3 are defined as follows: for each Xi E X, 

BC1. Vj : 0 < j 	 Q(I)ix, 

BC2. V j > ki : P'(i) Ix;  = P(ki) Ix;  

BC3. predo(g)^13' E OBp 

If BackwCon(T , 0), for [3 and )54  satisfying these conditions, let 0' = predo(()^13' . Then 0 is 

said to be a backward consistent prefix of 0' and denoted as 0abc0'. 

Similar to the case of forward consistency, let To be given for a subset X C P(Var(P)), 

i.e. To = {Sx;  I Xi E X}, satisfies Condition C. To is backward-consistent with 0, if there 

exists a state S such that: 

VX E X : Six = Sx A BackwCon(S, 0) 

Obviously, BackwCon(T 0,0) ForwCon(T p,predo(0)) 

A state S is consistent with 0 if it is either forward or backward consistent with 0, i.e. 

Consistent(S, 0) 	ForwCon(S, 0) V BackwCon(S, 0) 

When there is no confusion, we will simplify the definitions and notation by omitting 0, 

e.g. Consistent(S). 

4.2 Recovery Transformation 

To resume the execution of P after interruption by fault actions in F, P has to be transformed 

into a program 7Z(P) by adding a set of recovery actions PR called a recovery program. 

Let ob be an auxiliary variable ob whoe value space is the set of observations of P ® F 

0 : Var(P) 	Vt 

where 0(i) is a good state for each i < #0. 

A state predicate P over Var(P) is extended to be a state predicate Poi, over Var(P) U {ob} 

such that for a state S over Var(P) U {ob}, Pob(S) = true if 

P(SIvor(p)) A Vx E Var(P) last(ob)(x) = S(x) 

For 0 and 0' in the value space of ob, let Ext(0, 	= true if 

3 S E Tvar(p) : Vx E Var(P) : 0(x) = (x)^ < S(x) > 

The predicate ForwExt(0, 0') = true if ForwCon(last(0), 09 A 9'oc0. 

The predicate BackwExt(0, 0') = true if BackwCon(last(0), 0') A Vo_c_bc0. 

We define 
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ConsExt(0, 0')-'' ForwExt(0, 0') V BackwExt(0, 0') 

Now let the specifications of P and F over Var(P) be transformed into specifications 

over Var(P) U {ob} so that: 

1. each {P A -f}A{Q} in P is transformed into 

{Pob A —if A ob = 0}A{Q0b A Ext(ob, o)} 

2. each {P}Af{Q} in F is transformed into 

{P A ob = 0}AfIQ A ob = 01 

3. each WV} in P or F is transformed into 

If A ob = 0}A{f A ob = 0} 

After the execution of ,F(P) reaches an error state, the recovery program PR is invoked 

and restores the variables to a consistent state. PR must satisfy the following conditions: 

Rl. any action of FS(P) excludes each action A,. E PR: VA E P : -if A gA = -igAr  

R2. each action A,. E PR excludes any action FS(P): VA E P : gAr  = f V -'gA 

R3. execution of the recovery program PR cannot be interrupted or stopped by the fault 

program F. 

R4. PR transforms an error state into a good consistent state: 

(f A ob = 0) i--- (-if,b A ConsExt(ob, 0)) 

The recovery program PR can thus be given as: 

Program PR: 

(f --+ X := X' .ConsExt(ob, obo) ; f := false) 
End{PR} 

These conditions for PR allow the recovery transformation R. to take the form: 

TZ(P) = PUPR 

Condition R2 implies that a recovery action A,. does not change a good state and thus 

R(P) _- P 

From Condition R3 and Theorem 3.2 we have 

.F(R.(P)) = .F(P)OPR E•_. FS(P)DPROF' 
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.7(R(P)) should ideally satisfy the specification Po. Unfortunately, it is not usually 

possible to have such a strong transformation for an arbitrary program P and with faults F. 

However, we can often have a recovery transformation such that .T(R.(P)) is weaker than 

Po but acceptable in terms of its behaviour and 

F = 	.F('R.(P)) P 

Two kinds of error recovery are used in practice [AL81]. With backward error 

recovery, the system recovers from a fault by starting from a state which is consistent with 

its previous states. Forward recovery is used when a program has to recover from an error 

whose effects can either not be overcome by backward recovery or (in a real-time program) 

because the time constraints do not permit backward recovery. As in the case of backward 

recovery, for forward recovery the variables Var(P) have to be assigned values so that the 

state S is good (i.e. f is false) and forward consisten with the current observation ob. 

The recovery transformation R. can apply to both backward and forward recovery and 

this shows that in principle backward and forward recovery methods can be both used in 

one fault-tolerant system. Backward and forward recovery programs are special cases of 

PR and specified as PBR and PFR respectively: 

Program PBR: 

(f —) X := X' .BackwExt(ob, obo) ; f := false) 

End{PBR} 

Program PFR: 
(f X := X' .ForwExt(ob, obo) ;f := false) 

End {PFR} 

5 Using Refinement for Fault-tolerance in Programs 

The recovery transformation R. (or the recovery program PR) describes what should be 

done for recovery but imposes no restrictions on when PR is executed, where it is executed 

(e.g. on which processor) or how it is to be executed (e.g. how to find a consistent 

state). These restrictions can be introduced by using transformations on P[]PR  which will 

be described in terms of F-refinement. 

Given a faulty environment F, program P' is said to F-refine program P (denoted as 

P EF 7) if 

(P P') A (P' Sat (f 

and for each execution E of ,F(P') in which there are finitely many error states of which 
E[k] is the last, 

E[k 1](ob)Alast(E[k 2](01)))^ Alast(E[k n](ob)) 

is an execution of P'. 

As for the equivalence of fault-prone programs, it is not necessary the case that P EF P' 
if P' refines P. However, the following results are easily proved: 
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Theorem 5.1 Given programs P, P', P" and a faulty environment F, 

1. P CF 

2. P EF P' EF P" P EF P" 

3. P E P' R(P) CF 7Z(P') 

4. P E P' = P CF R(P') 

Proof: Directly from the definition of F-refinement and the specification of the transfor- 

mation R. 	 ❑ 

The first two results show that fault-tolerance is introduced and preserved by F-

refinement transformations. From the next two results, it can be seen that refinement 

transformations can be applied to the original program and fault-tolerance introduced after 

that using F-refinement. 

Corollary 2 Given a program P and a faulty environment F, 

1. PR C PR, = n(P) CF  POPR,  

2. P CF  R(P) CF  POPBR 

3. P CF  R(P)  CF  POPFR 

As an example of the first result in Corollary 2, let So be the initial state of program P and 

Program PRI: 

—> X := So ; f := false) 

End{pR,} 

then 

(PR E PR') A (P CF P[]PR  _CF  PPR') 

Program PPR,  is a fault-tolerant program such that whenever a fault occurs, the execution 

of P will recover by re-starting from its initial state [JMS84,JH87]. 

The following theorem introduces a useful F-refinement rule. 

Theorem 5.2 Given a program P = Alp ... [IA„ and a faulty environment F, let I be an 

non-empty subset of {1, , n} and 

RI(P) = Ai D DA'a  

where for each i E 

Ai 	 if i I 

Ai  = Ai; if -if skipnPR fi if i E I 

then 

1. R(P)  CF  RI(P) 
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2. .1 C J Ri(P) CF Ri(P) 

The next theorem provides a rule to allow recovery action to be freely introduced at any 

point of the program. 

Theorem 5.3 For the program RI(P) = Ai D DA:, given in Theorem 52, 

7?-1(P) CF  Ri(P)[(if 	skipOPR fi)/skip', , (it' -f 	skipHPR fi)/skipk] 

where skip', , skipk  denote different occurrences of skip in 

It may be noticed that Theorem 5.2 and Theorem 5.3 also hold for any program PR' CF PR. 
A program P can be refined using rules of the form defined by Back[BS88], and then 

Theorem 5.1 can be used to add F-refinement. Checkpointing actions can then be added to 

P (or the refined version of P) by introducing new variables and assignments[BS88,Mor90]. 

Then, following Theorem 5.2 and Theorem 5.3, recovery actions can be introduced at 

appropriate points. The choice of recovery point may follow well-known practice, e.g. 

by using recovery blocks or conversations. It can be shown that the checkpointing and 

recovery protocol suggested by Koo and Toueg [KT87] can also be achieved by using 

F-refinement. 

6 Example: A Protocol for Communication Over Faulty 

Channels 

In this section consider an example of fault-tolerant programming using the methods of this 

paper. The problem is to design a protocol that guarantees reliable communication from a 

sender to a receiver in spite of faults in the communication channel between them. 

The Sender process produces an infinite sequence ms of data. The Receiver process 

reads in a sequence mr satisfying the following specification: 

invariant mrccms 	(i.e. mr is a prefix of ms) 
#mr = n H #mr = n 1 	(i.e. the length of mr increases eventually) 

If the sender and the receiver communicate over an unbounded reliable HI -0 channel 
c, the communication between them can be implemented using the following program: 

c , ms := cAhead(ms) , tail(ms) 	(Sender) 

[i 	 c 0<>—> c , mr := tail(c) , mr^head(c) 	(Receiver) 

The reliable FIFO channel c can be implemented as the following program: 

C:: cs <>—> cs , cr := tail(cs) , crAhead(cs) 

Let program P be 

cs := csAhead(ms) 11 ms := tail(ms) 

cr 0<>-4 mr := mr^head(cr) cr := tail(cr) 
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Then, 

Sender-Receiver E C[]P 

Now assume that a faulty channel has the following behaviour: 

1. any message sent along the channel may be lost; however, only a finite number of 

messages can be lost consecutively, 

2. any message sent along the channel may be replicated, but no message can be 

replicated forever, 

3. messages are not permuted -- i.e. messages are delivered in the order in which they 

are sent, and 

4. messages are not corrupted -- i.e. their contents are not altered. 

A specification for such a channel can be found in [CM88]. 

Program F behaves like a generator of faults. 

declare b , f : boolean 

initially 

b , f = false , false 
actions 

A cs 	cs , f := tail(cs) , true 	(loss) 

A cs 	cr , f := crAhead(cs) , true (duplication) 

b := true 	(to guarantee the finiteness of consecutive loss and duplication) 

Since, 

C C cs 	b , cs , cr := false , tail(cs) , crAhead(cs) 

the behaviour of a faulty channel can be simulated by a program FC ..T(C), which is 

equivalent to: 

declare b , f : boolean 
initially 

b , f = false , false 
actions 

A cs 0<>—+ cs , f := tail(cs) , true 	 (loss) 
[] 	A cs 0<>—+ cr , f := crAhead(cs) , true 	 (duplication) 

—if A cs 	b , cs , cr := false , tail(cs) , crAhead(cs) (correct transfer) 
b := true 	(to guarantee the finiteness of consecutive loss and duplication) 

And .'(Sender-Receiver) (or ..T(CUP)) is given as: 
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declare b , f : boolean 
initially 

b , f = false , false 
actions 

-if -4 cs := csAhead(ms) II ms := tail(ms) 

H--if A cr 0<>-+ mr := mrAhead(cr) cr := tail(cr) 

0-6 A cs 0<>-4 cs , f := tail(cs) , true 	 (loss) 

-ib A cs 0<>--4 cr , f := crAhead(cs) , true 	 (duplication) 

--if A cs 	b , cs , cr := false , tail(cs) , crAhead(cs) (correct transfer) 

01) := true 	(to guarantee the finiteness of consecutive loss and duplication) 

To design a recovery program for Sender-Receiver, let the type of cs and cr be sequence 

variables whose elements are pairs (integer, data item). Let COP be refuted to P1: 

declare ks , kr : integer, 

initially 

ks , kr = 1 , 0 cs , cr -=<> , <> 

actions 

cs := cs^(ks, ms[ks]) II ks := ks + 1 
cr 	mr := mrAhead(cr).val cr := tail(cr) II kr := kr + 1 

cs 0<>--* cs , cr := tail(cs) , crAhead(cs) 

Here, ks < head(cs).dex if some message is lost and head(cr).dex < kr if a message is 

duplicated. Therefore, the fault affected program of P1 can be refined to FP1: 

declare b : boolean 
initially 

b = false 
actions 

ks = head(cs).dex + 1 	cs := csA(ks,ms[ks]) ks := ks + 1 
[]kr = head(cr).dex A cr 0<>-4 mr := mrAhead(cr).val cr := tail(cr) II kr := kr 1 
0-4) A cs 0<>-4 cs := tail(cs) 	 (loss) 

A cs 0<>—> cr := crAhead(cs) 	 (duplication) 

[]cs 	b , cs , cr := false , tail(cs) , crAhead(cs) 	(correct transfer) 

b := true 	(to guarantee the finiteness of consecutive loss and duplication) 

The recovery program for Pi  is P1R, given below. 

initially 

ks, kr =- 1 , 0 

actions 

head(cs).dex < ks --4 ks := head(cs).dex + 1 
cr <> Ahead(cr).dex < kr 	cr := tail(cr) od ; if cr =<>---+ skip 

[]cr 0<>--3 mr := mrAhead(cr).val II cr := fail(cr) kr := kr + 1 fi 
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In the following, we provide an informal outline of the proof to show that FP1  []P1R 

satisfies the specification of the program Sender-Receiver. 

Proof: To prove the invariant mrocms: 

a) mrccms is true initially, 

b) each action in FPI and P 1R leaves rnrocms stable. 

Hence mrccms is invairiant. 

To prove the progress property #mr = n H #mr = n + 1: 

a) it is easily seen that #mr = kr is invariant, 

b) from both FPI and P1R, each message in ms will eventually be transferred to cs, 

c) each message in cs will be eventually be transferred to cr or lost, 

d) if a message in cs is lost, it will be re-sent again because of the execution of the 

recovery action, 

e) FP1  also guarantees that the correct transfer action will eventually be executed, 

f) by the second recovery action in P1R and the receiving action in FPI, each message 

transferred into cr by the execution of the correct transfer action in FPI will 

eventually be transferred to mr. 

Therefore the progress property is guaranteed. 	 ❑ 

P1UPIR is thus a version of Sender-Receiver which can tolerate message loss and 

duplication; it can of course be refined further for a different implementation[CM88]. 

7 Discussion 

Assume that Po = Sp is the top level specification of a program in a UNITY-like notation. 

The top level specification of the faulty environment Fo can be given as 

Po can be then refined into an action system P1 while Fo can be simulated (or refined) by 

an action system F1  consisting of one action 

true —> f := true 

Based on P1  and F1, the fault and recovery transformations can then be applied to program 

P1 in the way described in Section 4.2. For each refinement step Pk E Pk+1  of the original 
program Po, a refinement step Pk E Fk+i of the faulty environment is derived by providing 

more details about the system and its possible faults. The fault and recovery transformations 

can be applied again to Pk+1  and Fk+1. During the refinement of the original program 

Po E 	Pk  C ..., checkpoints and recovery methods such as recovery blocks and 
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conversations can be introduced. Thus, a fault-tolerant program can be produced from its 

fault-free specification by using F-refinement rules. We do not underestimate the difficulty 

of doing this in practice, but the rules provided here do offer a formal means of verifying 

what is otherwise left to less precise methods of reasoning. 

Each step in the refinement Po E E Pk E ... provides more information about the 

system on which the program is to be executed and similar information about the faults 

of the system is used for refining the fault specification. For certain programs and faults, 

e.g. Sender-Receiver and the faulty channels, the boolean variable f which indicates the 

presence of faults in Fo can be derived from the state predicates of program Pk at a suitable 

stage in the refinement. But it is an open question whether this is always possible for any 

program and any set of possible faults. 

Fault-tolerant systems often also have real-time constraints. So it is important that 

the timing properties of a program are refined along with the fault-tolerant and functional 

properties defined in a program specification. If we extend the model used in this paper 

by adding timing properties w.r.t. some time domain [JG88], the recovery transformation 

can be defined with timing constraints. The specification and refinement of the recovery 

actions can then be required to satisfy the condition that after a fault occurs, the system is 

restored to a consistent state within a time bound which includes the delay caused by the 

execution of the recovery action. Thus the method described in this paper can be extended 

to take account of timing constraints. However, there are numerous problems still to be 

examined in making such a method practical, and these are the goals of further work. 
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