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Summary 

The problem of transforming spherical harmonics under a linear change of 
reference frame is solved analytically and numerically. In contrast to 
other methods both translation and rotation are treated with the same 
background theory which is comparatively straightforward and is 
formulated in geophysical terms; the directions of translation and 
rotation are arbitrary; and generally, combinations of harmonics of the 
same order can be dealt with equally as readily as individual harmonics. 

It is found that the expansion coefficients of a translated spherical 
harmonic are themselves spherical harmonics in the co-ordinates of the 
translation vector. As a special case, the potential of an eccentric dipole 
is briefly discussed. 

Very useful byproducts of this paper are the ways in which the given 
numerical algorithms can be used to evaluate any linear combination of 
harmonics. 

1. Introduction 

Take position vector 

r = (x, y, z) = r(sin 8 cos 4, sin 8 sin 4, cos O), 

where 8 and 4 are the colatitude and east longitude. The aim of this paper is to 
indicate procedures which allow any linear transformation of co-ordinates to be 
rapidly performed on an nth order solid spherical harmonic 

V, = r" yn@, 4), or V, = r-"-' y,(e, 4). (1) 
Here, Y, stands for the general nth order surface harmonic: 

n 

m = O  
Y, = C (a," cos m4 + b," sin m4) P,"(p), (2) 

where p = cost? and P z ( p )  is the associated Legendre function of the first kind. 
It is important in the theory of the Earth's magnetic field, and in potential theory 
generally, to be able to transform expressions of type (1) with ease. 

Since a linear transformation can be decomposed into (a) a rotation, and (b) a 
translation, there are two basic problems to be considered. In the past, completely 
different methods have been used to perform these operations. 

Problem (a) was first solved by Schmidt (1899) and his formulae have been used 
in geomagnetism (Kalinin 1963). A solution involving quaternions has been given 
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306 R. W. James 

by Herglotz (unpublished notes-see references) and a group theory approach due 
to Wigner (1959) is often used in quantum mechanics. These three authors have 
given equivalent results in closed forms, but for geophysicists a more useful formula- 
tion (based on Wigner's theory) can be found in Slater (1960). In geomagnetism, 
a numerical method, which evaluates equation (2) and its rotated version at selected 
points and inverts the resulting linear equations, has also been used (Stern 1965). 

Hobson (1955) has given formulae for solving problem (b) which provide for 
translation along the z axis only. To translate in an arbitrary direction, his formulae 
must be used in conjunction with several rotations. 

The present paper gives both closed and recursive solutions. Problems (a) and 
(b) are solved from basically the same approach which is comparatively straight- 
forward being closely related to simple representations of the harmonics, and is 
formulated in geophysical terms. General combinations of harmonics of the same 
degree are considered rather than individual harmonics, and arbitrary directions of 
translation and rotation are allowed, so that, for example, the auxiliary rotations 
mentioned in the previous paragraph are not required. A canonical form of the 
theory is briefly discussed later in the paper and its use in some problems may save 
considerable time. 

2. Two basic algorithms 

We first etate the two algorithms which form the basis of the recursive approach. 
Suppose u = (u, u, w) is any constant vector and let V be the vector operator 

( a m ,  a m ,  a/w. 
Algorithm Z 

It can be shown (James 1967) that 

where for m = 0, 1, 2, ..., n +  1: 

2 a ~ + ~  = u [(1+6,1)a~+l, i a r - l -  P F + ~ ,  i a ~ + l I  

- o[ar+ 1 ,  i br-  + PF+ 1, i br+ '1 +2w Y:+ 1 ,  i a,", 

2b,",1 = u[t~r+:+l,ibr- '-  P:+:+l, i b ~ + l I  

+ [ ( I  + Sm1) a:+ 1, i + Bnmt 1 ,  i a: + 'I + 2w C+ 1, i b:* 
The conventions 

a," = 0 when either m < 0 or m > n, 

b," = 0 when either m d 0 or m > n, 

are to be understood; 6,, is the Kronecker delta. 

magnetism, the parameters a, p, y are 
For Schmidt quasi-normalization of the Legendre functions as is usual in geo- 

a?+:+,, i = [$(2-6,,,,) (n+m)(n+m+ 1)I', 

y ~ + : + , ,  = [(n-m+l)(n+m+1)]+. 

B F + ~ .  i = [(1+6m,)(n-m)(n-m+1)13, 
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Transformation of spherical harmonics 307 

The subscript i denotes that the harmonics in equation (3) represent a potential 
due to sources internal to the sphere r = 1. 

Algorithm I I  
Winch (1968a) has shown that for a potential due to external sources 

where for m = 0, 1, 2,  ..., n-  1: 

2a;- 1 = u[ (  1 +a,,) a,"- 1, a;- - D,"- 1 ,  a:+ '1 
- o[a:- 1, b,"- I + fir- 1 ,  b,"+ '1 - 2w 7,"- 1 ,  a:, 

+ o[ 1 +a,,> a,"- 1 ,  u,"-I+ p;- 1, a;"] -214 7,"- 1, e b,". 

2b;- 1 = u[u:- 1 ,  b?-l- Br- 1 ,  b?"] 

With conventions on a," and b," as in Algorithm I, here 

a;-l, = [+(2-6,,)(n-m)(n-m+ I)]+, 

PT-l,e = [(1+6,o)(n+m)(n+m+1)1+, 

77-1, e = [(n-m)(n+m>I'* 

According to Algorithms I and 11, if V, is the spherical harmonic given by equa- 
tion (1) and if u,(i = l, 2, ..., k )  are any Ic vector constants, then 

u = (U1.V)(U,.V) ... (Uk.V) V, 

is also a spherical harmonic-of order n+k for internal V ,  and n - k  for external 
V,-and may be written in a form similar to equation (1). The importance of the 
recurrence relations (4) and (6) is that they rapidly generate the harmonic coefficients 
of U from those of V,. If V, is an external harmonic and k > n then U = 0. 

Algorithm I also provides a very useful way of evaluating the individual har- 
monics P,"(p)cosm+ and p,"(~) dnm+ at any point ( O o , + o ) .  According to 
Hobson (1955) or Winch (1968b), if u = (sin 8, cos &, sin Oo sin +o,  cos Oo),  then 

cos m+o (Z) = a! P,"(PO) ( sinm+o ) * 

Thus taking aoo = 1 and applying Algorithm I n times with u as above, produces 
(apart from the factor n!) the 2n+ 1 nth order surface harmonics at (Ooy Oo) .  

In a similar fashion Algorithm I1 provides a means of evaluating any combina- 
tion of harmonics like Y, in equation (2). Since the method is not relevant to the 
theme of the present paper it is deferred to Appendix I. 
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308 R. W. James 

3. Maxwell's expressions for the harmonics 

It will be appropriate to use the representations of spherical harmonics favoured 
by Maxwell (1892). The following theory is an independent formulation. 

Let j be a running index over the integers which satisfy 0 < ljl < +m and include 
j = 0 when m is odd. Let t m j  be unit vectors in the x-y plane separated by angles 
nlm and placed symmetrically about the positive x axis (4 = 0) so that t m - j  is the 
reflection of t j .  When tmo exists (i.e. for odd m), it coincides with the x axis. Let 
s j  be the unit vector obtained by rotating t m j  through 4 2 m  to the east (i.e. in the 
direction of increasing 4) and let 2 be the unit vector in the z direction. Define the 
operators T," and S," by 

T," = (-2)"(1+6,,) (2.vr--n(t,,.v)\ , 

s," = (-2)y1-6,"0) ( 2 . v y - m n ( s m j . v ) ]  j 

[ j 

. 

Then it may be shown (Appendix 11) that 

r - n - l  P,"(p) sin mc$ = A,, S/  

For Schmidt quasi-normalization, 

A,, = (-)"+"[2(1+6,,)(n-m)! (n+m)!]-*.  

So any surface harmonic (2) may be expressed in the form 

r, = rn++l D, [+I , 

where D, is the differential operator given by 
n 

D, = C A,,(u," T,"+b," S,"). (1 1) 
m=O 

Equation (10) deserves emphasis since it describes Y, as the combination of two 
parts: D,, which is invariant under change of origin; and I-, which is invariant under 
rotation. 

If we adopt the conventions 

T - m  = (-)" T,", S,-" = (-)'"+I s,", 
A,, = 0 for 11 < lml, 

then equations (9) are valid for all integers m and are consistent with the usual 
conventions 

P,-"(,u) = (-)" P,"(p) and P,"(p) = 0 for n c Iml. 

The geometrical arrangement of the vectors t,' and s, j  suggests that T," and 
S: may be simply expressed in terms of complex variables. Let 5 = x+ ij), q = x- iy. 

Then a a . a  a a a  2- = - - 1 - ,  2-=-++i- 
at  ax ay a? ax ay' 
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Transformation of spherical harmonics 309 

and when acting on harmonic functions 

a 2  a2 

atall azz - 4-=- -  

As shown in Appendix I1 (or in Hobson 1955), 

The complex representations (1 3) allow straightforward proofs of the following 
relations (14), (15) and (16), which are needed to derive closed forms for the trans- 
formation coefficients. 

First, by direct substitution, noting equation (12), we obtain 

Tr  T," = T::r+ (-)" T:;: 

T," S," = S:$,"+ (-)" S:;,", 

Sr S,' = - T:z:+ (-)" T:::; 
and for n k I k p  20 

Secondly-proofs being outlined in Appendix II-for m and 12 0: 

%"Irk P,"(,LL) ei'+] = rk-"(aP;:?(p) ei(l-")++ /?P;?;(,LL) e'('+")+), 

S r [ r k  P,"(P) ,il+] = jrk-n(gP:::(p)  e'('-")+- pp:z:(p) e'('+m)+ 1, 
where 

a = (-)"(I + 6 J  A k - n ,  I-m/& 

/? = (-)"+"(l &-n,  I + ? d A k l .  

Equations (16) represent four real equations which hold except in the trivial 
For the special case k = n, they reduce to cases when the left-hand sides are zero. 

the ' orthogonality ' relations 

) (17) 
T,"[r" P,'(p) en4] = (-)"61,/Anm, 

Sz[r' P i @ )  e"+] = (->" i61,,,/A,,,,. 

Any operator D,, defined by equation (ll),  may be applied to the solid harmonic 
V, given by equation (l), either by using Algorithms I or I1 or by using relations 
(14) or (16). The choice between these two alternatives leads to the basic distinction 
between the recursive and closed solutions to be presented in this paper. 

4. Transformation techniques 

4.1 Rotation 

rotated frame from corresponding ones in the initial frame. 

4 in equation (2) by 4* + E  indicates the rotated form of Y,. 

In this section asterisks ' * ' distinguish co-ordinates and operators etc. in the 

For the simple case of polar rotation to the east through angle E ,  replacement of 
More generally, suppose 
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310 H. W. James 

the polar axis to which colatitude 8* is referred has direction cosines given by 
U = (U,  V, W )  # 2, and let longitude @* be measured from the meridian containing 
a reference point G whose position vector has direction cosines UG = (UG,  V,, W,). 
From spherical trigonometry, the components of a vector u = (u, v, w )  are, after 
rotation, 

u* = [(w-w* W ) c o s ~ + ( u V - v ~ )  sinE][1-W2]-+, 

v* = [(uV-vU)cos~-(w-w* W )  sine][1-W2]-f, 1 (18) 
w* = U . U .  

In equation (18), E is the angle between U A 2 and U A UG, and is obtained from 

R cosc = U A ~ . U A U , ,  

R sin& = u ~ A u . 2 .  

Now the rotated form of Y, is 

Y,*(O*, 4*) = rn+l 6, [+] 
n *  * 

= C (a," cos m4* + b," sin in@*) P,"(p*), (19) 
m = O  * * 

and the coefficients a," and b," can be obtained recursively in the manner described 
below. 

(i) Find the operators T," and S," by replacing the direction gradients (u.V) 
in equations (8) by their rotated forms (u*.V*), where u* comes straight 
from equation (18). 

(ii) Apply D, to l/r by using Algorithm I. To do this, apply T," and S," separately 
and take the appropriate combinations (as defined by equation (11)) of the 
resulting coefficients. 

* * 

* * * 

* * 
Alternatively, closed forms for a," and b," may be derived as follows: 

with u = r, equations (18) are, in matrix notation, r* = Or, which can be in- 
verted, since rotation matrices are orthogonal, to r = OT r*. The partial derivatives 
in the rotated frame are then readily obtained in terms of the partial derivatives in 
the initial frame. Write 

a a a a  
- = a -  + b -  + c - ,  az* aZ a t  all 
a a a a - = f -  +g- +lz--, 

all* az at; all 

where a, b, c, .f, g and h are constants, possibly complex but easily calculated in 
terms of U, V, W and E ,  or whatever other parameters are used to describe 0. 
From equation (13), 

* *  
Tr+iS," = ( - )m2m+1 (jym ($)". 

Substituting from equation (20), expanding by the binomial theorem, and observing 
equation (15), we obtain 
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Transformation of spherical harmonics 

where 1 = 2p+2t--E-q, and 

31 1 

The summation C is over all non-negative integral values of 2 ,  p ,  q and r-the 
lpq t  

binomial coefficients like ( ) being zero for 1 c p .  

Consider the equation arrived at  by equating (19) to equation (2) ,  and operate on * * 
both sides by T," + i S,". According to formulae (17), the result is 

* * * * 
a,"+ib," = (-)"A,,(T,"+iS:) [r" Y,(O,(P)] 

which becomes, using equations (21) and (17) again, 

where xi';t = A,, ri'zt/Anl, and where for negative 1 we adopt the conventions 
a: = 

It remains only to equate real and imaginary parts in equation (22). In that 
equation (22)  is valid for a general rotation matrix 0, it is remarkable for its sim- 
plicity, which tends to make this method preferable to the recursive approach. On 
the other hand, since Algorithms I and I1 allow direct methods for performing 
translations-see next section-the recursive solution may be favoured on the grounds 
that design of a computer program for carrying out translations and/or rotations 
is slightly simplified. 

and b," = (-)'+I b,,-'. 

4 . 2  Translation 
Consider a change in origin from 0' to 0 where 

-+ 
00' = R = R(sin 8, cos $,, sin Q0 sin $,, cos O0) .  

A point with position vector r' = r-R before translation will have position vector 
r after translation. Let Vo denote the gradient in the space defined by R ,  O,, &, 
and let b,, ?: and s," be the corresponding forms of D,, T," and S,". It is neces- 
s?ry to treat internal and external harmonics separately but first the following pre- 
liminary remarks should be noted. 

It is an elementary result that, with r' = Ir-RI, 

v o  [f] = -v [;I ; 

hence 

Also, if 

then from equation (7), 

e -R.V = 
k = O  

00 k 

k = O  I = O  
e-R.V = C R k  C A,, P,'(p,)[cosl$, Tk'+sin2$o S,'] 

when operating on harmonic functions. 
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312 R. W. James 

Applying Taylor's theorem for r > R ,  

-- 
r' 

Hence, from equations (7) or (24), 

1 . .  _ -  - C Rkr-k- '  5 Pp(,u) Pp(,uo) c o ~ r n ( + - + ~ )  
r' k = o  m = O  

-an absolutely convergent series. When r < R, the convergent representation of 
llr' is equation (25a) with r and R interchanged-equation (25b) say. The reader 
may recognize that application of the addition theorem for Legendre functions will 
reduce series (25a) and (25b) to precisely those series which are often used to define 
the Legendre polynomials Pno. 

Suppose the potential to be transformed is 

VnY) =f,(r'> Yn@', 47, 
wheref,(r) stands for r" or ran-' ,  and x,, as in equation (2), has harmonic coef- 
ficients a,", b," (m = 0, 1, ..., n). The potential at r after translation is 

V(r) = K(r-R) (264 

= (-)" Vn(R-r). (26b) 

The equivalence of equations (26a) and (26b) is a ' symmetry ' property of spherical 
harmonics (already seen in equation (23)). 

When ,f,(r) = rn, the Taylor expansion of equation 
(26a) is: 

(i) External harmonics. 

V(r) = e-R.v Vn(r) (27) 

where k applications of Algorithm 11, starting from the known coefficients a:, 
b," (m = 0, 1, ..., n) and taking u = R/R,  rapidly generate the coefficients a;-.k, 
b;- k(m = 0,  . . ., n - k). Series (28) shows that after 
translation nth order external harmonics become a superposition of external har- 
monics with orders less than and equal to n, the Taylor series containing n + 1 terms. 
On the other hand, from equation (26b), 

This is the recursive solution. 

V(r) = (-)" e-r.vo V,(R), (29) 

which, by its similarity to equation (27), shows that V(r) is also a spherical harmonic 
in the co-ordinates R, go, +o. Indeed, use of the appropriate form of equation (24) 
in equation (29) and a comparison of the result with equation (28) leads to the closed 
forms 

By using rules (16), equations (30) may be written explicitly in terms of the kth 
degree external harmonics at (R ,  go, +o). 

(ii) Internal harmonics. When fn(r) = r - n - l y  the regions r > R and r < R 
must be considered separately. 
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Transformation of spherical harmonics 

For r > R the Taylor expansion of equation (26a) is: 

V(r) = e-R.V V,(r) 

Rk-n r -  k - 1  m 

(a? cos mq5 + b? sin m4) 
= 2 (k-n)! 

313 

k = i  ' m = O  

The coefficients a?, b r  (m = 0, 1 ,  ..., k) can be rapidly generated by k-n applica- 
tions of Algorithm I, taking u = R/R and starting from the known a,", b," 
(m = 0, 1,  ..., n). Equation (31) shows that for r > R ,  nth order internal harmonics 
translate to a superposition of internal harmonics with orders greater than and 
equal to n. On the other hand, closed forms of a? and b r  may be obtained by 
using equations (lo), (23) and (25a) to write 

which, on comparing with equation (31), leads to 

Relations (11) and (16) allow equation (32) to be written explicitly in terms of the 
(k-n)th degree external harmonics at ( R ,  O,, q50). 

For r < R, equation (25b) implies 

m k 

C (c: cos mq5 +d," sin mq5) P P ( p )  = c r k R - " - k - l  (34) 
m = O  k = O  

say (noting that the terms corresponding to k = 0, 1, ..., n-  1 in equation (33) 
reduce to zero when operated on by D,,). The values of ckm and d? (m = 0, 1, ..., k) 
may be obtained recursively by first using Algorithm I and equations (7) to evaluate 
the surface harmonics at (Oo, q50), and then applying D, in equation (33) by using 
Algorithm 11. Compared to the previous two translation cases this is not a very 
convenient way of finding the coefficients; the closed forms indicated below provide 
a faster evaluation. 

According to equation (23), Dn in equation (33) may be replaced by (-)" D,,. 
Thus 

R - n - k - l  (i:) = (-)"b, [R-'-' P?(po) ( (3 5)  

which, by equations (11) and (14), may be expanded as quite a simple combination 
of (n+k)th order internal harmonics at (R ,  Oo, q50). Evaluation of c: and d? then, 
awaits only evaluation of the surface harmonics at (Oo,  $J~), which is rapidly accom- 
plished through Algorithm I and equations (7). Equation (34) shows that for 
r < R ,  nth order internal harmonics translate to a superposition of external har- 
monics of all orders. 

5 
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314 R. W. James 

5. A canonical representation of Dn 

It is relevant to mention that the use of a factorized form of D,, may result in 
increasing the speed with which some of the techniques of this paper may be applied. 

Sylvester (1909) showed that when acting on harmonic functions, D,, can be 
written in the canonical form: 

D, = (->” M,(u, .V)(uz.V) ... (u,.V). (36) 

M ,  is called the multipole strength and the n unit vectors ui ( i  = I ,  2, ..., n) are called 
the multipole axes (of D,, Y, or V,). This factorization of D, is unique except for 
the sense of the vectors and the sign of M,,. The simplification which the multipole 
representation (36) of D, allows is apparent from comparison with equations (11) 
and (8). The time needed to apply D, to any harmonic, through Algorithm I or 11, 
would be reduced by a factor of 2n+ 1 .  For problems where D, is only used once, 
this saving is counteracted by the time required to factoiize D,. When D, is to be 
used at least several times, considerable advantage results from evaluating the multi- 
pole parameters M ,  and ui (i = 1, 2, ..., n) first. It is useful, for example, to have 
available the multipole parameters of the geomagnetic field; however, until recently, 
a satisfactory technique for evaluating these parameters from the harmonic coefficients 
had not been published. Algorithm I may be used to overcome the non-linearity 
problems associated with a reduction to canonical form and in this way the geo- 
magnetic multipoles up to the eighth order have been found (James 1968) and used 
with equation (1 8) to effect a rotation from geographic to geomagnetic co-ordinates. 

6. Some remarks on the eccentric dipole 

The simplest multipole is the dipole, represented by D ,  = -M(u.V) where Mu 
is the dipole moment; an eccentric dipole is one displaced o f f  centre, at  the point 
R say. Attempts are often made to choose M ,  u, R (i.e. six parameters) so that the 
eccentric dipole potential in the region r > R will reproduce, in a least-square sense, 
the eight leading terms in the harmonic expansion of the internal part of the geo- 
magnetic field. To find the eccentric dipole potential various approaches have been 
used (Schmidt 1934; Elsasser 1941; Hurwitz 1960; Kalinin 1963), but it is clear 
that this problem is equivalent to the translation problem of Section 4 .2  (ii). The 
relevant coefficients may be easily obtained from equation (32) (or from equation 
(35) if the region r < R is to be considered). 

According to Algorithms I and 11, the coefficients in equations (32) and (35) 
with n = 1 will only contain Legendre functions like P;51(po) where p is non- 
negative and taken from m - 1, nz and m + 1. Since P,P(I) = dpo, it follows that 

the eccentric dipole expansion is considerably simplified if 00‘ is taken as polar 
axis. 

+ 

The only surviving terms are those containing P r ( p )  where m = 0 or 1. 
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APPENDIX I 

The external analogue of equations (7) 

we have according to equations (17): 
Recalling equation (24) but with R replaced by u (as defined in equation (7)), 

(u. v>" [rn P,"(p) e'"&] = n! P,:(p,) eim+o, 

( U . V ) ~ [ ~ ' '  Y,(0,4)1 = n! Yn(@,,40). 

or more generally, with Y, defined by equation (2), 

(A. 1) 
Formula (A. 1) provides us with an elegant means of evaluating combinations of 
harmonics at the point (do ,  4,). One merely applies Algorithm I1 n times, starting 
with the known coefficients a:, b," (m = 0, 1, . . ., n) of Y,, and taking u = (sin 0, 
cos 4,,, sin 0, sin &, cos 0,). According to (A. 1) the resulting coefficient is 
a,' = (- >" n! Yn(O,, 4,). 

Thus two means of evaluating harmonics are available-Algorithm I and equa- 
tions (7) or Algorithm I1 and equation (A. l). The former is preferable in general 
since n applications of Algorithm I produce all the individual surface harmonics 
up to the nth order-n(nf2) in all-whereas use of (A. l )  to find just the 2n+l  
nth order harmonics requires n(2n+ 1) applications of Algorithm 11. Access to the 
individual harmonics allows any combination to be easily calculated and these 
individual values may be recorded for future reference. 

One of the tests applied to Algorithms I and 11 when checking for amplification 
of rounding-off errors was the evaluation of a sum of 20th order surface harmonics. 
With calculations holding nine significant figures the difference between the two 
available methods was 1 in lo7. 
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APPENDIX II 
Proof of equations (13) 

sistent with the definition of t,j we have 
Let t j  and s j  represent the vectors t j  and s,j in the coniplex plane. Con- 

hence 

The distribution of the t,’ in the plane is such that the m vectors (t,’)’ are the nzth 
roots of (- (i.e. 1 when m is odd and - 1 when rn is even). 
It follows that n [u(t,j)’ + b] = urn + b” (A. 3) 

j 

for all a and b. Thus, from (A .2) and (A. 3), 

= (-&),+ (&>”. 
Similarly, consistent with the definition of s,j (m # 0), s,j = einLZm t m j  and so, from 
equation (A. 4), 

JJ (S,j.V) = i [ ( $ ) m -  (3rn] 
Equations (13) follow from (A.4) and (A.5). 

Proof of equations (9) 

priate combinations of the equations constituting equation (14) we can show 
Assume equations (9) to be true for a particular value of n. By taking appro- 

A plying the operators in equation (A.6) to l/r and using Algorithm I shows that 
equations (9) are also valid for n replaced by n+ 1. The case n = 1 is easily verified 
and the general form of equations (9) follows by induction. 

Proof of equations (16) 
Since V = + ( - T I 1 ,  - S , ’ ,  Tlo), equations (16) with n = 1 and m = 0, 1 are 

equivalent to Algorithm 11, and are therefore true for all values of k and 1 (with 
0 < 1 < k) .  The geDeral form of equations (16) follows by induction, using equation 
(A.6) and Algorithm 11. 

For an alternative derivation, find the coefficients c? and d? in equation (35) 
explicitly by using equations (14), and substitute them into equation (34). Equa- 
tions (16) follow after some manipulation and a coinparison with equation (33). 

A third method of proving equations (16) has been given by Hobson (1955) who 
found one of the four real equations corresponding to equations (16). 
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