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Surface plasmons dominate the optical response of metal surfaces, and their nature is controlled by surface

geometry. Here we study metasurfaces containing singularities in the form of sharp edges and characterized by

three quantum numbers despite the two-dimensional nature of the surface. We explore the nature of the plasmonic

excitations, their ability to generate large concentrations of optical energy, and the transition from the discrete

excitation spectrum of a nonsingular surface to the continuous spectrum of a singular metasurface.
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I. INTRODUCTION

In a previous paper [1] we commented on the curious
mathematical structure of the spectra of singular surfaces
which are characterized by three quantum numbers despite the
two-dimensional nature of the surface. Transformation optics
[2,3] shows how the third dimension is hidden within the sin-
gularity [1]. This paper will explore in detail the nature of the
plasmonic excitations, their ability to generate large concen-
trations of optical energy, and the transition from the discrete
excitation spectrum of a nonsingular surface to the continuous
spectrum of a singular metasurface. Subwavelength metal
gratings couple external light into surface plasmons, effi-
ciently localizing the electromagnetic energy and finding ap-
plications in optical biosensing and photovoltaics [4–8]. These
can be used to control external radiation using metasurfaces
[9,10]. Here we consider a singular metasurface. Singularities
in plasmonic systems, such as sharp edges or touching points,
concentrate the electromagnetic fields even to subnanometric
volumes yielding huge energy densities [11–23].

Transformation optics takes advantage of the coordinate
invariance of Maxwell’s equations to give a prescription of
how the electromagnetic parameters ε and µ change under
geometrical transformations. For the case of two-dimensional
conformal transformations, ε and µ are left unchanged on the
plane, which can be exploited for solving complex plasmonics
problems by transforming them to a frame where geometry
is simpler [24]. This is particularly useful when considering
systems with singularities [21] as they give rise to divergences
that cannot be treated exactly with numerical methods.

In this paper we use transformation optics to derive an
analytical theory of the optical response of singular plasmonic
metasurfaces. In previous works we have applied this frame-
work to the study of metasurfaces with smooth shapes [25,26].
Here we use the conformal transformation introduced in
Ref. [1] for the design of singular metasurfaces and present an
analytical derivation to completely characterize their optical
properties. Other authors have used transformation optics to
design finite structures with continuous spectra [27] which
they achieve through singular values of ε and µ. In contrast
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our paper exploits singularities in the structure: There are no
singularities in ε or µ.

The text is structured as follows. First, in Sec. II we present
the conformal transformation that generates a metasurface
with grooves or wedges forming a sharp angle. The external
fields incident on the metasurface are considered in Sec. III.
Next, in Sec. IV we derive the analytical expressions for
the electromagnetic fields and absorption cross section in the
metasurface. We then introduce in Sec. V a flat surface model
from which we obtain an effective surface conductivity that
allows us to unambiguously determine the optical response
of the metasurface through its reflectivity. Finally, the results
for the singular metasurface at normal incidence are presented
in Sec. VI and for two cases which break the symmetry in
Sec. VII: a symmetric metasurface under oblique incidence
and an asymmetric metasurface.

II. CREATING A SINGULAR METASURFACE

We start by describing the transformations that result in the

singular metasurfaces shown in Fig. 1. Let us first consider

an array of metal slabs with periodicity along the vertical

direction and translational invariance along the horizontal

direction, placed in the slab frame (z1 = x1 + iy1). The period

of the array is d, the thickness of the slabs is d3, and we

take d1 + d2 to be the thickness of the dielectric region. An

exponential transformation maps the slab array into either

a wedge when d1 + d2 > d3 [panel (a)] or a groove when

d1 + d2 < d3 [see panel (b)] in frame z2. Then an inverse

transformation is carried out to get the two-touching-circular

segments shown in the z3 frame. As a last step, a logarithmic

transformation is used to generate a surface with a periodic

set of sharp wedges/grooves (see the z4 frame): These are the

singular metasurfaces under consideration here.

On the basis of this series of transformations, a one-step

transformation from the slab frame to the metasurface frame

can be written as

z4 =
T

2π
ln

(

1

a(e2πz1/d − 1)
+

1

2a

)

. (1)

Here, T defines the size of the metasurface by fixing its

period, and a is chosen as 0.5 so that the singular point in

the metasurface frame is located on the y axis. As mentioned
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FIG. 1. A series of transformations to generate a singular metasurface with (a) concave shape (d1 + d2 > d3) and (b) convex shape (d1 +
d2 < d3). The different coordinate frames are labeled as zi with zi = xi + iyi . In the slab frame z1, the period of the slab array is d, d1 + d2

is the thickness of the air region, and d3 is the thickness of each metal slab. This is successively transformed to a single wedge/groove (frame

z2), two-touching-circular segments (frame z3), and finally a singular metasurface (frame z4). Note that the x axis and the y axis do not have

the same scale.

previously, d = d1 + d2 + d3 is the period in the slab frame,

and the choice of {d1, d2, d3} determines the shape of the

metasurface. For d1 + d2 = d3 the transformation generates a

flat surface, whereas d1 + d2 > (<)d3 results in concave (con-

vex) singular metasurfaces formed by periodic sharp wedges

(grooves). In addition, setting d1 = d2 generates a metasurface

that is symmetric with respect to the horizontal axis.

In the following we detail our analytical derivations to

calculate the optical response of these singular metasurfaces.

Throughout the paper we take the metal to be gold with per-

mittivity approximated by the Drude model ε = 1 − ω2
p

ω(ω+iŴ)

with plasma frequency ωp = 8.95 eV/h̄ and damping Ŵ =
65.8 meV/h̄ [28].

III. TRANSFORMING THE SOURCE

The problem we set out to solve is that of a p-polarized

plane wave (magnetic field out of the plane Hz) incident on

the singular metasurface as any more complex wave fronts

can be expressed as a superposition of plane waves. Since the

transformation not only transforms the geometry, but also the

form of the source, we have to derive the representation of

the source in the slab frame. For this purpose, we generate an

incident wave using a periodic array of magnetic current line

sources (“monopoles”) on the right-hand side of the metasur-

face frame as depicted in Fig. 2(b). Taking the sources to be

at infinity such that their near fields can be safely neglected

[29,30], their radiated field is a plane wave incident on the

surface. We assume that the period of the metasurface is much

less than the free space wavelength. When the incident wave

impinges on the singular surface, there will be reflected and

transmitted waves. These three sorts of waves all participate

in the excitation of surface plasmons at the singular surface.

In addition to the source currents, there needs to be a sink

at infinity to receive the reflected waves and another sink

at minus infinity to receive the transmitted waves. Then, the

source in the slab frame can be obtained by recognizing that:

(i) A magnetic current line is conserved under the transfor-

mation and, (ii) sources at +∞ in the metasurface frame are

mapped to the point z1 = ind, whereas sources at −∞ in

the metasurface frame are mapped to z1 = i(n + 1
2

)d (here

n is an integer). Hence, the monopole sources generating

the incident wave and the monopoles receiving the reflected

waves are located in the air region in the slab frame, whereas

the monopoles receiving the transmitted wave are placed in

the metal region [see Fig. 2(a)].

We start by writing the magnetic field of the incident,

reflected, and transmitted waves in the metasurface frame as

H inc
z = H0e

−ik0xx4+ik0yy4 ,

H ref
z = rH0e

ik0xx4+ik0yy4 , (2)

H tra
z = tH0e

−ik
′
0xx4+ik0yy4 ,

where H0 is the wave amplitude, r and t are reflection

and transmission coefficients, k0x =
√

k2
0 − k2

0y , and k
′

0x =√
εk2

0 − k2
0y .

In order to write the source field in the slab frame, we

transform Eq. (3) using the mapping Eq. (1) to obtain

H inc
z = H0

[

1 + i
k0xT

2π
ln
(π

d

)

]

+
∫ ∞

−∞
aa

e−|kx ||y1|

|kx |
eikxx1dkx

+
∫ ∞

−∞
as

e−|kx ||y1|

sgn(y1)kx

eikxx1dkx,

FIG. 2. Sketch showing the source field in both frames. In the

metasurface frame (b) the source is a plane wave incident on the

surface, which we take to be generated by an array of magnetic line

currents located at infinity. The source is mapped into an array of

magnetic line currents in the slab frame (a).
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H ref
z = rH0

[

1 − i
k0xT

2π
ln
(π

d

)

]

−
∫ ∞

−∞
raa

e−|kx ||y1|

|kx |
eikxx1dkx

+
∫ ∞

−∞
ras

e−|kx ||y1|

sgn(y1)kx

eikxx1dkx,

H tra
z = tH0

[

1 − i
k

′

0xT

2π
ln
(π

d

)

]

−
∫ ∞

−∞
t
k

′

0x

k0x

aa

e−|kx ||y1+(d/2)|

|kx |
eikxx1dkx

−
∫ ∞

−∞
tas

e−|kx ||y1+(d/2)|

sgn
(

y1 + d
2

)

kx

eikxx1dkx . (3)

The detailed derivation for these source representations is in-

cluded in Appendix A. In writing the above equations we have

assumed that the period of the metasurface is subwavelength

(T ≪ |x4| ≪ λ). Also, we have written the fields as a Fourier

series, and we have identified a symmetric and an antisymmet-

ric component to the source with amplitudes aa = −i k0xT

4π
H0

(antisymmetric source) and as = k0yT

4π
H0 (symmetric source).

Note that we define the symmetry of the modes by considering

the Ex component in the slab frame: The antisymmetric

(symmetric) mode has odd (even) symmetry of Ex (y). From

the above, we can write the source field in k space for the

antisymmetric mode as

H a
z (kx ) =

{

(1 − r )aa
e−|kx ||y|

|kx | , −d2 < y < d1,

−t
k

′
0x

k0x
aa

e−|kx ||y+(d/2)|

|kx | , −d2 + d3 < y < −d2,

(4)

and for the symmetric mode as

H s
z (kx )

=

⎧

⎨

⎩

(1 + r )assgn(kx ) e−|kx ||y|

sgn(y)|kx | , −d2 < y < d1,

−tassgn(kx ) e−|kx ||y+(d/2)|

sgn(y+ d
2 )|kx |

, −d2 + d3 < y < −d2,

(5)

in which the constant field components are ignored since

they do not contribute to the excitation of surface-plasmon

polaritons (SPPs). Finally, note that the source representation

includes terms ∼ e−|kx ||y|

|kx | , which is just the Fourier transforma-

tion of a Hankel function in the quasistatic limit [31]. Indeed,

a Hankel function is the source representation of a line current,

which further confirms our source representation.

IV. ELECTROMAGNETIC FIELDS AND ABSORPTION

CROSS SECTION

A. Surface-plasmon dispersion relation

Once we have the source fields, we can calculate the

excited field components. When a SPP mode (Hz ∼ eikxx) on

the boundary between metal and air is excited, the total field

distribution in the slab frame can be written as

Hz(kx ) =

⎧

⎨

⎩

(1 − r )aa
e−|kx ||y|

|kx | + (1 + r )as
e−|kx ||y|

sgn(y)kx
+ b+e−|kx |y + b−e|kx |y, −d2 < y < d1,

−t
k

′
0x

k0x
aa

e−|kx ||y+(d/2)|

|kx | − tas
e−|kx ||y+(d/2)|

sgn(y+ d
2 )kx

+ c+e−|kx |y + c−e|kx |y, −(d2 + d3) < y < −d2.
(6)

Here, b+, b−, c+, and c− are the excited mode amplitudes,

which have to be determined from the boundary conditions.

This requires matching the tangent components of the fields

Hz and Ex at y = d1, y = −d2, and y = −(d2 + d3) [21],

and details are given in Appendix B.

Once the excited field mode amplitudes have been deter-

mined [see Eqs. (B2)–(B5)], the dispersion relation of surface

plasmons can be obtained by looking at the poles of these

coefficients. Neglecting the pole kx = 0 as it is a branch point

which corresponds to a localized virtual excitation rather than

SPPs [32,33], we concentrate on the plasmon pole. From the

amplitude of the antisymmetric mode [Eqs. (B2) and (B3)],

we obtain

(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1) = 0. (7)

Whereas for the symmetric mode [Eqs. (B4) and (B5)] we

have

(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1) = 0. (8)

Figure 3 shows the calculated dispersion relations for the

singular wedge (a) and (c) and groove (b) and (d) metasur-

faces. For the general case, at an oblique incidence, both the

symmetric and the antisymmetric bands can be excited as

shown in panels (a) and (b). On the other hand, at normal

incidence only the antisymmetric band is excited [panels (c)

and (d)]. It should be noted that the bands have lower and

upper cutoff frequencies different from 0 and ωp. For the

wedge (groove) metasurface, the symmetric (antisymmetric)

band spans a frequency range of ωc1 � ω < ωsp, whereas the

antisymmetric (symmetric band) spans ωsp < ω � ωc2. Here,

ωsp is the surface-plasmon frequency, and ωc(1,2)’s are the

lower and upper cutoff frequencies, which were shown to

be ωc1 = ωp

√

θ
2π

and ωc2 = ωp

√

2π−θ
2π

, where θ = 2π d3

d
for

the wedge case of (d1 + d2 > d3), θ = 2π d1+d2

d
and for the

groove case of (d1 + d2 < d3) [21]. The appearance of these

cutoffs is a result of plasmon hybridization in the infinite peri-

odic array of the slab frame [21]. Note that when analyzing

the dispersion relation, we have assumed a lossless metal,

whereas we use a finite damping for the rest of the paper.

In the following we focus on the groove singular meta-

surface for which the antisymmetric band excited at normal

incidence exists below ωsp where the Drude model gives a

more accurate description of the metal.

125409-3



FAN YANG, PALOMA A. HUIDOBRO, AND J. B. PENDRY PHYSICAL REVIEW B 98, 125409 (2018)

FIG. 3. Dispersion relations of surface plasmons in singular metasurfaces. (a) and (c) SPP dispersion relation in a wedge singular

metasurface at oblique (a) and normal incidence (c). The parameters are d3 = 0.1d, d1 = d2 = (d − d3)/2. (b) and (d) SPP dispersion relation

in a groove singular metasurface at oblique (b) and normal incidence (d). The parameters are d3 = 0.9d, d1 = d2 = (d − d3)/2.

B. Electric and magnetic fields in real space

Next, we calculate the electromagnetic fields in real space. We write the SPP mode field distribution by taking the Fourier

transform of the excited terms in the magnetic field given by Eq. (6),

Hz(x, y) =
∫ ∞

−∞
Hz(kx, y)eikxxdkx = 2πi Res[Hz(kx, y)eikxx]|kx=kpx

, (9)

where the residue theorem is applied at the plasmon pole kx = kpx . Also, from Eq. (6) we have Hz(kx, y) = b+e−|kx |y + b−e|kx |y

in the dielectric region and Hz(kx, y) = c+e−|kx |y + c−e|kx |y in the metal region. This yields the following field distribution in

the slab frame:

Hz(x, y) =

{

i2πa
(

Ŵ+e
−
√

k2
pxy + Ŵ−e

√
k2
pxy
)

eikpx |x|, −d2 < y < d1,

i2πa
(

�+e
−
√

k2
pxy + �−e

√
k2
pxy
)

eikpx |x|, −d2 + d3 < y < −d2,
(10)

where a stands for a(a,s) for the antisymmetric/symmetric mode and |kx | has been written as
√

k2
x in the complex integration. All

the field coefficients (Ŵ+, Ŵ−, �+, and �−) are given in Appendix B [Eqs. (B6)–(B9)]. The electric field can be derived from

Maxwell’s equations using Ex = i
ωε

∂Hz

∂y
,

Ex (x, y) =

⎧

⎨

⎩

2πa
√

k2
px

ωε0
(Ŵ+e

−
√

k2
pxy − Ŵ−e

√
k2
pxy )eikpx |x|, −d2 < y < d1,

2πa
√

k2
px

ωε0ε
(�+e

−
√

k2
pxy − �−e

√
k2
pxy )eikpx |x|, −d2 + d3 < y < −d2

(11)

and Ey = − i
ωε

∂Hz

∂x
,

Ey (x, y) =

⎧

⎨

⎩

i sgn(x)
2πakpx

ωε0
(Ŵ+e

−
√

k2
pxy + Ŵ−e

√
k2
pxy )eikpx |x|, −d2 < y < d1,

i sgn(x)
2πakpx

ωε0ε
(�+e

−
√

k2
pxy + �−e

√
k2
pxy )eikpx |x|, −d2 + d3 < y < −d2.

(12)

Once we have the fields in the slab frame, the fields in

the metasurface frame can be calculated by mapping them

following the rules of transformation optics [2,3]. The ob-

tained mode profile is plotted in Fig. 4 for the antisymmetric

(a) and symmetric (b) modes at two frequencies of choice

below and above the surface-plasmon frequency. We show a

sketch of the charge distribution for each mode (antibonding

and bonding, respectively) together with the calculated phase

and amplitude of the Ex component along the singular surface

and a field plot for Ex (x, y) and Ey (x, y) in the metasurface

frame. It is clear that the phase oscillates very rapidly and

the in-plane electric field diverges at the singularity. This can

be understood from the compression of an infinite dimension

hidden at the singular point [1], making the derivative of Hz
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FIG. 4. Mode plot in the metasurface frame for (a) antisymmetric

mode at ω = 0.6ωp and (b) symmetric mode at ω = 0.8ωp . From

the left column to right column are as follows: charge distribution

(sketch), phase and amplitude along the singular surface, and field

distribution of Ex and Ey in the unit cell. The parameters are as

follows: d3 = 0.9d, d1 = d2 = (d − d3)/2. In the color map, red

stands for positive values of the field magnitude, and blue stands for

negative ones.

with respect to x and y be infinite at the singularity. On the

other hand, due to its invariance, the magnetic field keeps a

finite value in all the frames shown in Fig. 1 and, in particular,

in the singular metasurface frame.

The presence of loss will attenuate the field in any real

system. In this case, the amplitude of the excited SPP wave

in the slab frame will be attenuated as it travels along the slab

and away from the sources. As was shown previously, there is

a critical angle of the groove/wedge where the enhancement

by compression and attenuation by loss are balanced [21]. The

electric field converges for θ � θc, whereas it diverges oth-

erwise, where θc = Im[ln( ε−1
ε+1

)] for the lower band and θc =
−Im[ln( 1−ε

ε+1
)] for the upper band. The geometrical parameters

chosen in Fig. 4 [d3 = 0.9d, d1 = d2 = (d − d3)/2] yield an

angle at the singularity of θ = 2π Min(d1+d2,d3 )

d
= 0.2π . At

the frequencies of choice ω = 0.6ωp for the antisymmetric

mode and ω = 0.8ωp for the symmetric one, the critical

angles are θc = 0.03 and θc = 0.04, respectively. Therefore,

the electric field at the singular point of both antisymmetric

and symmetric modes diverges despite the presence material

losses as shown in the right column of Fig. 4.

C. Energy dissipation by SPPs

Once the field distribution is obtained, we calculate the

energy dissipated by the excited SPP mode in the slab frame.

Dissipation is due to loss in the metal, so we calculate the

absorbed power as the following integral on the slab volume:

P
(a,s)
abs =

∫

slab

1

2
ωε0Im[ε]|E|2dx dy =

4π2|a|2|kpx |2Im[ε]

ωε0|ε|2

⎛

⎝

|�(a,s)+|2

−2 Re
[

√

k2
px

]

(e2 Re[
√

k2
px ]d2 − e

2 Re[
√

k2
px ](d2+d3 )

+
|�(a,s)−|2

2 Re
[

√

k2
px

]

(e−2 Re[
√

k2
px ]d2 − e

−2 Re[
√

k2
px ](d2+d3 ))

⎞

⎠

1

Im[kpx]
, (13)

where the coefficients �(a,s)± stand for the antisymmetric and symmetric mode coefficients given in Eqs. (B7) and (B9). Using

�a± (�s±) yields the power absorbed by the antisymmetric (symmetric) mode. Finally, the absorption cross section of the

structure can be obtained by normalizing to the input energy on the system in one period,

σ
(a,s)
abs =

P
(a,b)
abs

1
2

√

µ0

ε0
H 2

0 T cos θin

, (14)

where θin is the incident angle of the plane wave and H0 is the wave amplitude. Thus, we have for the antisymmetric mode,

σ a
abs =

k0T cos θin

2

|kpx |2 Im[ε]

|ε|2

⎛

⎝

|�a+|2

−2 Re
[

√

k2
px

]

(

e
2 Re[

√
k2
px ]d2 − e

2 Re[
√

k2
px ](d2+d3

)

+
|�a+|2

2 Re
[

√

k2
px

]

(

e
−2 Re[

√
k2
px ]d2 − e

−2 Re[
√

k2
px ](d2+d3 )

)

⎞

⎠

1

Im[kpx]
, (15)

and for the symmetric one,

σ s
abs =

k0T sin2 θin

2 cos θin

|kpx |2Im[ε]

|ε|2

⎛

⎝

|�s+|2

−2 Re
[

√

k2
px

]

(

e
2 Re[

√
k2
px ]d2 − e

2 Re[
√

k2
px ](d2+d3

)

+
|�s+|2

2 Re
[

√

k2
px

]

(

e
−2 Re[

√
k2
px ]d2 − e

−2 Re[
√

k2
px ](d2+d3 )

)

⎞

⎠

1

Im[kpx]
. (16)
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FIG. 5. Metasurface with blunt singularities. A periodic array of

truncated slabs (a) in the slab frame maps to a metasurface with blunt

singularities (b) in the metasurface frame.

D. Metasurface with blunt singularities: From a continuous to a

discrete spectrum

Any fabricated metasurface will not show a perfect sin-

gularity but a blunt one, so we now move on to treat blunt

singularities [34]. A metasurface with rounded singularities

maps into a truncated slab array (or truncated cavity array

for the groove geometry) as shown in Fig. 5. This has an

important consequence: When the slabs/cavities are not infi-

nite, the excited SPP modes traveling along the slab will be

reflected at its terminals as depicted in Fig. 5(a), resulting in a

quantization of the SPP modes supported by the slab structure.

Hence, the continuous spectrum of a singular metasurface

turns into a discrete spectrum when the singularities are

blunt.

In order to calculate the field distribution and energy

dissipation in the truncated slab/cavity arrays we first need to

calculate the reflection coefficient of SPPs at the slab/cavity

terminal. For conciseness, in the following we will refer only

to the cavity array shown in Fig. 5(a), and we point out here

that the same derivation can be applied to the truncated slab

array. The radius of the rounded singularity in the metasurface

frame determines the length of the cavities in the slab frame

L as well as the exact shape of the terminal. In order to

calculate the reflection coefficient of the SPP modes at the

end of the cavity we assume that the terminal is a flat vertical

air/metal interface. Then we consider the field of the SPP

modes (H
sp
z ) in the cavity −L/2 < x1 < L/2 and the field

(H out
z ) in the region outside the cavity x1 < −L/2 and x1 >

L/2, and impose the continuity condition of the tangential

fields and the power flow at x1 = L/2 [35,36]. This yields the

equations,

(1 + rsp )H sp
z = H out

z , (17)

(1 − rsp )Esp
y = Eout

y , (18)

∫ d1

−(d2+d3 )

(1 − r∗
sp )(1 + rsp )Esp∗

y H sp
z dy =

∫ d1

−(d2+d3 )

Eout∗
y H out

z dy, (19)

where H
sp
z and E

sp
y are given in Sec. IV B.

In the region outside the periodic cavity array we expand the magnetic field as a series of Bloch waves,

H out
z =

∑

g

h(g)eigy, (20)

where g = n 2π
d

and n is an integer. The coefficients h(g) can be expressed as

h(g) =
1

d

∫ d1

−(d2+d3 )

H out
z e−igydy =

1 + rsp

d

∫ d1

−(d2+d3 )

H sp
z e−igydy =

1 + rsp

d
I (g), (21)

where we have made use of Eq. (17) and we have named the integral in the last equality as I (g). On the other hand, we can

derive the electric field in this region as Eout
y = − i

ωεε0

∂H out
z

∂x
. This yields

Eout
y =

1

ωεε0

∑

g

√

εk2
0 − g2h(g)eigy, (22)

where we have used h(g) ∝ ei
√

εk2
0−g2x and ε should be replaced by 1 for the wedge system. Replacing the expression for h(g),

Eq. (21), in the above equation we obtain

Eout
y =

1 + rsp

ωεε0d

∑

g

√

εk2
0 − g2I (g)eigy . (23)

Substituting the expressions for H out
z and Eout

y into Eq. (19) and after some algebra we arrive at

1 − rsp

1 + rsp

=
1

ωεε0d

∑

g

(

√

εk2
0 − g2

)

|I (g)|2
∫ d1

−(d2+d3 )
E

sp
y H

sp∗
z dy

≡ G, (24)

where we take k0 = 0 in the quasistatic limit. From Eq. (24), we obtain the reflection coefficient as

rsp =
1 − G

1 + G
. (25)
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Since in the quasistatic limit radiative loss is small, the amplitude of the reflection coefficient is |rsp| ≈ 1 [which is indeed

confirmed from our calculations using Eq. (25)]. Hence, we consider only the reflection phase rsp = eiφ and write the field of

the SPP mode in the cavity of length L,

Hz(x, y) =

{

i2πa(Ŵ+e−|kpx |y + Ŵ−e|kpx |y )(eikpx |x| + e−ikpx |x|+ikpxL+iφ ) 1

1∓eikpxL+iφ , −d2 < y < d1,

i2πa(�+e−|kpx |y + �−e|kpx |y )(eikpx |x| + e−ikpx |x|+ikpxL+iφ ) 1

1∓eikpxL+iφ , −d2 + d3 < y < −d2,
(26)

in which ∓ stands for − for the antisymmetric source and + stands for for the symmetric source. From Hz the electric field is

obtained using Ex (x, y) = i
ωε

∂Hz

∂y
and Ey (x, y) = − i

ωε

∂Hz

∂x
.

Finally, the absorption cross section of the blunt singular metasurface is derived from the electric field following the same

procedure detailed in Sec. IV C. We have for the antisymmetric mode,

σ a
abs =

k0T cos θin

2

|kpx |2Im[ε]

|ε|2
1

|1 − eikpxL+iφ|2

⎡

⎣

⎛

⎝

|�a+|2

−2 Re
[

√

k2
px

]

(

e
2 Re[

√
k2
px ]d2 − e

2 Re[
√

k2
px ](d2+d3 )

)

+
|�a−|2

2 Re
[

√

k2
px

]

(

e
−2 Re[

√
k2
px ]d2 − e

−2 Re[
√

k2
px ](d2+d3 )

)

⎞

⎠

1 − e−2 Im[kpx ]L

Im[kpx]

−

⎛

⎝

�
∗
a+�a−

i2 Im
[

√

k2
px

]

(

e
−i2 Im[

√
k2
px ]d2 − e

−i2 Im[
√

k2
px ](d2+d3 )

)

+
�a+�

∗
a−

−i2 Im
[

√

k2
px

]

(

e
i2 Im[

√
k2
px ]d2 − e

i2 Im[
√

k2
px ](d2+d3 )

)

⎞

⎠

×
2e−Im[kpx ]L

Re[kpx]
{sin(Re[kpx]L + φ) − sin(φ)}

⎤

⎦, (27)

and for the symmetric one,

σ s
abs =

k0T sin2 θin

2 cos θin

|kpx |2Im[ε]

|ε|2
1

|1 + eikpxL+iφ|2

⎡

⎣

⎛

⎝

|�s+|2

−2 Re
[

√

k2
px

]

(

e
2 Re[

√
k2
px ]d2 − e

2 Re[
√

k2
px ](d2+d3 )

)

+
|�s−|2

2 Re
[

√

k2
px

]

(

e
−2 Re[

√
k2
px ]d2−e

−2 Re[
√

k2
px ](d2+d3 )

)

⎞

⎠

1−e−2 Im[kpx ]L

Im[kpx]
−

⎛

⎝

�
∗
s+�s−

i2 Im
[

√

k2
px

]

(

e
−i2 Im[

√
k2
px ]d2−e

−i2 Im[
√

k2
px ](d2+d3 )

)

+
�s+�

∗
s−

−i2 Im
[

√

k2
px

]

(

e
i2 Im[

√
k2
px ]d2 − e

i2 Im[
√

k2
px ](d2+d3 )

)

⎞

⎠

2e−Im[kpx ]L

Re[kpx]
{sin(Re[kpx]L + φ) − sin(φ)}

⎤

⎦. (28)

V. MODELING A SINGULAR METASURFACE WITH AN

EFFECTIVE SURFACE CONDUCTIVITY

The next step in our analytical treatment is to calculate

reflection off the singular metasurface. For this purpose,

we have developed an effective surface conductivity model.

The model is based on the assumption of subwavelength

periodicity and is illustrated in Fig. 6. If there is no SPP

mode excited on the metasurface, an incident wave will not

see it, and as a consequence the singular surface behaves

effectively as a flat surface (a). If on the other hand SPPs are

excited, energy will be dissipated at the metasurface, which

we model through an effective surface conductivity. Due to

their different charge distributions at the metasurface, the an-

tisymmetric SPP modes will induce an electric surface current

(b), whereas the symmetric SPP modes will induce a magnetic

surface current (c). Hence, we model the antisymmetric mode

with an effective electric conductivity σe = σer + iσei and

the symmetric mode with an effective magnetic conductivity

σm = σmr + iσmi .

Let us first consider the antisymmetric mode. The effec-

tive electric surface current generated by the excited SPP

modes yields the discontinuity of the tangential magnetic

field, whereas the tangential electric field is continuous,

Einc
y + Eref

y − Et
y = 0, (29)

H inc
z + H ref

z − H t
z = −σeE

loc
y . (30)

Here, Eloc
y is the local tangent electric field in the homog-

enized system which reads as Eloc
y = 1

2
(Einc

y + Eref
y + Etra

y ).

From the first of the above equations we have t = k0xε

k
′
0x

(1 − r ),

so we write

Eloc
y = −(1 − r )

k0x

ωε0

H0, (31)

where we see that the amplitude of the antisymmetric mode

is ∝1 − r . In fact, using the proportionality between t and

1 − r for this mode, we find that the mode coefficients for
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FIG. 6. Flat surface model: (a) When SPP is not excited, the

singular metasurface behaves as a flat surface; (b) when the antisym-

metric SPP mode is excited, the singular metasurface is modeled as

a flat surface with an electric surface conductivity σe; (c) when the

symmetric SPP mode is excited, the singular metasurface is modeled

as a flat surface with a magnetic surface conductivity σm.

this mode can be rewritten as �a± = (1 − r )�′
a± and Ŵa± =

(1 − r )Ŵ′
a± where the primed coefficients are independent of

r and t . Detailed expressions for these normalized coefficients

are given in Appendix C.

Similarly, for the symmetric mode we have an effective

magnetic surface current which yields

Einc
y + Eref

y − Et
y = −σmH loc

z , (32)

H inc
z + H ref

z − H t
z = 0, (33)

where the local tangent magnetic field in the homogenized

system is H loc
z = 1

2
(H inc

z + H ref
z + H tra

z ). In this case we have

t = 1 + r , so

H loc
z = (1 + r )H0, (34)

and the amplitude of the symmetric mode is ∝1 + r . Normal-

ized mode coefficients can be defined in this case by writing

�s± = (1 + r )�′
s± and Ŵs± = (1 + r )Ŵ′

s±. We give detailed

expressions in Appendix C.

From the above derivation it is clear that the antisymmetric

mode amplitude is proportional to the local electric-field Eloc
y

whereas the symmetric mode amplitude is proportional to

the local magnetic-field H loc
z . This justifies the introduction

of two kinds of surface conductivities, electric and magnetic

ones, in our model in order to mimic energy dissipation

by the excited SPP wave. With this, the complex singular

metasurface has been simplified as an easy boundary value

problem. The reflection coefficient of the singular metasurface

can be written straightforwardly as

r =
−4εσm + 4σeZ

2
0 cos θin

√

ε − sin2 θin − σeσmZ0

√

ε − sin2 θin + εσeσmZ0 cos θin − 4Z0

√

ε − sin2 θin + 4εZ0 cos θin

4εσm + 4σeZ
2
0 cos θin

√

ε − sin2 θin + σeσmZ0

√

ε − sin2 θin + εσeσmZ0 cos θin + 4Z0

√

ε − sin2 θin + 4εZ0 cos θin

,

(35)

where θin is the angle of incidence and Z0 =
√

µ0

ε0
is the

impedance of free space. Note that for σ(e,m) = 0, Eq. (35)

reduces to the reflection coefficient for a flat surface.

The problem then reduces to finding the effective con-

ductivities. We first derive their real parts by using energy

conservation as this is the term that takes away energy. The

energy absorbed in the metasurface σabsPinc must equal energy

dissipated by the excited SPP, so we write for the symmetric

and antisymmetric modes,

1
2
σer |Eloc

y |2T = σ a
absPinc,

(36)
1
2
σmr |H loc

z |2T = σ s
absPinc,

where Pinc = 1
2
Z0H

2
0 T cos θin. By substituting the expres-

sion of the local tangent fields, Eqs. (31) and (34), we

arrive at

σer =
ω2ε2

0

k2
0x

σ a
abs

|1 − r|2
Z0 cos θin,

σmr =
σ s

abs

|1 + r|2
Z0 cos θin. (37)

Now, noting that, for the antisymmetric mode t = k0xε

k
′
0x

(1 −
r ), we have that σ a

abs ∝ |1 − r|2 (see Appendix C for detailed

derivations) and we can eliminate the reflection coefficient in

the equation for σer . Similarly, for the symmetric mode we

have t = 1 + r , so σ s
abs ∝ |1 + r|2, and we can also eliminate

the reflection coefficient in the equation for σmr . We can then

write

σer =
σ a′

abs

Z0

= σ a′

absσe0,

σmr = σ s ′

absZ0 sin2 θin = σ s ′

absσm0 sin2 θin, (38)

where σe0 = Z−1
0 and σm0 = Z0 are the free space electric and

magnetic conductivities and we have introduced the intrinsic

absorption cross sections (denoted with primes), which do not

depend on the incident angle. Hence, the real parts of the

effective electric and magnetic conductivities are given by the

intrinsic absorption cross sections of the antisymmetric and

symmetric modes, respectively. These read as

σ
(a,s)′

abs =
k0T

2

|kpx |2Im[ε]

|ε|2

⎛

⎝

|�′
(a,s)+|2

−2 Re
[

√

k2
px

]

×
(

e
2 Re[

√
k2
px ]d2 − e

2 Re[
√

k2
px ](d2+d3

)
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+
|�′

(a,s)−|2

2 Re
[

√

k2
px

]

(

e
−2 Re[

√
k2
px ]d2 − e

−2 Re[
√

k2
px ](d2+d3 )

)

⎞

⎠

×
1

Im[kpx]
, (39)

where all the normalized excited field coefficients are given in

Appendix C.

Equations (39) and (40) determine the real parts of the elec-

tric and magnetic conductivities unambiguously. That is, σer

and σmr are just functions of the frequency and independent of

r and t . Furthermore, it should be noted that the electric and

magnetic conductivities are defined in the frequency ranges

where the antisymmetric and symmetric modes are supported,

respectively. For a symmetric metasurface, the symmetric and

antisymmetric modes exist over different frequency ranges as

we discussed in Sec. IV A. Specifically, we may write for the

electric conductivity,

σer =
{

σ a′

absσe0, ωc1 < ω < ωsp,

0, other,
(40)

where ωc1 < ω < ωsp corresponds to the frequency range

when the antisymmetric mode is excited. Likewise, for the

magnetic conductivity we have

σmr =
{

σ s ′

absσm0 sin2 θin, ωsp < ω < ωc2,

0, other,
(41)

where ωsp < ω < ωc2 corresponds to the frequency range

when the symmetric mode is excited.

Finally, in order to fully determine the conductivities, we

also need their imaginary parts. These can be obtained through

Kramers-Kronig relations as the conductivity must satisfy

causality [37,38]. The imaginary part is thus calculated using

σ(e,m)i = −
1

π
P

∫ ∞

−∞

σ(e,m)r (s)

s − ω
ds

=
1

π
P

∫ ∞

−∞
ln|s − ω|

dσ(e,m)r (s)

ds
ds. (42)

Using the above equation the complex surface conductivities

are fully determined, and the reflection coefficient is finally

obtained by substituting σe and σm into Eq. (35). Furthermore,

we note that Eqs. (39) and (42) also hold for the metasurface

with blunt singularities with the appropriate expressions for

σ
(a,b)′

abs . These are given in Appendix D.

VI. REFLECTION SPECTRUM OF THE SINGULAR

METASURFACE

Using the analytical framework presented in the previous

sections, we now discuss the spectrum of a singular groove

metasurface of period T = 10 nm. The metasurface is defined

with the parameters d3 = 0.9d, d1 = d2 = (d − d3)/2 such

that it is symmetric with respect to y = 0. We first consider

a normally incident plane wave as a source such that only

the antisymmetric band is excited. Correspondingly, in this

scenario the metasurface is modeled by only an effective

electric conductivity. The calculated conductivity is presented

in Fig. 7(a). Its real part, shown as a solid blue line, is nonzero

only within the antisymmetric band (between ωc1 and ωsp)

FIG. 7. Continuous spectrum of a singular metasurface at normal

incidence. (a) Effective electric surface conductivity: real (solid

blue line) and imaginary (dashed red line) parts. (b) Reflectivity

of the metasurface (blue solid line) and of a flat surface with the

same permittivity (red dashed line). The parameters taken are T =
10 nm, d3 = 0.9d, d1 = d2 = (d − d3)/2.

as given by Eq. (40). Outside the band, no SPPs are excited,

so the real part of electric surface conductivity is zero, and

the metasurface acts effectively as a flat surface without a

surface current. The imaginary part of the conductivity is

plotted as a dashed red line. In this case, σei is nonzero also

outside the band, where σer = 0. This is necessary to satisfy

Kramers-Kronig relations and represents a phase shift of the

reflected wave at the metasurface.

From the effective conductivity we obtain the reflection

coefficient, and we plot the reflectivity (|r|2) in panel (b).

The solid blue line corresponds to the calculated reflectivity

of the singular metasurface, and the red dashed line corre-

sponds to the reflectivity of a flat metal surface calculated

from Fresnel coefficients. It is clear that outside of the SPP

band the optical response of the singular metasurface is the

same as that of a flat surface. On the other hand, between

ωc1 and ωsp the reflectivity presents a continuous spectrum

where the reflectivity is smaller than 1. This corresponds to

the excitation of the antisymmetric SPP band. Note that we

only present analytical results here as full wave simulations

using commercial software cannot calculate the spectrum of

an exactly singular metasurface because the electric field

diverges at the singularity.

Next we explore the dependence of the normal incidence

reflectivity spectrum on the sharpness of the singularity.

Figure 8 shows the amplitude and phase of reflection as

a function of frequency and of the singularity angle θ =
2π d1+d2

d
. In the amplitude plot, the blue region corresponds

to lower values of reflectivity where the antisymmetric SPP

mode is excited below ωsp. The low reflectivity band is broad

for small angles, and it becomes narrower as θ gets closer to

180◦. The reason for this is that the cutoff frequency for this
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FIG. 8. Amplitude and phase of reflection as a function of frequency ω and angle of the singular grooves θ for a singular metasurface of

period T = 10 nm.

band ωc1 = ωp

√

θ
2π

approaches ωsp = ωp√
2
. On the other hand,

we can see that the maximum reflection is reached at a finite

angle of ∼30◦. The obtained reflected phase in Fig. 8 is very

close to that corresponding to a flat surface.

FIG. 9. A blunt singular metasurface at normal incidence, show-

ing a discrete rather than a continuous spectrum. (a) Phase picked up

by SPPs at the terminal of the truncated cavity. (b) Effective electric

surface conductivity, real (solid blue line) and imaginary (red dashed

line) parts. (c) Reflectivity: analytical (solid blue line) and numerical

(red dashed line). The metasurface parameters are the same as in

Fig. 7, and the truncation length is L = d .

As discussed previously, real singular metasurfaces will

present blunt singularities, which result in a discrete rather

than a continuous spectrum. Figure 9 presents results for a

metasurface with the same parameters as in Fig. 7 but with

blunt singularities. Panel (a) shows the phase φ acquired

FIG. 10. Continuous spectrum of the singular metasurface at

oblique incidence (θin = 0.4π ). (a) and (b) Effective electric (mag-

netic) surface conductivity: real (solid blue line) and imaginary

(dashed red line) parts. (c) Reflectivity of the metasurface (blue solid

line) and of a flat surface with the same permittivity (red dashed line).

The parameters for the metasurface are the same as in Fig. 7.
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FIG. 11. A blunt singular metasurface at oblique incidence, showing a discrete rather than a continuous spectrum. (a) Phase picked up

by the SPPs at the terminal of the truncated cavity of length L = d . (b) and (c) Effective electric (magnetic) surface conductivity, real (solid

blue line) and imaginary (red dashed line) parts. (c) Reflectivity: analytical (solid blue line) and numerical (red dashed line). The metasurface

parameters are the same as in Fig. 10.

by SPPs reflected off the blunt edge, which we calculate in

the slab frame for SPPs reflecting at the truncated end of

the cavity. From the calculated reflection phase we obtain

the electric surface conductivity through Eqs. (40), which is

plotted in panel (b). For frequencies within the antisymmet-

ric band, the conductivity develops resonances which result

from the quantization of SPP modes in the periodic array

of finite cavities. Then, using Eq. (35), we calculate the

corresponding reflectivity [see panel (c), solid blue line].

The reflectivity presents a discrete set of peaks, in contrast to

the continuous spectrum of the singular metasurface. We also

present the reflectivity obtained from full wave simulations

(using the commercial finite element method solver COMSOL

MULTIPHYSICS) as a red dashed line, which shows excellent

agreement with the analytical one. This confirms the validity

of our analytical modeling. In the simulations, the reflectivity

of the metasurface with blunt singularity was calculated by

simulating one period of the metasurface and using periodic

boundary conditions. The surface was generated in MATLAB

by mapping the coordinates of a finite slab array (of the

same length as used in the analytical calculations) through

Eq. (1) and imported in COMSOL. A port was used to send

a plane wave, and reflectivity was obtained from the resulting

S parameters.

VII. BREAKING THE SYMMETRY

In Sec. VI we have considered a symmetric metasurface

illuminated with a normally incident plane wave such that

the antisymmetric band is excited below the surface-plasmon

frequency whereas the symmetric band (above ωsp) is dark.

In this section we discuss how both bands can be excited by

breaking the symmetry. Two ways for breaking the symmetry

will be considered. First, we study a symmetric metasurface

under oblique incidence such that the source breaks the sym-

metry and both bands can be excited. Second, we consider

an asymmetric metasurface. Different from the first case, an

asymmetry in the geometry mixes the antisymmetric and sym-

metric modes so that they become coupled with each other.

A. Symmetric metasurface under oblique incidence

When the incident field is coming at an oblique angle of

incidence, the source is no longer symmetric with respect to

the y = 0 plane. As a consequence, the dark mode becomes

bright, and both the antisymmetric and the symmetric bands

are excited. The results obtained with our analytical model

for the singular metasurface studied above but under oblique

incidence (incident angle θin = 0.4π ) are shown in Fig. 10.

Since both antisymmetric and symmetric modes are excited,

there will be both an electric surface conductivity σe and a

magnetic surface conductivity σm. As discussed above, for

the groove metasurface the lower band (ωc1 < ω < ωsp) is the

antisymmetric mode, and its energy dissipation is modeled as

a complex electric surface conductivity σe, which is shown

in panel (a). Since the conductivity only depends on the

intrinsic absorption cross section of SPPs and not on the

incidence angle, it is the same as for the normal incidence

case considered above. On the other hand, the upper band

is the symmetric mode (ωsp < ω < ωc2), which is equivalent

to a magnetic surface conductivity σm, shown in panel (b).

Finally, panel (c) shows the metasurface reflectivity at oblique

incidence. Different from Fig. 7 where only the lower band

is excited, we see how under oblique incidence there are

two continuous bands corresponding to the excitation of the

antisymmetric and symmetric modes.

We next consider the metasurface with blunt singularities

under oblique incidence. In this case we first need to calculate

the phase picked up by the SPP modes on reflection at
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FIG. 12. Asymmetric singular metasurface at normal incidence.

(a) Effective electric surface conductivity: real (solid blue line) and

imaginary (dashed red line) parts. (b) Reflectivity of the metasurface

(blue solid line) and of a flat surface with the same permittivity (red

dashed line). The parameters used are T = 10 nm, d3 = 0.9d, d1 =
α(d − d3), and d2 = (1 − α)(d − d3) where the asymmetry factor α

is chosen as 0.7.

the truncated end in the slab frame. Since both the lower

and the upper bands are now excited, we calculate φ not

only for the antisymmetric mode (the same as for normal

incidence), but also for the symmetric mode. The SPP phase

is shown in Fig. 11(a), which ranges from the lower cutoff

frequency ωc1 to the higher cutoff frequency ωc2, and ωsp

clearly separates the two bands. Panels (b) and (c) present

the calculated effective electric and magnetic conductivities,

respectively, where the quantized modes in the truncated slab

yield a discrete spectrum. Finally, we obtain the reflectivity

of the metasurface, which is shown in panel (d) as a blue

solid line together with results from full wave simulations (red

dashed line).

B. Asymmetric metasurface

We now turn to discussing metasurfaces which are not

symmetric with respect to y = 0 as the one sketched in

Fig. 12. This asymmetric metasurface can be generated from

the slab array by choosing d1 = d2 and, in contrast to the

symmetric metasurface, it supports modes that cannot be

classified as symmetric and antisymmetric. In order to treat

this case, we proceed in exactly the same way as for the

symmetric metasurface and derive the mode coefficients given

in Appendix E. The calculated conductivity and reflectivity

spectra for a metasurface of the same period as considered

previously are shown in Fig. 12. Under normal incidence,

the asymmetric metasurface can be modeled with an electric

conductivity [see panel (a)], whereas σmr = 0. However, as a

difference with the symmetric metasurface, in this case σer

is nonzero both for the lower and the upper bands. As a

FIG. 13. Spectrum of a blunt asymmetric singular metasurface

at normal incidence. (a) Acquired phase by the SPP mode at the

terminal of the truncated cavity. (b) Effective surface conductivity:

real (solid blue line) and imaginary (dashed red line) parts. (c)

Reflectivity: analytical (solid blue line) vs numerical (dashed red

line). The metasurface parameters are the same as in Fig. 12, and

the truncation length is L = d .

consequence, the calculated reflectivity spectrum (b) shows

two continuous bands below and above the surface plasmon

frequency, corresponding to the excitation of both the lower

and the upper bands. It is interesting to note that the reflec-

tivity of the antisymmetric metasurface below ωsp is very

similar to that of the symmetric metasurface especially for

low frequencies. The reason for this is that the reflectivity is

mainly determined by the singularity and the groove angle is

the same in both cases.

Finally, we also present results for an asymmetric meta-

surface with blunt singularities in Fig. 13. Again, when the

singularities are not perfect the continuous spectrum of the

singular metasurface turns into a discrete spectrum. As before,

we first calculate the phase acquired by the SPPs in the

truncated array in the slab frame [given in panel (a)], and from

φ we calculate the effective electrical surface conductivity (b),

which has a nonzero real part both for the lower and for the

upper bands in this case. With this we obtain the reflectivity,

which we plot in panel (c) as a solid blue line. The good

agreement with results from full wave simulations, shown as

a red dashed line, confirms our analytical modeling.
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VIII. CONCLUSIONS

In this paper we have presented an analytical theory to

study the optical response of singular plasmonic metasurfaces.

By means of transformation optics, we have shown that sub-

wavelength metasurfaces with singular grooves (or wedges)

are spectrally equivalent to a more symmetric system, a

simple periodic array of metal slabs. This has allowed us to

obtain analytical expressions for the dispersion relation of

SPP modes in the metasurface as well as for the absorption

cross section. Then, by introducing a flat surface model we

have derived effective surface conductivities to model energy

dissipation by the SPPs, which has enabled us to derive an-

alytical expressions for the metasurface reflectivity. We have

shown how singular plasmonic metasurfaces have continuous

spectra with a reduced reflectivity over a broad range of

frequencies. On the other hand, realistic metasurfaces will

not have perfect singularities first due to the difficulties in

nanofabricating sharp angles and ultimately to nonlocality. We

have shown how blunt singularities have a striking effect in the

spectrum of metasurfaces. Since blunt singular metasurfaces

map to truncated slab arrays, the SPP modes are quantized

resulting in a discrete set of peaks in the spectrum. We

have also discussed how under normal incidence only the

antisymmetric band is excited, which lies below the surface-

plasmon frequency for the case of grooves (above for wedges).

Breaking the symmetry with an incident wave at an oblique

angle allows for the excitation of the symmetric band above

the surface-plasmon frequency (below for wedges). Finally,

we have also discussed how both bands are excited at normal

incidence in asymmetric metasurfaces.

For metasurfaces with blunt singularities we have been

able to compare our analytical results with full wave elec-

trodynamic simulations, showing that they are in excellent

agreement. At the same time, our analytical treatment gives

a great physical insight in terms of singularities and allows

for an easy optimization of the metasurface shape for a given

purpose.
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APPENDIX A: SOURCE FIELDS IN THE TRANSFORMED SPACE

Here we present the derivation of the incident, reflected, and transmitted waves in the slab frame. Starting from plane waves in

the metasurface frame, Eq. (3), we apply the transformation Eq. (1) and write the source fields in the slab geometry. We assume

that the metasurface is subwavelength and that the spatial region of interest satisfies T ≪ |x4| ≪ λ. Under this assumption, the

transformation reduces to

z4 ≈ −
T

2π
ln
(π

d
z1

)

(A1)

for the incident and reflected waves on the right-hand side of the singular surface (T ≪ x4 ≪ λ). For the transmitted wave on

the left side of the singular surface we have T ≪ −x4 ≪ λ and

z4 ≈
T

2π
ln

[

π

d

(

z1 ± i
d

2

)]

. (A2)

Then, the incident wave can be written as

H inc
z = H0e

−ik0xx4+ik0yy4

= H0e
−ik0x [(z4+z∗

4 )/2+ik0y (z4−z∗
4 )/(2i)]

= H0e
{[(−ik0x+k0y )/2]z4+[(−ik0x−k0y )/2]z∗

4}

≈ H0 exp

[

−
−ik0x + k0y

2

T

2π
ln
(π

d
z1

)

]

exp

[

−
−ik0x − k0y

2

T

2π
ln
(π

d
z∗

1

)

]

≈ H0

[

1 +
ik0x − k0y

2

T

2π
ln
(π

d
z1

)

][

1 +
ik0x + k0y

2

T

2π
ln
(π

d
z∗

1

)

]

≈ H0

[

1 +
ik0x − k0y

2

T

2π
ln
(π

d
z1

)

+
ik0x + k0y

2

T

2π
ln
(π

d
z∗

1

)

]

= H0

{

1 + i
k0xT

4π
ln

[

(π

d

)2

|z1|2
]

+
k0yT

4π
ln

(

z∗
1

z1

)}

= H0

[

1 + i
k0xT

2π
ln
(π

d

)

+ i
k0xT

4π
ln(|z1|2) +

k0yT

4π
ln

(

z∗
1

z1

)]

= H0

[

1 + i
k0xT

2π
ln
(π

d

)

− i
k0xT

4π

∫ ∞

−∞

e−|kx ||y1|

|kx |
eikxx1dkx +

k0yT

4π

∫ ∞

−∞

e−|kx ||y1|

sgn(y1)kx

eikxx1dkx

]

= H0

[

1 + i
k0xT

2π
ln
(π

d

)

]

+
∫ ∞

−∞
aa

e−|kx ||y1|

|kx |
eikxx1dkx +

∫ ∞

−∞
as

e−|kx ||y1|

sgn(y1)kx

eikxx1dkx, (A3)
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where we have used

ln(|z1|2) = −
∫ ∞

−∞

e−|kx ||y1|

|kx |
eikxx1dkx, (A4)

and

ln

(

z∗
1

z1

)

=
∫ ∞

−∞

e−|kx ||y1|

sgn(y1)kx

eikxx1dkx . (A5)

The reflected wave can be easily obtained by replacing k0x with −k0x ,

H ref
z = rH0e

ik0xx4+ik0yy4

= rH0

[

1 − i
k0xT

2π
ln
(π

d

)

+ i
k0xT

4π

∫ ∞

−∞

e−|kx ||y1|

|kx |
eikxx1dkx +

k0yT

4π

∫ ∞

−∞

e−|kx ||y1|

sgn(y1)kx

eikxx1dkx

]

= rH0

[

1 − i
k0xT

2π
ln
(π

d

)

]

−
∫ ∞

−∞
raa

e−|kx ||y1|

|kx |
eikxx1dkx +

∫ ∞

−∞
ras

e−|kx ||y1|

sgn(y1)kx

eikxx1dkx . (A6)

For the transmitted wave, k
′

0x =
√

εk2
0 − k2

0y , and we have

H tra
z = tH0e

−ik′
0xx4+ik0yy4

= tH0 exp

(

−ik′
0x

z4 + z∗
4

2
+ ik0y

z4 − z∗
4

2i

)

= tH0 exp

(

−ik
′

0x + k0y

2
z4 +

−ik
′

0x − k0y

2
z∗

4

)

≈ tH0 exp

{

−ik′
0x + k0y

2

T

2π
ln

[

π

d

(

z1 + i
d

2

)]}

exp

{

−ik′
0x − k0y

2

T

2π
ln

[

π

d

(

z1 + i
d

2

)∗]}

≈ tH0

{

1 −
ik′

0x − k0y

2

T

2π
ln

[

π

d

(

z1 + i
d

2

)]}{

1 −
ik′

0x + k0y

2

T

2π
ln

[

π

d

(

z1 + i
d

2

)∗]}

≈ tH0

{

1 −
ik′

0x − k0y

2

T

2π
ln

[

π

d

(

z1 + i
d

2

)]

−
ik′

0x + k0y

2

T

2π
ln

[

π

d

(

z1 + i
d

2

)∗]}

= tH0

{

1 − i
k′

0xT

4π
ln

[

(π

d

)2
∣

∣

∣

∣

z1 + i
d

2

∣

∣

∣

∣

2
]

−
k0yT

4π
ln

(

(

z1 + i d
2

)∗

(

z1 + i d
2

)

)}

= tH0

{

1 − i
k′

0xT

2π
ln
(π

d

)

− i
k′

0xT

4π
ln

(

∣

∣

∣

∣

z1 + i
d

2

∣

∣

∣

∣

2
)

−
k0yT

4π
ln

[

(

z1 + i d
2

)∗

(

z1 + i d
2

)

]}

= tH0

[

1 − i
k′

0xT

2π
ln
(π

d

)

+ i
k′

0xT

4π

∫ ∞

−∞

e−|kx ||y1+(d/2)|

|kx |
eikxx1dkx −

k0yT

4π

∫ ∞

−∞

e−|kx ||y1+(d/2)|

sgn
(

y1 + d
2

)

kx

eikxx1dkx

]

= tH0

[

1 − i
k

′

0xT

2π
ln
(π

d

)

]

−
∫ ∞

−∞
t
k′

0x

k0x

aa

e−|kx ||y1+(d/2)|

|kx |
eikxx1dkx −

∫ ∞

−∞
tas

e−|kx ||y1+d/2|

sgn
(

y1 + d
2

)

kx

eikxx1dkx . (A7)

APPENDIX B: CALCULATION OF THE SPP MODE COEFFICIENTS

In order to calculate the mode coefficients of the excited SPPs, we apply the boundary conditions in the slab frame. Hence,

we match the tangential field components Hz and Ex at the boundaries y = d1, y = −d2, y = −(d2 + d3) [21]. In the matrix
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form, the equations system reads as
⎛

⎜

⎜

⎝

e|kx |d2 e−|kx |d2 −e|kx |d2 −e−|kx |d2

e−|kx |d1 e|kx |d1 −e|kx |(d2+d3 ) −e−|kx |(d2+d3 )

|kx |e|kx |d2 −|kx |e−|kx |d2 − |kx |e|kx |d2

ε

|kx |e−|kx |d2

ε

|kx |e−|kx |d1 −|kx |e|kx |d1 − |kx |e|kx |(d2+d3 )

ε

|kx |e−|kx |(d2+d3 )

ε

⎞

⎟

⎟

⎠

⎛

⎜

⎝

b+
b−
c+
c−

⎞

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

− e−|kx |d2

|kx |

− e−|kx |d1

|kx |

e−|kx |d2

−e−|kx |d1

⎞

⎟

⎟

⎟

⎟

⎠

aa (1 − r ) +

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− e−|kx |[−d2+(d/2)]

|kx |

− e−|kx |[d2+d3−(d/2)]

|kx |

− e−|kx |[−d2+(d/2)]

ε

e−|kx |[d2+d3−(d/2)]

ε

⎞

⎟

⎟

⎟

⎟

⎟

⎠

aa

k′
0x

k0x

t +

⎛

⎜

⎜

⎜

⎜

⎝

e−|kx |d2

kx

− e−|kx |d1

kx

−sgn(kx )e−|kx |d2

−sgn(kx )e−|kx |d1

⎞

⎟

⎟

⎟

⎟

⎠

as (1 + r ) +

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− e−|kx |[−d2+(d/2)]

kx

e−|kx |[d2+d3−(d/2)]

kx

−sgn(kx ) e−|kx |[−d2+(d/2)]

ε

−sgn(kx ) e−|kx |[d2+d3−(d/2)]

ε

⎞

⎟

⎟

⎟

⎟

⎟

⎠

as t,

(B1)

where the Bloch wave condition has been used because of the periodicity of the slab array. Since the system of equations is

linear, the response functions b and c can be decomposed into antisymmetric and symmetric components. For the antisymmetric

excitation (aa = 0, as = 0), we have

ba+ =
(ε − 1)e|kx |d3 + ε + 1

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa (1 − r )

−
2e(1/2)|kx |d

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa

k′
0x

k0x

t, (B2)

ba− =
(ε − 1)e|kx |d3 + ε + 1

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa (1 − r )

−
2e(1/2)|kx |d

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa

k′
0x

k0x

t,

ca+ =
2ε

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa (1 − r )

+
e−(1/2)|kx |d [(ε − 1)e2|kx |d2 − (ε + 1)]

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa

k′
0x

k0x

t,

ca− =
2εe|kx |d

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa (1 − r )

+
e(1/2)|kx |d [(ε − 1)e2|kx |d2 − (ε + 1)]

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) + (ε + 1)(e|kx |d − 1)]
aa

k′
0x

k0x

t. (B3)

On the other hand, the symmetric excitation (aa = 0, as = 0) gives

bs+ =
(ε − 1)e|kx |d3 − (ε + 1)

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as (1 + r )

+
2e(1/2)|kx |d

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as t, (B4)

bs− = −
(ε − 1)e|kx |d3 − (ε + 1)

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as (1 + r )

−
2e(1/2)|kx |d

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as t,

cs+ = −
2ε

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as (1 + r )

+
e−(1/2)|kx |d [(ε − 1)e2d2|kx | + (ε + 1)]

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as t,

cs− =
2εe|kx |d

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as (1 + r )

−
e(1/2)|kx |d [(ε − 1)e2d2|kx | + (ε + 1)]

|kx |[(ε − 1)(e|kx |(d1+d2 ) − e|kx |d3 ) − (ε + 1)(e|kx |d − 1)]
sgn(kx )as t. (B5)
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Then, the field amplitude in real space is obtained through a Fourier transformation of the field in k space as discussed in the

main text. Here we give the mode coefficients of the fields in real space. For the antisymmetric mode, we have

Ŵa+ =
(ε − 1)e

√
k2
pxd3 + ε + 1

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

(1 − r )

−
2e

(1/2)
√

k2
pxd

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

k′
0x

k0x

t, (B6)

Ŵa− =
(ε − 1)e

√
k2
pxd3 + ε + 1

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

(1 − r )

−
2e

(1/2)
√

k2
pxd

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

k′
0x

k0x

t,

�a+ =
2ε

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

(1 − r )

+
e
−(1/2)

√
k2
pxd
[

(ε − 1)e2
√

k2
pxd2 − (ε + 1)

]

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

k′
0x

k0x

t,

�a− =
2εe

√
k2
pxd

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

(1 − r )

+
e

(1/2)
√

k2
pxd
[

(ε − 1)e2
√

k2
pxd2 − (ε + 1)

]

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

k′
0x

k0x

t. (B7)

Whereas for the symmetric mode,

Ŵs+ =
(ε − 1)e

√
k2
pxd3 − (ε + 1)

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x)(1 + r )

+
2e

(1/2)
√

k2
pxd

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x)t, (B8)

Ŵs− = −
(ε − 1)e

√
k2
pxd3 − (ε + 1)

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x)(1 + r )

−
2e

(1/2)
√

k2
pxd

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x)t,

�s+ = −
2ε

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x)(1 + r )

+
e
−(1/2)

√
k2
pxd
[

(ε − 1)e2d2

√
k2
px + (ε + 1)

]

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x)t,

�s− =
2εe

√
k2
pxd

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x)(1 + r )

−
e

(1/2)
√

k2
pxd
[

(ε − 1)e2d2

√
k2
px + (ε + 1)

]

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]
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√

k2
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}

sgn(kpx )sgn(x)t. (B9)

125409-16



TRANSFORMATION OPTICS APPROACH TO SINGULAR … PHYSICAL REVIEW B 98, 125409 (2018)

APPENDIX C: NORMALIZED MODE AMPLITUDES

In the flat surface model introduced in the main text, we have that the mode coefficients (Ŵ(a,s)±,�(a,s)±) are proportional to

1 − r for the antisymmetric mode and to 1 + r for the symmetric mode such that normalized coefficients can be defined which

do not depend on r or t , denoted as Ŵ
′
(a,s)±,�′

(a,s)±.

For the antisymmetric mode, we have

Ŵ
′
a+ =

(ε − 1)e
√

k2
pxd3 + ε + 1

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

−
2e

(1/2)
√

k2
pxd

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

ε, (C1)

Ŵ
′
a− =

(ε − 1)e
√

k2
pxd3 + ε + 1

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
k2
pxd3

]

+ (ε + 1)de
√

k2
pxd
}

−
2e

(1/2)
√

k2
pxd

kpx

{
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[
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√
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px (d1+d2 ) − d3e

√
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pxd3

]
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√
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pxd
}

ε,

�
′
a+ =

2ε

kpx

{
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[
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√

k2
px (d1+d2 ) − d3e

√
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pxd3

]
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√
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}

+
e
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√
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[

(ε − 1)e2
√
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]
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√
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√
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pxd3

]
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}

ε,
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′
a− =

2εe
√
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kpx
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√
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]
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√
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√
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√
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√
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ε. (C2)

Similarly, for the symmetric mode, we have

Ŵ
′
s+ =

(ε − 1)e
√

k2
pxd3 − (ε + 1)

kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 ) − d3e

√
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pxd3

]
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sgn(kpx )sgn(x)

+
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√
k2
pxd3

]

− (ε + 1)de
√

k2
pxd
}

sgn(kpx )sgn(x), (C3)

Ŵ
′
s− = −

(ε − 1)e
√

k2
pxd3 − (ε + 1)

kpx
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√
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−
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√
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√
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]
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√
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}

sgn(kpx )sgn(x),

�
′
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2ε
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(d1 + d2)e
√
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√
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]
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}
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+
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√
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√
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√
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px (d1+d2 ) − d3e

√
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]
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√
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}

sgn(kpx )sgn(x),

�
′
s− =

2εe
√
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kpx

{

(ε − 1)
[

(d1 + d2)e
√

k2
px (d1+d2 )

]

− d3e
√

k2
pxd3 − (ε + 1)de

√
k2
pxd
}

sgn(kpx )sgn(x)

−
e

(1/2)
√
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[
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√
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px + (ε + 1)

]
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{
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√
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√
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]
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√
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}

sgn(kpx )sgn(x). (C4)
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APPENDIX D: INTRINSIC ABSORPTION CROSS SECTION FOR METASURFACES WITH BLUNT SINGULARITIES

Here we give expressions for the intrinsic absorption cross section of a metasurface with blunt singularities. For the

antisymmetric mode,

σ a′

abs =
k0T

2

|kpx |2Im[ε]

|ε|2
1

|1 − eikpxL+iφ|2

⎡

⎣

⎛

⎝

|�′
a+|2
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k2
px

]

(

e
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√
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√
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√
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⎠
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⎛
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�
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√

k2
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]
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e
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√
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−i2 Im[
√

k2
px ](d2+d3 )

)

+
�

′
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′∗
a−

−i2 Im
[

√

k2
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]

(

e
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√
k2
px ]d2 − e

i2 Im[
√

k2
px ](d2+d3 )

)

⎞

⎠

2e−Im[kpx ]L

Re[kpx]
{sin[[kpx]L + φ] − sin(φ)}

⎤

⎦. (D1)

For the symmetric mode,

σ s ′

abs =
k0T

2

|kpx |2Im[ε]

|ε|2
1

|1 + eikpxL+iφ|2
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⎛

⎝
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√
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√
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√
k2
px ]d2−e

−2 Re[
√

k2
px ](d2+d3 )

)

⎞

⎠
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⎛
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e
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√
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√
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)

+
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′
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[

√

k2
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]

(

e
i2 Im[

√
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√
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px ](d2+d3 )

)

⎞

⎠
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⎤

⎦. (D2)

APPENDIX E: COEFFICIENTS FOR THE ASYMMETRIC METASURFACE

Following the same procedure as the calculation for the symmetric metasurface, we obtain all the coefficients for the

asymmetric metasurface (ba±, ca±,Ŵa±,�a±,�′
a±). They are listed below

ba+ =
−4εe|kx |(d1+d2+d3 ) − (ε2 − 1)e2|kx |(d1+d3 ) + (ε2 − 1)e2d1|kx | + (ε − 1)2(−e2d3|kx |) + (ε + 1)2

|kx |[(ε − 1)2(e|kx |(d1+d2 ) − ed3|kx |)2 − (ε + 1)2(ed|kx | − 1)2]
(1 − r )aa

+
2e(1/2)|kx |(d1−d2+d3 )[(ε + 1)e|kx |d1+2d2+d3 ) − (ε − 1)e|kx |d1+d2 ) + (ε − 1)e|kx |(d1+d3 ) − (ε + 1)ed2|kx |]

|kx |[(ε − 1)2(e|kx |(d1+d2 ) − ed3|kx |)2 − (ε + 1)2(ed|kx | − 1)2]

√
εtaa,

ba− =
−4εe|kx |(d1+d2+d3 ) − (ε2 − 1)e2|kx |(d2+d3 ) + (ε2 − 1)e2d2|kx | + (ε − 1)2(−e2d3|kx |) + (ε + 1)2

|kx |[(ε − 1)2(e|kx |(d1+d2 ) − ed3|kx |)2 − (ε + 1)2(ed|kx | − 1)2]
(1 − r )aa

+
2e−(1/2)|kx |[d1−3(d2+d3 )][(ε − 1)(−e|kx |(d1+d2−d3 )) + (ε + 1)(e2d1|kx | − e|kx |(d1−d2−d3 )) + ε − 1]

|kx |[(ε − 1)2(e|kx |(d1+d2 ) − ed3|kx |)2 − (ε + 1)2(ed|kx | − 1)2]

√
εtaa, (E1)

ca+ =
2εe−2d2|kx |[−(ε − 1)e|kx |(d1+d2+d3 ) − (ε + 1)e|kx |(d1+3d2+d3 ) + (ε − 1)e2|kx |(d1+d2 ) + (ε + 1)e2d2|kx |]

|kx |[(ε − 1)2(e|kx |(d1+d2 ) − ed3|kx |)2 − (ε + 1)2(ed|kx | − 1)2]
(1 − r )aa

+e−(1/2)|kx |(d1+3d2+d3 )[−(ε2−1)e|kx |(3d1+2d2+d3 )+4εe|kx |(d1+2d2+d3 )+(ε−1)2e2d1|kx |+3d2 |kx |+(ε2−1)e|kx |(d1+d3 )−(ε+1)2ed2 |kx |]

|kx |[(ε−1)2(e|kx |(d1+d2 )−ed3|kx |)2−(ε+1)2(ed|kx |−1)2]

√
εtaa,

ca− =
2εe|kx |(d2+d3 )[−(ε + 1)e|kx |(2d1+d2+d3 ) + (ε − 1)e|kx |(d1+2d2 ) + (ε + 1)ed1|kx | − (ε − 1)e|kx |(d2+d3 )]

|kx |[(ε − 1)2(e|kx |(d1+d2 ) − ed3|kx |)2 − (ε + 1)2(ed|kx | − 1)2]
(1 − r )aa

+
e−(1/2)|kx |[d1−3(d2+d3 )][(ε−1)2e|kx |(3d1+d2−d3 )−(ε + 1)2e|kx |(d1−d2−d3 )−(ε2−1)e2|kx |(d1+d2 ) + 4εe2d1|kx | + ε2−1]

|kx |[(ε−1)2(e|kx |(d1+d2 )−ed3|kx |)2−(ε + 1)2(ed|kx |−1)2]

√
εtaa,

(E2)
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Ŵa+ =
−4εe

√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
k2
px
]

kpx

{

2(ε − 1)2
(

e
√

k2
px (d1+d2 ) − e

√
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√
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√
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√
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√
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√
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