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Transformation Optics and
Subwavelength Control of Light
J. B. Pendry,1* A. Aubry,2 D. R. Smith,3 S. A. Maier1

Our intuitive understanding of light has its foundation in the ray approximation and is
intimately connected with our vision. As far as our eyes are concerned, light behaves like a
stream of particles. We look inside the wavelength and study the properties of plasmonic structures
with dimensions of just a few nanometers, where at a tenth or even a hundredth of the wavelength
of visible light the ray picture fails. We review the concept of transformation optics that
manipulates electric and magnetic field lines, rather than rays; can provide an equally intuitive
understanding of subwavelength phenomena; and at the same time can be an exact description
at the level of Maxwell’s equations.

T
he field of optics is not just confined to

imaging but extends to communication,

sensing, cancer treatment, and even weld-

ing of automobile parts. Manipulation of light is

vital to exploitation of its potential, but light is

difficult to control on length scales less than the

wavelength, where diffraction causes convention-

al optical components to fail.

This is the length scale of atoms

and molecules, living cells, elec-

trons, computer microchips, and

micromechanical devices. Sub-

wavelength control demands new

optical materials, and efforts

have turned to metals such as

gold and silver, where the plas-

mon collective excitations of the

conduction electrons couple to

light and can compress the cap-

tured energy into just a few cu-

bic nanometers. We review the

latest developments in transfor-

mation optics applied to plas-

monic systems whereby Snell’s

law, the traditional design tool

of optics, is being replaced by

transformation optics, a new tool

that is fully compatible with the

wave nature of light as described

by Maxwell’s equations.

Snell’s law tells how light is refracted by

transparent media. It gives a picture of light’s

progress in terms of rays, which can be thought

of as streams of photons. This simple, intuitive

picture is a vital component of the design process

and explains why the law is still widely used de-

spite its neglect of reflection at interfaces and

diffraction by small features. OnlyMaxwell’s equa-

tions give a precise description of all the classical

features of light, but they lack the visual intuition

provided by the ray picture. Transformation optics

aims to give a picture equally intuitive to that of

ray optics by using instead the raw elements of

Maxwell’s equations—the electric and magnetic

field lines introduced by Faraday—and gives rules

for how these lines can bemanipulated almost at

will by a suitable choice of material.

To understand how transformation optics

works, imagine a uniform electric displacement

field in free space. The location of the field lines

is recorded on a system of coordinates (Fig. 1). If

we postulate that the field lines are fixed to the

coordinates so that the coordinate system carries

the field lines with it under a distortion, then we

can shape the trajectories of the field simply

by distorting the coordinates. It has long been

known that writingMaxwell’s equations in a new

coordinate system does not change the form but

changes only the values of permittivity and per-

meability as follows

e′i′j′ ¼ ½detðLÞ�−1Li′
i L

j′
j e

ij

m′i′j′ ¼ ½detðLÞ�−1Li′
i L

j′
j m

ij

where e and m are the permittivity and the per-

meability, respectively, in the original coordinate

frame and e′ and m′ are the corresponding quan-

tities in the transformed frame (1, 2).L is given by

the first derivatives of the coordinate transformation

L
j′
j ¼

∂x j′

∂x j

The transformed values of e′ and m′ ensure that

Maxwell’s equations are obeyed by the new con-

figuration of the field lines.

Transformation optics comes about from

the realization that the field lines are glued to the

coordinate system; this insight gives rise to the

intuitive picture that we seek as a replacement for

Snell’s law. Any conserved electromagnetic field

that can be represented by a field line has the

property of adhesion to the coordinate frame.

Thus, the Poynting vector also transforms in this

fashion. The field lines of the Poynting vector

can, in fact, be thought of as a

more precise definition of rays

of light.

Early applications of transfor-

mation optics involved adapting

computer codes fromCartesian to

cylindrical geometries (3). How-

ever, with the advent of meta-

materials, the realization emerged

that transformation optics could

be more than simply a computa-

tional tool and was subsequently

applied as a means of determin-

ing thematerial properties needed

to reshape the perfect lens (4),

allowing it tomagnify objects (5).

Detailed reviews can be found

in (6, 7).

We note that transformation

optics can be applied to other

equations of physics, such as

the Helmholtz equation, an ap-

proximation to Maxwell’s equations (8) and to

acoustics (9).

Transformation optics can render trivial the

design of optical structures that would be other-

wise difficult or seemingly impossible (10, 11). For

example, transformation optics was used to design

a cloak of invisibility, whose material properties

flowed naturally from a relatively simple trans-

formation (8, 12). The technique is ideally suited

to the task of steering field lines away from a hidden

regionwhile leaving them undisturbed in the vicin-

ity of the observer. We exploit the general appli-

cability of the technique to treat subwavelength

fields occurring in plasmonic nanosystems, giving

us a precise design tool. Although the transforma-

tion of near-fields is an extremely versatile tool

REVIEW

1The Blackett Laboratory, Department of Physics, Imperial Col-
lege London, London SW7 2AZ, UK. 2Institut Langevin, École
Supérieure de Physique et de Chimie Industrielles de la Ville de
Paris, ParisTech, CNRS UMR 7587, 1 rue Jussieu, 75005 Paris,
France. 3Center for Metamaterials and Integrated Plasmonics
and Department of Electrical and Computer Engineering, Duke
University, Box 90291, Durham, NC 27708, USA.

*To whom correspondence should be addressed. E-mail:
j.pendry@imperial.ac.uk

A B

y
v

u

x

Fig. 1. (A) Field lines of a uniform electric displacement field. (B) Distortion of space
as if it were a rubber sheet bends the field line, and the coordinate system records the
distortion.
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applicable for the study of numerous phenomena,

we focus on the light-harvesting properties of

nanoparticles to illustrate the techniques.

Harvesting Light

If a photon is to have a strong interaction with

a molecule, its energy must somehow be con-

centrated into the same dimensions as those of

the molecule. This harvesting process is well

known in nature, for example, in the chloro-

phyll complex through which light is collected

and delivered to the reaction center to create sug-

ars from carbon dioxide. We show how to mimic

nature by exploiting surface plasmons. Ideally,

the structure should harvest a broad spectrum

of radiation.

Raman spectroscopy of rough silver sur-

faces first revealed the potential for enhanced

photon-molecule interaction (13). Raman sig-

nals can be spectacularly enhanced, sometimes

by a factor on the order of a million, when the

interaction takes place at a rough metal surface.

It is now believed that the enhancement is due

to the concentration of the electric field at sin-

gularities in the geometry of the surface. Many

computer simulations of Maxwell’s equations

have confirmed this picture (14–21). Early work

showed the importance of geometrical singular-

ities in producing enhancement (22–24). Physical

insight has been provided by the hybridization

model (25). A review of light concentration is

given in (26).

We start from a simple configuration that has

the required broadband harvesting properties,

at first paying little attention to the geometry be-

cause we know that the geometry can be changed

by a transformation, leaving the spectrum unal-

tered (27–30). Figure 2A shows a waveguide

comprising a planar cavity between two silver

surfaces. The system is infinite in directions par-

allel to the surfaces, and therefore the spectrum

is continuous and is formed by the hybridization

of surface plasmons on opposing surfaces. The

lower band extends from zero up to the surface

plasmon frequency, and the upper band, from

the surface plasmon frequency to the bulk plas-

mon frequency,wp. We shall mainly be concerned

with the lower band, which is usually much

broader than the upper band and therefore more

flexible in its applications.

A dipole source, such as an excited atom,

placed in the waveguide now excites surface

plasmon modes, which transport energy away to

infinity. Although this is harvesting of a sort, it is

not particularly useful. To remedy this, we make

a radical transformation of the geometry.

First, we assume that the electric fields dom-

inate so that we neglect retardation and that the

fields are oriented in the xy plane and are invar-

iant along the out-of-plane dimension. Because

the field pattern is effectively two-dimensional (2D),

we are able to apply the theory of optical confor-

mal transformations to the geometry (5, 8). The

conformal transformation ensures that all mate-

rial properties are maintained as isotropic. Con-

sider the conformal transformation defined by

z′ ¼ 1=z

where z ¼ xþ iy and the origin is taken to be at

the center of the dipole. This transformation takes

planes into cylinders, points at infinity to the new

origin, and points at the origin to the new infinity.

A dipole can be represented as two very large

opposite charges very close together. Under this

transformation, the new dipole consists of two

very large charges at infinity, which create a

uniform electric field at the origin. In other words,

in the new coordinate system (Fig. 2), the two

semi-infinite planes become two kissing cylin-

ders, and excitations are created by a uniform

electric field such as might be imposed by an

incident plane wave. Our assumption that the

electric field dominates is valid provided that the

cylinder radii are much less than the wavelength

of light. Another transformation optics–based ap-

proach is found in (31).

Conformal transformations in 2D have the

property that in-plane components of the permit-

tivity tensor are unchanged in the new coordinate

system. This is not true of conformal transfor-

mations in 3D, although transformation optics

has nevertheless been successfully applied to 3D

systems (32).

The original system is excited by a dipole and

harvests its energy to infinity, but the transformed

system is excited by the uniform electric field of a

plane wave and the energy harvested is focused

to the origin. Just as energy never reaches infinity

in the original, so it never reaches the origin in the

new system. As the excited waves travel with

slower and slower group velocity, their energy

density increases, giving rise to a huge field en-

hancement (Fig. 2C). Note also the compression

of the surface plasmon wavelength. In an ideal

loss-free system, energy densitywould rise remorse-

lessly to infinity (the waves are never reflected),

but in practice losses intervene and eventually

terminate the increase in energy density for re-

alistic values of the silver permittivity. Despite

the presence of loss, very large enhancements are

seen: A field enhancement of 104 would enhance

the sensitivity to Raman signals by a factor of

1016. As we shall see, loss is not the ultimately

limiting factor. Nevertheless, in practice, very

substantial enhancements can be expected for

singular structures.

Physical Insight and Hidden Symmetry

It has long been known that singular structures

greatly enhance the energy density of radiation,

and indeed sophisticated computer simulations

reveal many of the details (14–21). So what does

transformation optics add to the story?

Take the kissing cylinder configuration shown

in Fig. 2: Computer simulations variously work

A

C

B

y

x Surface plasmons

Dipole

Invert about
dipole center

External
electric
field

Kissing
cylinders

E
x
/E

0

176

–104

+104

0

178 180θ(deg)

θ

Fig. 2. (A) A mother structure
comprising a 2D cavity sand-
wiched between two flat silver
surfaces. Light is captured from
a dipole source located inside
the cavity, and the energy trans-
ported to infinity. (B) Transfor-
mation of the left-hand structure
via an inversion about the cen-
ter of the dipole gives rise to a
daughter structure that is finite
but inherits the same broadband
spectrum. (C) The field enhance-
ment at the surface of two touch-

ing silver cylinders of equal radii at a frequency 0:7wsp, wherewsp is the surface plasmon frequency of an
isolated cylinder. The blue curve is calculated by using the experimentally measured permittivity; the red
curve shows the effect of doubling the imaginary part of the permittivity. The incident electric field
orientation Ex is shown by the black arrows.
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either by quantizing the fields on a mesh or by

making an expansion in many cylindrical har-

monics. The picture that emerges is a complex

representation of the fields. Transformation op-

tics reveals that this complexity is not intrinsic to

the spectrum but is imposed by the transforma-

tion from a simple system to a more complex one.

The kissing cylinders have little intrinsic sym-

metry: just an axis of rotation and a couple of

mirror planes. However, the original planar wave-

guide has translational symmetry that enables us

to classify all eigenstates by a Bloch wave vec-

tor, k. Although this symmetry is hidden by the

transformation, it continues as a good quantum

number for the eigenstates of the new system,

offering valuable insight into their nature (27).

In computational studies, each new structure

requires computation to begin again. In transfor-

mation optics, our “mother” structure is related

to an infinity of “daughter” structures, giving us

the ability to classify a whole category of struc-

tures as belonging to the same family. In general,

mother structures that are infinite, as is the case in

Fig. 2, give rise to continuous spectra. Transfor-

mations to finite structures give rise to singu-

larities because infinity is mapped into something

that is finite. In Fig. 3, left, we show a series of

singular structures obtained by transforming planar

waveguides, and therefore all of them have con-

tinuous spectra and show large field enhance-

ments in the vicinity of the singularities.

On the other hand, starting from a finite pla-

nar structure means that the spectrum is discrete,

as is the case for all nonsingular finite structures.

The transformed structures of Fig. 3, right, derive

from planar mother structures that are finite;

in consequence they inherit the discrete spectra,

and their geometry is free of the singularities

that would be essential were the spectra to be

continuous.

The various transformations used to generate

these structures can be seen in (33–35).

Radiative Corrections

So far we have assumed a very small system and

neglected radiative corrections. However, radi-

ative scattering increasingly competes with the

harvesting process as system size increases and

ultimately limits how large a system can be and

still have useful harvesting capability.

Radiation is a loss mechanism and can be

approximated by introducing an absorbing me-

dium outside a large cylinder that encases the

whole system (Fig. 4B) (36). If only dipole ra-

diation is appreciable, then this approximation

is exact. Applying transform optics in reverse takes

the large hollow cylinder into a small cylinder

containing the absorbing material (Fig. 4A). As it

happens for all systems for which harvesting is

substantial, dipole radiation dominates and this is

a very accurate approximation. Figure 4C shows

the reduction in enhancement resulting from ra-

diative corrections calculated by using the dipole

absorber approximation and by direct computer

simulation. Radiative corrections degrade this

harvester’s performance. For systems of 200-nm

dimensions and larger, most of the incident ra-

diation is scattered rather than harvested.

Nonlocal Corrections

We have seen how radiative corrections spoil the

harvesting process for large systems. However,

there is a limit to how small we

can make our system and still

have it function efficiently. Quite

apart from difficulties of con-

structing nanoscale systems, non-

local effects become substantial

for systems smaller than a few

nanometers in diameter (37–39).

Nonlocality arises because

of quantum effects in the metal’s

conduction electrons. If we ap-

ply an electric field to a metal

surface, electrons migrate to the

surface and screen the interior of

themetal from the field. Because

the electrons are not infinitely

compressible, the screening elec-

trons are not located precisely at

the surface but are distributed in

a layer whose thickness is of the

order of the FermiThomas screen-

ing length, or about 0.1 nm in a

typical metal.

The local approximation

amounts to assuming that the

screening electrons are confined

to an infinitely thin surface layer.

This is a good approximation un-

less the system dimensions are

very small indeed; unfortunately, that is the case

for harvesting systemswhere the enhanced fields

are found for surfaces that approach very closely.

As a result, nonlocal effects ultimately limit the

enhancement. Technically, the charge distribution

inside a metal is represented by the longitudinal

modes: the bulk plasmons. For most purposes in

optics, bulk plasmons play no role: Their fre-

quency is assumed independent of wave vector,

q, and they cannot be excited by external radiation.

But for small systems, their dispersion, wpðqÞ,
becomes appreciable and has to be taken into

account. If w > wpðq ¼ 0Þ, bulk plasmons have

finite group velocity and carry energy away from

the surface into the bulk. Ifw < wpðq ¼ 0Þ, bulk
plasmon modes decay as expð−dzÞ, the exponent
d defining a decay length representing the finite

size of the nonlocal surface charge. In contrast, the

transverse modes for w < wpðq ¼ 0Þ represent

Infinite planar structure
continuous spectrum

Singular structures
non-singular

or 'blunted' structures

Finite planar structure
discrete spectrum

Fig. 3. A single mother structure, such as the planar waveguide
shown in Fig. 2, can be transformed into an infinite variety of daughter
structures; that is, they all have identical spectra. If themother planar
structure is infinite, the spectrum is continuous and the daughter
structures are singular, that is, possessed of sharp features; if finite,
the spectrum is discrete and the daughter structures nonsingular,
that is, no sharp features.

A

B

C

Dipole

absorber

Scattered field

Scattered field

Incident electric field

E
x
/ E

0

–2000

2000

0

175 180

θ(deg)

D = 200nm

Fig. 4. (A) A small lossy dielectric sphere trans-
forms into (B) a large hollow dielectric absorber.
In this way, radiation losses can be taken into ac-
count. (C) Field enhancement as a function of an-
gle around the cylinder. Blue line, no radiative
correction; red line, dipole absorber correction;
and green line, computer simulation including
retardation.
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the decay of the fields into the bulk. Ultimately

for very small particles, the dielectric description

breaks down entirely as the electron levels are

quantized, and electron tunneling between com-

ponents of the system comes to dominate. The

debate is ongoing as to how small a system must

be for a dielectric description to fail, but unpub-

lished experiments indicate that, even for par-

ticle separations of less than a nanometer, the

nonlocal theory works well.

Transformation optics has been

generalized to deal with these non-

local effects (40). Figure 5 shows

the theory applied to a system of

two touching silver nanocylinders.

Figure 5B shows calculated cross

sections for differing degrees of non-

locality, the green curve for d–1 =

0.16 nm being the appropriate value

for silver. Evidently in the nonlocal

system, the continuous spectrum is

replaced by a series of discrete lev-

els. This comes about because sur-

face plasmons are no longer prevented

from reaching the touching point,

and, when they meet, their phases

must match, imposing quantization.

The effect grows more evident with

increasing nonlocality. In Fig. 5C,

we show the enhancement at the

touching point as a function of fre-

quency and cylinder radius. As dis-

cussed, large cylinders show poor

enhancement because of competi-

tion from radiative losses. Small cyl-

inders show a pronounced blue shift

and reduced enhancement. The op-

timum choice of radius seems to be

in the range 35 nm < R < 80 nm.

Conclusions

Our aim has been to showcase the

most recent application of trans-

formation optics, to the design of

massively subwavelength systems,

with particular examples chosen from

plasmonic devices designed to con-

centrate light. Transformation op-

tics has now found applications to

many fields: initially to adaptation

of computer programs to varying ge-

ometries; then to negative refraction

devices andperfect lenses, enormous-

ly expanding the potential applica-

tions; to the problem of invisibility;

and now to subwavelength structures.

The key ingredients of trans-

formation optics are the electric and

magnetic field lines. These replace

the rays of light that appear in the

approximations of Snell’s law and

ray optics but retain the visual in-

sight while fully satisfyingMaxwell’s

equations. Indeed physical insight

is the key benefit of this approach to

electromagnetism. Our expectation is that trans-

formation optics will be the design tool of choice

in electromagnetic theory.
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Fig. 5. (A) (Left) Nonlocality smears the screening charge so
that in effect the surfaces no longer touch, and therefore field
enhancement is reduced. (Right) Transformation optics distorts
the length scales in the transformed system, and as a result the
smearing of the surface charge varies with position. (B) The
absorption cross section for cylindrical dimers of radius 10 nm
for various values of the nonlocal decay length, d−1. Full lines
show the transformation optics result; dots are computed by
using comsol. The gray line shows the local result for the dimers;
the black line, the local results for a single cylinder; and the
dashed line, the nonlocal results for a single cylinder. (C) Ab-
solute value of the field enhancement at the touching point for
cylinders of various radii (R).
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